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Abstract We consider a number of models where the main emphasis is on the effects
of random environmental changes on system reliability. They include complex
hardware and software systems which operate under some set of environmental
states that affect the failure structure of all components. Our discussion will be
of an expository nature and we will review mostly existing and ongoing research
of the authors. In so doing, we will present an overview of continuous and
discrete-time models and their statistical analyses in order to provide directions
for future research.
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1. Introduction and Overview

In this expository paper, we consider complex reliability models that oper-
ate in a randomly changing environment which affects the model parameters.
Here, complexity is due not only to the variety in the number of components of
the model, but also to the fact that these components are interrelated through
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their common environmental process. For example, a complex device like an
airplane consists of a large number of components where the failure structure
of each component depends very much on the set of environmental conditions
that it is subjected to during flight. The levels of vibration, atmospheric pres-
sure, temperature, etc. obviously change during take-off, cruising and landing.
Component lifetimes and reliabilities depend on these random environmental
variations. Moreover, the components have dependent lifetimes since they oper-
ate in the same environment. A similar observation holds in software systems.
For example, an airline reservation system consists of many modules where
failures may be experienced due to the faults or bugs that are still present. In
this case, the way that the user operates the system, or the so-called operational
profile, plays a key role in software reliability assessment. Failure probabili-
ties of the modules and system reliability all depend on the random sequence
of operations it performs. The operational profile in this setting provides the
random environment for the software system.

The term “environment” is used in the generic sense in this papers so that it
represents any set of conditions that affect the stochastic structure of the model
investigated. The concept of an “environmental” process, in one form or an-
other, has been used in the literature for various purposes. Neveu [25] provides
an early reference to paired stochastic processes where the first component is
a Markov process while the second one has conditionally independent incre-
ments given the first. Ezhov and Skorohod [8] refer to this as a Markov process
with homogeneous second component. In a more modern setting, C¸ ınlar ([3],
[4]) introduced Markov additive processes and provided a detailed description
on the structure of the additive component. The environment is modelled as
a Markov process in all these cases and the additive process represents the
stochastic evolution of a quantity of interest.

The use of an environmental process to modulate the deterministic and
stochastic parameters of operations research models is not limited to reliability
applications only.Özekici [27] discusses other applications in inventory and
queueing. In inventory models, the stochastic structure is depicted by the de-
mand and the lead-time processes. Song and Zipkin [41] argue that the demand
for the product may be affected by a randomly changing “state-of-the-world”,
which we choose to call the “environment” in our exposition. A periodic review
model in a random environment with uncertain supply is analyzed inÖzekici
and Parlar [31].

Queueing models also involve stochastic and deterministic parameters that
are subject to variations depending on some environmental factors. The cus-
tomer arrival rate as well as the service rate are not necessarily constants that
remain intact throughout the entire operation of the queueing system. A queue-
ing model where the arrival and service rates depend on a randomly changing
two-state environment was first introduced by Eisen and Tainiter [7]. This
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line of modelling is later extended by other authors such as Neuts ([23], [24])
and Purdue [36]. A comprehensive discussion on Markov modulated queueing
systems can be found in Prabhu and Zhu [35].

Although the literature cited above clearly illustrate the use of random envi-
ronments in inventory and queueing models, the concept is much more applica-
ble in reliability and maintenance models. It is generally assumed that a device
always works in a given fixed environment. The probability law of the deterio-
ration and failure process thus remains intact throughout its useful life. The life
distribution and the corresponding failure rate function is taken to be the one
obtained through statistical life testing procedures that are usually conducted
under ideal laboratory conditions by the manufacturer of the device. Data on
lifetimes may also be collected while the device is in operation to estimate the
life distribution. In any case, the basic assumption is that the prevailing envi-
ronmental conditions either do not change in time or, in case they do, they have
no effect on the deterioration and failure of the device. Therefore, statistical
procedures in estimating the life distribution parameters and decisions related
with replacement and repair are based on the calendar age of the item.

There has been growing interest in recent years in reliability and mainte-
nance models where the main emphasis is placed on the so-called intrinsic age
of a device rather than its real age. This is necessitated by the fact that devices
often work in varying environments during which they are subject to varying
environmental conditions with significant effects on performance. The dete-
rioration and failure process therefore depends on the environment, and it no
longer makes much sense to measure the age in real time without taking into
consideration the different environments that the device has operated in. There
are many examples where this important factor can not be neglected or over-
looked. Consider, for example, the jet engine of an airplane which is subject
to varying atmospheric conditions like pressure, temperature, humidity, and
mechanical vibrations during take-off, cruising, and landing. The changes in
these conditions cause the engine to deteriorate, or age, according to a set of
rules which may well deviate substantially from the usual one that measures
the age in real time irrespective of the environment.

