Vote Switchers and Party Influence in the U.S. House

Garry Young
George Washington University
YoungG@gwu.edu

Vicky Wilkins
University of Georgia
vwilkins@uga.edu

February 2005
V2.05

Thanks to Keith Dougherty, Valerie Heitshusen, Nathan Monroe for comments. Thanks to Don Wolfensberger for comments and help with the data. This is a revised version of a paper delivered at the 2005 Southern Political Science Association meeting, New Orleans, LA.
Vote Switchers and Party Influence in the U.S. House

Abstract: Party-centered theories of Congress often rely on the critical assumption that some majority party members vote against their preferences in granting their leadership procedural powers, such as closed rules. Such an assumption renders these approaches *ad hoc*, and thus theoretically dubious, unless firm support for the assumption can be found.

Firm support is elusive largely because it is difficult to separate party and preference effects. In this paper we produce a simple but critical test of the party persuasion assumption in a way that largely avoids these measurement problems. Specifically, we use a “switcher analysis” (Krehbiel 1998) to compare votes on final passage of the legislation with the votes on the closed rule. Our analysis of all Closed Rule-Final Passage vote pairs for the 104th-108th Congresses reveals vote patterns that cannot exist unless members are lending their leaders support on the procedural vote.
Two problems – the first theoretical, the second empirical – plague the contemporary literature on congressional party. The theoretical problem reflects the surprising difficulty that theorists – especially formal theorists and their fellow travelers – have identifying the substantively independent and important impact that party plays relative to preferences alone (e.g., Krehbiel 1993).

Two key exceptions to this general problem are the “procedural choice” model developed by Dion and Huber (1996) and the “party cartel” model developed by Cox and McCubbins (1993, 2004). These models are notable because they specify conditions of party power and testable hypotheses that can be pitted against preference-only models. Yet this work suffers from a more specific theoretical problem in that the models contain a critical assumption that violates a fundamental tenet of the median voter theorem (Black 1958). Namely, the models assume that some majority party members vote against their own preferences in granting their leadership procedural powers, such as closed rules. Such an assumption renders these approaches ad hoc, and thus theoretically dubious, unless firm support for the assumption can be found.¹

Such firm support is elusive, largely because of a vexing empirical problem: It is extremely difficult to convincingly disentangle the effects of preference on roll call votes from other effects, such as party persuasion, agenda processes, interest group influence, and presidential pressure. In sum, party-centered models rely on an ad hoc assumption that is not

¹ We include Aldrich and Rohde’s (1997-98, 2000, 2001) “conditional party government” (CPG) both as an example of progress that has been made along the party theory front, but also with our general criticism regarding the spatial model. To be sure, Aldrich and Rohde’s posit CPG as spatially multi-dimensional. (For a formal modeling example see Aldrich 1994). Thus technically our specific criticism about the median voter theorem is moot given its inapplicability past a single dimension (Plott 1967). Yet, our general point applies to CPG. Aldrich and Rohde argue that under CPG members cede power to their party leadership. This certainly involves circumstances analogous to that shown here where members go against their preferences to support the party.
credible without empirical support. Yet, thus far scholars have provided little direct empirical support for the assumption.

In this paper we provide such support with a simple but critical test of the party persuasion assumption in a way that largely avoids the measurement problems suffered by much of the literature. Specifically, we examine legislation considered under one of the most powerful procedural devices available in the House: Closed rules. Since closed rules prohibit amendments on legislation we can effectively use a “switcher analysis” (Krehbiel 1998; Wilkins and Young 2002) to compare votes on final passage of the legislation with the votes on the closed rule. Our analysis of all Closed Rule-Final Passage vote pairs for the 104th-108th Congresses reveals vote patterns that simply should not exist unless members are lending their leaders support on the procedural vote.

