Homework 01

You are suggested to finish question 1-6 prior to Quiz 01, and the rest prior to Quiz 02.

1. Consider matrices

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
3 a_{11}+a_{21} & 3 a_{12}+a_{22} & 3 a_{13}+a_{23} \\
-5 a_{11}+a_{31} & -5 a_{12}+a_{32} & -5 a_{13}+a_{33}
\end{array}\right],
$$

find a matrix E such that $E A=\tilde{A}$.
2. Consider matrices

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{lll}
a_{11} & 7 a_{11}+a_{12} & -2 a_{11}+a_{13} \\
a_{21} & 7 a_{21}+a_{22} & -2 a_{21}+a_{23} \\
a_{31} & 7 a_{31}+a_{32} & -2 a_{31}+a_{33}
\end{array}\right],
$$

find a matrix E such that $A E=\tilde{A}$.
3. Consider a matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
8 & 0 & 1 & 0 \\
\pi & 0 & 0 & 1
\end{array}\right]
$$

Find its inverse A^{-1}.
4. Consider a matrix

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \alpha & 1 & 0 \\
0 & 0 & \beta & 0 & 1
\end{array}\right],
$$

where α and β are two constants. Find its inverse A^{-1}.
5. Consider two matrices

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
l_{21} & 1 & 0 & 0 & 0 \\
l_{31} & 0 & 1 & 0 & 0 \\
l_{41} & 0 & 0 & 1 & 0 \\
l_{51} & 0 & 0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \alpha & 1 & 0 \\
0 & 0 & \beta & 0 & 1
\end{array}\right]
$$

Calculate $A B$ and $B A$.
6. Consider a matrix

$$
A=\left[\begin{array}{llll}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{array}\right]
$$

Find a Frobenius matrix E to eliminate the first column of A, in other words, $E A$ should be of form

$$
A=\left[\begin{array}{cccc}
\mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
0 & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
0 & \mathrm{X} & \mathrm{X} & \mathrm{X} \\
0 & \mathrm{X} & \mathrm{X} & \mathrm{X}
\end{array}\right]
$$

7. Consider matrices

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad \tilde{A}=\left[\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{11} & a_{12} & a_{13}
\end{array}\right],
$$

find a matrix P such that $P A=\tilde{A}$.
8. Consider a permutation π :

$$
\pi:\{1,2,3,4\} \rightarrow\{2,3,1,4\}
$$

(a) Find the corresponding row permutation matrix $P_{\pi}^{\text {row }}$ and the column permutation matrix P_{π}^{col};
(b) Calculate $P_{\pi}^{\text {row }} \cdot A$ and $A \cdot P_{\pi}^{\text {col }}$;
(c) What is the relation between $P_{\pi}^{\text {row }}$ and $P_{\pi}^{\text {col }}$?
(d) Find $\left(P_{\pi}^{\text {row }}\right)^{-1}$; How is $\left(P_{\pi}^{\text {row }}\right)^{-1}$ related with $P_{\pi}^{\text {row }}$ and $P_{\pi}^{\text {col }}$?
(e) Find $\left(P_{\pi}^{\text {col }}\right)^{-1}$; How is $\left(P_{\pi}^{\text {col }}\right)^{-1}$ related with $P_{\pi}^{\text {row }}$ and $P_{\pi}^{\text {col }}$?
(f) Find the inverse of the permutation π, denoted by π^{-1};
(g) Find $P_{\pi^{-1}}^{\text {row }}$ and $P_{\pi^{-1}}^{\mathrm{col}}$; how are they related with P_{π}^{row} and P_{π}^{col} ?
9. Consider a Frobenious matrix

$$
L=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & l_{43} & 1 & 0 & 0 \\
0 & 0 & l_{53} & 0 & 1 & 0 \\
0 & 0 & l_{63} & 0 & 0 & 1
\end{array}\right]
$$

Let π be a permutation:

$$
\pi:\{1,2,3,4,5,6\} \rightarrow\{1,2,3,6,4,5\}
$$

(a) Calculate $P_{\pi}^{\mathrm{row}} \cdot L$, and then $\left(P_{\pi}^{\mathrm{row}} \cdot L\right) \cdot P_{\pi}^{\mathrm{col}}$;
(b) What is the relation between $P_{\pi}^{\text {row }} L P_{\pi}^{\text {col }}$ and L ?
(c) Take a different permutation

$$
\gamma:\{1,2,3,4,5,6\} \rightarrow\{1,2,5,6,4,3\}
$$

and repeat the calculation from step (a); is $P_{\gamma}^{\text {row }} L P_{\gamma}^{\text {col }}$ related with L in a similar way as in (b)? Explain why.