As a matter of fact, the intrinsic age concept is being used routinely in prac-
tice in one form or another. In aviation, the calendar age of an airplane since
the time it was actually manufactured is not of primary importance in determin-
ing maintenance policies. Rather, the number of take-offs and landings, total
time spent cruising in fair conditions or turbulence, or total miles flown since
manufacturing or since the last major overhaul are more important factors.

Another example is a machine or a workstation in a manufacturing system
which may be subject to varying loading patterns depending on the production
schedule. In this case, the atmospheric conditions do not necessarily change
too much in time, and the environment is now represented by varying loading
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patterns so that, for example, the workstation ages faster when it is overloaded,
slower when it is underloaded, and not at all when it is not loaded or kept
idle. Therefore, the term “environment” is used in a loose sense here so that
it represents any set of conditions that affect the deterioration and aging of the
device.

In what follows, we assume that the system operates in a randomly changing
environment depicted byY = {Yt; t ∈ T} whereYt is the state of the envi-
ronment at timet. The environmental processY is a stochastic process with
time-parameter setT and some state spaceE which is assumed to be discrete
to simplify the notation.

In Section 2, we consider continuous-time models applicable to hardware
systems. This will focus mainly on the intrinsic aging concept. Section 3 is on
continuous-time software reliability models where the operational profile plays
the key role in testing as well as reliability assessment. Discrete-time periodic
models are considered in Section 4 where we first discuss Markov modulated
Bernoulli processes in the context of reliability applications and extend this
discussion later to networks.

2. Continuous Time Models with Intrinsic Aging

An interesting model of stochastic component dependence was introduced by
Çınlar andÖzekici [5] where stochastic dependence is introduced by a randomly
changing common environment that all components of the system are subjected
to. This model is based on the simple observation that the aging or deterioration
process of any component depends very much on the environment that the
component is operating in. They propose to construct an intrinsic clock which
ticks differently in different environments to measure the intrinsic age of the
device. The environment is modelled by a semi-Markov jump process and the
intrinsic age is represented by the cumulative hazard accumulated in time during
the operation of the device in the randomly varying environment. This is a rather
stylish choice which envisions that the intrinsic lifetime of any device has an
exponential distribution with parameter 1. There are, of course, other methods
of constructing an intrinsic clock to measure the intrinsic age. Also, the random
environment model can be used to study reliability and maintenance models
involving complex devices with many interacting components. The lifetimes
of the components of such complex devices are stochastically dependent due
to the common environment they are all subject to.

2.1. Intrinsic Aging in a Fixed Environment

The concept of random hazard functions is also used in Gaver [10] and Arjas
[1]. The intrinsic aging model of C¸ ınlar andÖzekici [5] is studied further in
Çınlar et al. [6] to determine the conditions that lead to associated component
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lifetimes, as well as multivariate increasing failure rate (IFR) and new better
than used (NBU) life distribution characterizations. It was also extended in
Shaked and Shanthikumar [38] by discussions on several different models with
multicomponent replacement policies. Lindley and Singpurwalla [17] discuss
the effects of the random environment on the reliability of a system consisting
of components which share the same environment. Although the initial state
of the environment is random, they assume that it remains constant in time and
components have exponential life distributions in each possible environment.
This model is also studied by Lefèvre and Malice [15] to determine partial
orderings on the number of functioning components and the reliability ofk-out-
of-n systems, for different partial orderings of the probability distribution on the
environmental state. The association of the lifetimes of components subjected
to a randomly varying environment is discussed in Lefèvre and Milhaud [16].
Singpurwalla and Youngren [40] also discuss multivariate distributions that
arise in models where a dynamic environment affects the failure rates of the
components.

For a complex model withm components, intrinsic aging in C¸ ınlar and
Özekici [5] is described by the basic relationship

dAt
dt

= f(Yt, At) (13.1)

whereAt = (A1
t , A

2
t , · · · , Amt ) is the intrinsic age of the system at timet that

consists of the intrinsic ages of them components,Y = (Y 1
t , Y

2
t , · · · , Y d

t )
is the environmental process with state spaceE that reflects the states of var-
ious environmental factors andf is the intrinsic hazard rate function. For
example,Y 1

t can be the calendar timet, Y 2
t could be the temperature att, Y 3

t

could be the pressure at timet, etc.. Moreover,f is of the formf(i, x) =
(f1(i, x), f2(i, x), · · · , fm(i, x)) wherefk(i, x) is the intrinsic aging rate of
componentk in environmenti if the intrinsic ages of the components are given
by the vectorx = (x1, x2, · · · , xm).