A Party-Centered Model

Consider a variant of the Dion and Huber (1996) model, as illustrated in figure 1. Here we assume that the Rules Committee (x_r) is controlled by the median of the majority. The model works as follows: the committee (x_c) reports a bill; x_r unilaterally imposes an open or closed rule; and then the House median (x_h) votes given the constraints of the rule. In the above scenario, x_c will report a bill (B) at, say, its ideal point x_c. The Rules Committee (x_r) then imposes a rule. A closed rule pits Q against the winning B. An open rule permits any germane amendment and thus guarantees an outcome at the median voter’s (x_h) ideal point A (Denzau and Mackay 1983). Preferring B to A, x_r chooses a closed rule and forces the outcome B.

[Figure 1 about here]

2 We assume perfect information, unidimensional policy, and single-peaked symmetric utility functions.
Thus the majority party uses its control of procedure to benefit the majority party median. Given an alignment where the reporting committee lies on the same side of the House median as the Rules Committee, the model predicts a closed rule in virtually all cases.\(^3\)

Note how the model relies on an assumption inconsistent with the procedures of the U.S. House: The Rules Committee unilaterally imposes the closed rule. In the real world of congressional politics rule proposals require a majority vote to go into effect. Thus, in the above scenario the model must assume that the chamber median (\(x^h\)) supports a closed rule even though it prefers an open rule. Obviously this violates the basic spatial theory tenet that actors vote for the proximate alternative.\(^4\)

Why would the chamber median do this? It must be because some legislators are voting against their preferences. Since the benefit goes to the majority party the clear assumption (explicit or not) of this kind of model is that the majority party induces enough members to vote against their true preferences on the rules vote to pass the closed rule. There is a huge literature that attempts to parse out party effects from preference effects. Virtually all of this literature uses some sort of index, based on roll call votes, such as variants of Rice indices (Rice 1928; Cox and Poole 2002; Cooper and Young 2002) or the now ubiquitous NOMINATE scores produced by Poole and Rosenthal (2000) and its variants (e.g., Heckman and Snyder 1997). Perhaps the best-known example along these lines is an article by Snyder and Groseclose (2000). They use lopsided votes to produce a “purely” preference-based measure on the logic that parties have no incentive to impose pressure on lopsided votes. They then produce scores based on close votes and model whether the differences between the two sets of scores follow a pattern predicted by

\(^3\) Given an alignment where \(x^r\) and \(x^c\) are on the same side of \(x^h\), the only way \(x^c\) produces an open rule is the unlikely scenario (Young and Heitshusen 2003) where \(x^c\) is further from \(x^r\) then \(x^c\) is from \(x^h\), i.e., \(|x^h - x^c| < |x^r - x^c|\). With some placements of the status quo the model predicts obstruction by either the reporting committee or the
party influence. They find strong evidence for party effects across a variety of different types of votes, notably votes on procedure.

Arguably, Snyder and Groseclose’s⁵ is the most convincing disentanglement of party effects from preference effects. Still, their analysis suffers from the same problem facing all analyses that use roll call-based indices. Indeed, McCarty, Poole, and Rosenthal (2001) and Krehbiel (2003) both argue that Snyder and Groseclose overestimate party influence. (See also Snyder and Groseclose 2001.)

We propose a different approach, one that speaks to the specific issue of party influence on closed rule votes, but that avoids many of the problems that plague other efforts. No one can directly test for the presence of influence, but we can identify compelling indirect evidence that is very unlikely to exist without the presence of party influence. Influence of the sort we discussed should show up in the voting patterns on closed rules and their corresponding final passage bill votes.

Absent some amount of influence – or “vote-buying” in the Snyder (1991) parlance – a perfect information model predicts an open rule. The chamber median’s vote is necessary for a closed rule to pass. Yet the median always has the incentive to vote against the closed rule in favor of an open rule since the open rule guarantees the median’s ideal point.⁶ This prediction is wrong since closed rules frequently pass. Thus we need to turn to an explanation that explains

⁴ Krehbiel (1997: 941-942) and Evans (1999: 628) make similar points.
⁵ We assert this without intending to slight a rich literature on the party versus preference question. Looking strictly at the literature that examines party and preferences as they apply to roll call votes – as opposed to, say, policy production – the literature includes a wide range of efforts. Some recent examples include Burden and Frisby’s (2004) analysis of whip counts; various analyses of voting behavior after switching parties (Nokken and Poole 2004; McCarty, Poole, and Rosenthal 2001; Nokken 2000); and a comparison of candidate surveys with later voting behavior (Ansolabehere, Snyder, and Stewart 2001).
⁶ The exception is the uninteresting case where the alternative going to the floor is the median’s ideal point, in which case a closed rule and open rule yield the same result.
closed rule passage, such as vote-buying theory (Snyder 1991). Our argument is that vote-buying on closed rules occurs on a party basis rather than a strictly preference basis. The majority party seeks closed rules to benefit the median of the majority party. To achieve this end the majority party leadership convinces fellow partisans who oppose the legislation to nonetheless give the party their vote on the rule and then vote their preferences on final passage. Alternatively the majority party leadership convinces members who support the legislation but who nonetheless prefer an open rule to support the closed rule. (Presumably the minority party acts to countervail by influencing its members to oppose closed rules.) By influencing enough of its members the majority party gets what it wants – protection of the party-favored package – and the members are not forced to vote against their preferences (and presumably their constituents) on the vote that matters the most politically: final passage.

We assume that the measure of “true” preferences is the final passage vote and since this preference is almost certainly in line with constituencies, members are very hesitant to vote against their constituencies’ preferences on what are easily understood and public votes. Members are concerned about the way future campaign opponents might portray roll call votes (Arnold 1992). The opaqueness of congressional procedure makes a member’s vote on rules far harder than a vote on final passage to effectively use in negative advertising. Thus the key place where the party can assert influence and dramatically affect policy is on procedural votes rather than final passage votes.

Our paper continues as follows. We first describe our basic dataset and show the party voting breakdowns. We then proceed with a discussion of the type of voting patterns necessary to identify party influence and continue with some simple tests for influence. During these discussions we will break our analysis into to two types, beginning first a test of influence on
legislators who oppose final passage and then concluding with the case where legislators support final passage.

Data and Analysis

The key for our analysis is to identify bills that went to the floor under a closed rule. It is only under the closed rule case that a legislator knows that if the rule passes then the vote choice on the floor is between the bill reported by the committee and the existing status quo. Thus the standard spatial model predicts that a legislator who prefers the committee bill to the chamber median will vote for the closed rule while a legislator who prefers the chamber median to the committee bill will oppose the closed rule. If amendments to the bill are allowed then the circumstances are far more ambiguous and we cannot derive clear predictions.

Thus our dataset focuses only on closed rules. It includes all fifty-five recorded closed rule vote–final bill passage vote pairs that occurred for the 104th – 108th Congresses (1995-2004). To construct a vote pair we first identified all true closed rules7 that passed the House via a recorded vote. We then matched these rule votes with the corresponding final passage bill votes, deleting the cases where the vote was not recorded.8 Consistent with the literature (Bach and Smith 1988), our data includes some time-sensitive budget bills, such as those for continuing appropriations and increasing the debt limit. Yet, the bulk of our vote pairs address non-budget issues such as abortion, flag desecration, tort reform, energy policy, and the Patriot Act.9

We begin with table 1, which provides a party-based breakdown of the various voting permutations. Republicans are the majority party throughout the period. The first observation is that Republicans are far more likely than Democrats to support closed rules. Of the 11, 844

7 By this we mean all closed rules that allowed no amendments, including amendments from the committee and bills under the 1-hour rule. (See Oleszek 2004.) The dataset also excludes votes on conference reports.
8 The breakdown by Congress is 104: 9; 105: 4; 106: 15; 107: 15; 108: 12.
9 In the analysis that follows, the results are not affected by removing the budget bills from the dataset.
Republican votes cast on closed rules, 11, 627 (98%) of them were in favor. In contrast, of the 10, 736 Democratic votes cast on closed rules, only 2, 015 (19%) were in favor.

The vote switching data also strongly reflect a partisan pattern. Republicans who opposed final bill passage nonetheless supported the closed rule 88.4% of the time. Corresponding Democrats supported closed rules only 2.9% of the time. Republicans who voted yes on final passage virtually always voted yes on the closed rule (99.2%) while Democrats who voted for final passage voted yes on closed rules less than half the time (43.8%). Clearly the pattern is not random, nor does it appear likely to be based on a party-free process. Still, to fully accept the pattern as partisan based we need to evaluate the evidence along two dimensions. Namely we need to be able to dismiss the possibility that the voting patterns could be seen under the standard spatial model where legislators are simply making the vote choices that are most proximate to their ideal points. In addition we need to be able to dismiss the possibility that influence is occurring solely along preference lines without reference to party. To address these two issues we divide our analysis and data into two parts based on how the legislators voted on final passage.

Influencing Bill Opponents

Our first step is to demonstrate that there are not conditions where a member’s pure preferences dictate a vote against final passage but for a closed rule. Are there conditions where the standard spatial model predicts such a vote? It turns out the answer is yes, but the conditions where this might happen are both rare and readily observable.

Consider figure 2. Here we present a legislator with seven members. Let us begin by assuming that the closed rule protects a bill that lies somewhere to the right of the median. For all legislators to the left of the median (x₁-x₃) there are no circumstances where a vote for the
closed rule is rational since the outcome (A) at the median’s ideal point x_4 – obtained under an open rule – is superior to any outcome to the right of x_4. As we have already discussed, the median, in this case x_4, always votes against a closed rule unless otherwise influenced. As for the members to right of the median (x_5-x_7) the vote for the closed rule depends on the proximity of the closed rule outcome relative to the median. In truth we need not walk through all the possible permutations of status quo and bill placements since we are concerned only with finding those cases where a legislator switches her vote from support of a closed rule to opposition of the bill’s final passage. Given a rule to the right of the median there is only one type of case where the standard spatial model predicts such a vote by legislators who are also to right of the median. This is the case where the status quo point is moving to the left to the dismay of conservative legislators. An example is presented in figure 2 where Q and B denote the status quo and reported bill, respectively. Here both x_6 and x_7 rationally vote for the closed rule and then against the bill itself. While the two legislators most prefer the status quo, they nonetheless prefer the closed rule outcome (B) to an open rule outcome (A).

Such a circumstance is both readily identifiable and rare in the recent Republican-led congresses (104th-108th). If the status quo is moving to the left in the manner described then the standard spatial model predicts that all legislators to the left of the median vote in favor of final passage while the most conservative legislators vote against final passage. In our dataset there were no cases of a closed rule – final passage pair that remotely resembled this pattern.10

10 There is a notable case that resembles the just described scenario. We do not include the Prescription Drug Benefit bill (H.R. 1 - 108th Congress) in our dataset because the rule for that bill (H.Res. 299) was restrictive but not fully closed. Additionally the rule addressed not just H.R. 1, but also H.R. 2596, the Medical Savings Accounts bill. Thus we can not with confidence employ a switcher analysis since amendment potential created uncertainty about final form of the bill. Yet this bill is instructive because it is one of the rare cases where a recent Republican House produced legislation that liberalized the status quo, in this case by enhancing Medicare with a large new benefit. Virtually all Republicans on the left and right of the median supported the restrictive rule (219-4) while virtually all
The only other scenario where the standard spatial model predicts a vote for the closed rule but against final passage is the mirror image of that noted above. In this case a status quo on the left is paired against a reported bill that lies between the status quo and the median. In this case those portside legislators who prefer the bill to the median, but nonetheless prefer the status quo to either alternative, vote for a closed rule and against final passage.

To be sure, a party-based model such Dion and Huber’s (1996) denies this possibility for the Republican congresses since a Republican-controlled Rules Committee would not produce a closed rule to the left of the median. Still, as is clear from Krehbiel (1992), there are conditions where the distributive and informational models predict such an occurrence. Thus we need to take it as a serious possibility and evaluate the possible voting patterns that would exist under such a scenario. For starters we should see the most liberal legislators voting in favor of the rule but against passage of the bill. In addition we should see all legislators to the right of the median voting against the rule but in favor of the bill, since anyone to the right of the median prefers an open rule outcome to the closed rule outcome. Nothing resembling this circumstance exists in our dataset. Indeed, for every closed rule vote in our dataset legislators to the right of the median vote overwhelmingly in favor of the closed rule.

In sum, our goal is to construct a test that is free from ambiguity. Since our assertion is that the case of voting for a closed rule but against final passage indicates party influence, we must be confident that the standard spatial model does not predict the same pattern. While there are some hypothetical conditions where a non-influenced legislator votes for a closed rule and against final passage, those cases do not exist among our closed rule – final passage vote pairs from the 104th – 108th Congresses.
Given that the standard spatial model cannot explain the pattern of Yes for Rule – No for the Bill votes shown in table 1, we turn to the possibility that legislator’s votes are being influenced, either by party or by some other set of interests. Our party-based expectation is that the majority party asserts its influence on its own members to support closed rules, regardless of whether the given member supports the legislation. This should reveal a pattern of Yes for Rule – No for the Bill votes for majority members. Minority members should not exhibit the same pattern but instead we should see bill opponents also oppose the closed rule. If party influence is present then this pattern should hold even after controlling for preferences.

What does a party-less preference-based theory predict? Vote-buying theory (Snyder 1991; Groseclose 1996) focuses on the logic that potential influencers want to use the fewest resources to influence potential voters. Ideally this involves spending few or no resources on likely supporters and likely opponents while focusing on swing voters. That is, a lobbyist should focus resources on those votes that are potentially changed, i.e., those legislators closest to indifferent between two alternatives. (See Krehbiel [1998: 98-101] for a more detailed explanation of this logic.) In our context that means influence should focus on those legislators at or near the median of the chamber. These are the legislators likely to be most indifferent between closed rule and open rule outcomes and thus are likely to be the easiest to sway to vote for a closed rule. Yet, if party is not a material influence then we should see legislators with similar preferences, but different parties, engaging in similar switching behavior. We should not see Republican moderates supporting a closed rule despite voting against final passage while Democratic moderates vote no both times.

To examine preferences in relation to party we borrow from Krehbiel’s (1998) approach by segregating all the members into ideological quintiles, per Congress, as derived from their passage vote itself nineteen conservative Republicans opposed the bill.
DW-NOMINATE scores (Poole 2005). Breaking the data down in this fashion lets us relax the strong assumption that the NOMINATE scores are cardinal. Deriving the quintiles requires only the weaker assumption that the NOMINATE scores are an accurate ordinal ranking of members’ preferences. In addition, parsing the data in this manner lets us easily focus on members who lie in different regions of the ideological space, such as around the chamber median.\(^{11}\)

Table 2 presents switch rates for Republicans and Democrats. The switch rates reflect the frequency that legislators who voted no on the bill’s final passage voted yes on the closed rule.\(^{12}\) Note first the moderates. These are members of both parties who share the middle quintile of the ideological spectrum. These are the people at and around the median. From a vote-buying perspective these legislators’ votes should be available at similar costs and thus we should see similar patterns in their switching behavior. Yet, the differences across party are marked. Of Republican moderates, fully 76% of those who opposed final passage supported a closed rule while only 7% of Democratic moderates did the same.

[Table 2 about here]

Looking across the quintiles, conservative Republicans and very conservative Republicans are even more likely than Republican moderates to switch with rates of 95% and 96%, respectively. Across the aisle, liberal Democrats and very liberal Democrats who opposed final passage supported the closed rule only 3% and 2%, respectively.

Logit estimates in table 3 confirm what is already clear from table 2. The party variable, scored one for Republicans, is positive and statistically significant, despite the controls for

\(^{11}\) In his study of veto politics Krehbiel (1998) used quintiles (rather than, say, quartiles) in part so that he could capture the veto pivot in a single quintile. We use quintiles mainly to capture the median.

\(^{12}\) We could characterize these expectations as cases of attraction (or non-attraction) in a way similar to Krehbiel’s (1998) use for cloture and veto override votes. However, in our case the attraction process occurs in reverse chronological order. Influence occurs on the first vote (closed rule vote) while on the second vote (final passage) members are free to vote their preferences. Thus attraction in this context means that a legislator voted against the
preferences. Clearly party has an effect on the switching pattern, independent of preferences. Normally, it is necessary at this point to illustrate the substantive effects since logit coefficients can be not be interpreted in the same manner as linear regression coefficients. However, since the logit estimates are based on exactly the same variables and data as already depicted in table 2, logit predicts the same switch rates shown in table 2. For example, the model predicts that a moderate Democrat has a 7% chance of switching while the prediction for moderate Republicans is 76%.

[Table 3 about here]

Influencing Bill Supporters

In the previous section we focused on bill opponents and found strong evidence that Republican majorities succeeded in getting most of their members who opposed the bill to nonetheless support the closed rule. The flip-side of the influence equation concerns getting members who support the legislation to also support a closed rule, even in those cases where a closed rule is not the preferred rule. Such a circumstance is shown in Figure 3 where the floor median \((x_4)\) most prefers an outcome at its ideal point \((A)\) but prefers the reported bill \((B)\) to the status quo. Thus \(x_4\) would vote for \(B\) under a closed rule but (barring influence) vote against the closed rule itself.

[Figure 3 about here]

One obvious implication of figure 3 is that any legislator at or to the left of the median should vote against a closed rule, even if supportive of the bill, unless the bill lies to the left of the median. As we established early, none of the bills in our dataset show a voting pattern consistent with a left of median bill. Given our confidence that all the reported bills are to the bill but for the closed rule. The chronological switch makes using the term “attraction” confusing and we thus avoid using it.
right of the median – and given the closed rule protection of the bill – we can first examine the voting behavior of all legislators at or to the left of the median. Of these legislators we find that 56% of Democrats who voted for final passage voted against the closed rule. For Republicans the switch rate was only 3%. That is, 97% of Republicans – at or to the left of the chamber median – supported the closed rule despite the spatial model prediction otherwise.

Table 4 shows the data by quintiles. Here we see switch rates that are almost the symmetric opposite of those seen in table 2. Here the switchers are the Democrats as bill supporters tend to oppose the rule while very few Republican supporters of the bill tend to oppose the rule. Looking especially at the Republicans and Democrats with the most similar preferences – those in the moderate quintile – the partisan break is 2% Republican switchers as contrasted with 50% Democratic switchers. Logit results in table 5 merely confirm these results.

Table 4 shows the data by quintiles. Here we see switch rates that are almost the symmetric opposite of those seen in table 2. Here the switchers are the Democrats as bill supporters tend to oppose the rule while very few Republican supporters of the bill tend to oppose the rule. Looking especially at the Republicans and Democrats with the most similar preferences – those in the moderate quintile – the partisan break is 2% Republican switchers as contrasted with 50% Democratic switchers. Logit results in table 5 merely confirm these results.

These results are robust across a variety of other specifications of the models and data. They hold if we use NOMINATE scores instead of just quintiles and are not affected by analyzing particular subsets of bills, such as the non-budget bills, or by focusing on just close votes.

Discussion

Lewis Froman (1967: 34) once wrote that “Rules...are seldom neutral in their effects.” More colorfully, John Dingell (D-MI) once said, “If you let me write procedure and I let you write substance, I’ll screw you every time,” (Duncan 1992). That procedure matters is hardly controversial. What is controversial, at least in some political science circles, is who controls procedure. Numerous scholars in recent years have argued that the answer is the majority party,
at least in the House (Rohde 1991; Cox and McCubbins 1993 2004; Dion and Huber 1996; Sinclair 1994; Marshall 2002). Yet, as we have argued, a compelling party-centered theory of Congress needs direct voting evidence that party controls procedure by getting legislators to vote against their normal preferences. Using very simple data and analysis, we find clear evidence of substantively important party influence on closed rule votes. Namely, we find that majority party members (Republicans) who oppose a given piece of legislation are nonetheless far more likely to support a closed rule than minority party members (Democrats) who support the legislation. This finding holds even for Republicans and Democrats with quite similar preferences. Likewise we find that Republicans who support a bill are also quite likely to support a closed rule for that bill, while Democrats who support the bill are far less likely to support the accompanying closed rule. Here too, the party differences exist even when the opposing party members share similar preferences.

To be sure, we address only one specific type of procedure by analyzing just closed rules. Still, closed rules are among the most restrictive and powerful procedural devices available in the House. Their use spawns complaints among minority members that span transitions in majority rule (e.g., Hook 1987; Billings 2003). More importantly, our evidence has implications for a far broader array of procedure than closed rules alone. If the majority party leadership can swing votes in favor of closed votes, then surely it can swing votes for less restrictive rules and other procedural devices. Thus our evidence provides crucial support for theoretical approaches such as Cox and McCubbins (1993, 2004).

Finally, there is the issue of preferences within party and vote-buying theory. As an example, in table 2 we see that the switching action occurs in the more extreme quintiles with the
conservative and very conservative Republicans switching at higher rates than the moderate Republicans. Clearly the influence effect is not random within the party, preferences do matter.13

What the intra-party preference differences suggest, we believe, is that party leaders are looking first at the outer wings and middle of their party for votes on the rule before moving to the moderates. Thinking in terms of the Republicans, the leadership first picks up the easier votes from the conservative wings of the party before moving to the more difficult to convince moderates. In terms of our evidence this is not strictly contrary to the vote-buying perspective. All we can observe are the votes, not the “prices” paid for those votes. It is probable that the leadership has to expend less effort to get the conservatives onboard for the closed rule. Indeed it may be the case that many or most conservative Republicans support the closed rule, even when they oppose the bill, because they know the leadership wants or expects the support. This type of implicit influence is virtually costless to the leadership. Moving into the moderate quintile the Republican leadership then needs only pick up enough votes to garner a majority in favor of the closed rule. Thus we see fewer moderate than conservative Republican switchers. Price discrimination of this sort conforms with vote-buying theory. (See, e.g., Groseclose’s (1996) analysis of the 1990 Clean Air Act.)

Where our findings dramatically depart from a party-less vote-buying model, such as Krehbiel’s (1998), is in the behavior of the moderate legislators. These legislators should have a similar price and yet we see the dramatic inter-party distinctions. What is clear is that the Republican leaders are not influencing Democratic moderates to support closed rules. Nor are the Democratic leaders able to influence the Republican moderates to oppose the closed rules. It would appear that the price of legislator’s vote varies dramatically with who asks for it.

13 In a different setting (Wilkins and Young 2002), we found quite similar evidence on attempts to override gubernatorial vetoes.
References

Cox, Gary and Mathew McCubbins. 2004. *Legislative Leviathan Revisited* Manuscript: UCSD.

Figure 1
Committee and Floor Behavior Under Open and Closed Rules

A – Amended Bill; B – Reported Bill; Q – Status Quo; x_h – House Median; x_c – Committee Median; x_r – Rules Committee (Majority Party) Median

Figure 2
Legislator Voting Under Closed and Open Rules

A – Amended Bill; B – Reported Bill; Q – Status Quo

Figure 3
Legislator Voting Under Closed and Open Rules

A – Amended Bill; B – Reported Bill; Q – Status Quo
Table 1
Votes on Closed Rule and Bill Final Passage
104th-108th Congresses

<table>
<thead>
<tr>
<th>Votes on Rule</th>
<th>Republicans</th>
<th>Democrats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>10591 (99.2%)</td>
<td>1036 (88.4%)</td>
</tr>
<tr>
<td>No</td>
<td>81 (0.8%)</td>
<td>136 (11.6%)</td>
</tr>
</tbody>
</table>

Note: Percentages are based on column totals.

Table 2
Vote Switch Rate By Preference Quintile and Party Where Legislators Voted Against Final Passage

<table>
<thead>
<tr>
<th></th>
<th>Republicans</th>
<th>Democrats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number Voting No on Final Passage of the Bill</td>
<td>Number Voting No on Final Passage of the Bill</td>
</tr>
<tr>
<td></td>
<td>Passage Opponents Voting Yes on the Closed Rule</td>
<td>Passage Opponents Voting Yes on the Closed Rule</td>
</tr>
<tr>
<td></td>
<td>Switch Rate</td>
<td>Switch Rate</td>
</tr>
<tr>
<td>Very Liberal</td>
<td>0</td>
<td>3003</td>
</tr>
<tr>
<td>Liberal</td>
<td>0</td>
<td>2776</td>
</tr>
<tr>
<td>Moderate</td>
<td>430</td>
<td>792</td>
</tr>
<tr>
<td>Conservative</td>
<td>325</td>
<td>0</td>
</tr>
<tr>
<td>Very</td>
<td>417</td>
<td>0</td>
</tr>
<tr>
<td>Conservative</td>
<td>1172</td>
<td>6571</td>
</tr>
<tr>
<td>Totals</td>
<td>1036</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>88%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Note: Percentages are based on column totals.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Logit Estimate (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party</td>
<td>3.71** (0.18)</td>
</tr>
<tr>
<td>Very Liberal</td>
<td>-4.00** (0.14)</td>
</tr>
<tr>
<td>Liberal</td>
<td>-3.50** (0.11)</td>
</tr>
<tr>
<td>Moderate</td>
<td>-2.58** (0.14)</td>
</tr>
<tr>
<td>Conservative</td>
<td>-0.68* (0.32)</td>
</tr>
<tr>
<td>Very Conservative</td>
<td>-0.48 (0.31)</td>
</tr>
</tbody>
</table>

n = 7743

** p < .01, * p < .05 (two-tailed)

Note: Goodness of fit statistics are excluded since the constant is suppressed. Running the model as k-1 with a constant yields a McKelvey & Zavoina R^2 of .60 and LR χ^2 of 4356 (p<.00)
Table 4

Vote Switch Rate By Preference Quintile and Party Where Legislators Voted For Final Passage

<table>
<thead>
<tr>
<th></th>
<th>Republicans</th>
<th></th>
<th>Democrats</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number Voting</td>
<td>Passage Opponents</td>
<td>Switch Rate</td>
<td>Number Voting</td>
</tr>
<tr>
<td></td>
<td>Yes on Final</td>
<td>Voting No on the Closed Rule</td>
<td></td>
<td>Yes on Final</td>
</tr>
<tr>
<td></td>
<td>Passage of the Bill</td>
<td></td>
<td></td>
<td>Passage of the Bill</td>
</tr>
<tr>
<td>Very Liberal</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>1133</td>
</tr>
<tr>
<td>Liberal</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>1803</td>
</tr>
<tr>
<td>Moderate</td>
<td>2596</td>
<td>58</td>
<td>2%</td>
<td>1228</td>
</tr>
<tr>
<td>Conservative</td>
<td>4351</td>
<td>12</td>
<td>0.3%</td>
<td>0</td>
</tr>
<tr>
<td>Very Conservative</td>
<td>3725</td>
<td>11</td>
<td>0.3%</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>10672</td>
<td>81</td>
<td>1%</td>
<td>4164</td>
</tr>
</tbody>
</table>

Table 5

Switching Estimate for Supporters of Final Passage

(Y=1 if Legislator Voted No on the Closed Rule)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Logit Estimate (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party</td>
<td>-3.79** (0.18)</td>
</tr>
<tr>
<td>Very Liberal</td>
<td>0.39** (0.06)</td>
</tr>
<tr>
<td>Liberal</td>
<td>0.33** (0.05)</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.01 (0.06)</td>
</tr>
<tr>
<td>Conservative</td>
<td>-2.10** (0.32)</td>
</tr>
<tr>
<td>Very Conservative</td>
<td>-2.03** (0.33)</td>
</tr>
</tbody>
</table>

n = 14836

p < .01, * p < .05 (two-tailed)

Note: Goodness of fit statistics are excluded since the constant is suppressed. Running the model as k-1 with a constant yields a McKelvey & Zavoina R² of .68 and LR χ^2 of 6647 (p<.00)