In this exposition, we will further specialize on this basic model by adapt-
ing the notation and terminology of̈Ozekici [26] who analyzed the optimal
maintenance problem of a single-component device operating in a random en-
vironment. In particular, we suppose that the state spaceE is discrete and let
L denote the lifetime of the device. Suppose, for now, that the environment re-
mains fixed at some statei ∈ E so thatYt = i for all t ≥ 0. In any environment
i ∈ E, the life distribution is given by the cumulative distribution function

Fi(t) = P [L ≤ t|Y = i] (13.2)

with failure rate functionri(t) and hazard functionRi(t) =
∫ t
0 ri(s)ds so that

the survival probability functionF i = 1 − Fi can be written as

F i(t) = P [L > t|Y = i] = exp(−Ri(t)). (13.3)
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Relationship (13.3) allows us to construct an intrinsic clock to measure the
intrinsic age of the device at timet asAt = Ri(t) and the real lifetime is
characterized by

L = inf{s ≥ 0;As > L̂} (13.4)

whereL̂ is a random variable representing the intrinsic lifetime of component
k. Moreover, it has an exponential distribution with parameter 1 since

Fi(t) = P [L ≤ t|Y = i] = P [L̂k < At|Y = i] = 1 − e−At . (13.5)

Therefore, in the fixed environmenti ∈ E, it follows that if the intrinsic age
is measured by the hazard function, then componentk has an exponentially
distributed intrinsic lifetime with parameter 1. Moreover, its intrinsic clock
ticks at the rateri(t) at time t. If the real time ist, then the intrinsic clock
shows timeRi(t). Similarly, when the intrinsic time isx, the corresponding
real time is given by the inverse function

Ri(x) = inf{t ≥ 0;Ri(t) > x}. (13.6)

In other words, it takesRi(x) units of real time operation to age a brand new
component to intrinsic agex in environmenti.

2.2. Intrinsic Aging in a Random Environment

Suppose now that the environmental process is not fixed but described as
the minimal semi-Markov process associated with a Markov renewal process.
Let Tn denote the time of then’th environment change andXn denote the
n’th environmental state fork ≥ 0 with T0 ≡ 0. The main assumption is that
the process(X,T ) = {(Xn, Tn);n ≥ 0} is a Markov renewal process on the
state spaceE × R+ with some semi-Markov kernelQ whereR+ = [0,+∞).
Moreover,Y = {Yt; t ≥ 0} is the minimal semi-Markov process associated
with (X,T ). More precisely,Yt = Xn wheneverTn ≤ t < Tn+1. For any
i, j ∈ E andt ≥ 0,

Q(i, j, t) = P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i] (13.7)

and it is well-known thatX is a Markov chain onE with transition matrix
P (i, j) = P [Xn+1 = j|Xn = i] = Q(i, j,+∞). We further assume that the
Markov renewal process has infinite lifetime so thatsupn Tn = +∞.

A stylish choice to extend the construction of the intrinsic aging process in
this setting is to measure the age by the total hazard accumulated during the
operation of the device in the randomly varying environment. Therefore, the
age processA = {At; t ≥ 0} is the continuously increasing stochastic process
defined by

dAkt
dt

= rXn(RXn(ATn) + (t− Tn)) (13.8)
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for Tn ≤ t < Tn+1. To simplify the notation, it is convenient to set

Hi(x, t) = Ri(Ri(x) + t) (13.9)

so that this represents the amount of aging caused by operating componentk
of initial agex in environmenti for t real time units. If the device is initially at
agex at the beginning of environmenti, then the amount of real time operation
required to age itu time units in this environment is given by

τi(x, u) = Ri(x+ u) −Ri(x) . (13.10)

To observe the relationship between the intrinsic failure ratef in (13.1) and
the ordinary failure rate functionr in the present setting, please note that (13.8)
impliesf(i, x) = ri(Ri(x)) in compact notation.

This intrinsic aging model simply combines the hazard functions of the com-
ponents in the environmental states. Given the failure rate functions{ri(·); i ∈
E} and a realization of the environmental processY , the age processA is com-
pletely defined by (13.8). If the initial age isA0 = x and the initial environment
isX0 = i with T0 ≡ 0, then the initial real age of the component isRi(x) and
it ages asAs = Hi(x, s) for s ≤ T1. At some timeT1 = u, the environment
jumps to statej ∈ E with some probabilityQ(i, j, du) and the age is now
the accumulated hazard given byAu+s = Hj(Au, s) for u + s ≤ T2. The
sample path ofA is constructed similarly in time as the environmental process
evolves so that, in general, if the environment jumps to some statel ∈ E at the
n’th jump timeTn = t, then the age evolves asAt+s = Hl(At, s) so long as
t+ s ≤ Tn+1.

3. Continuous Time Models in Software Reliability
Engineering

An undesirable feature of almost all software reliability models is that the
parameters of the software failure process, as well as the costs, are independent
of the operations that the software performs. This assumes that the software is
used for a single operation or that there are no differences between the model
parameters under different operations. Moreover, it is generally assumed that
there is only one test case. In practice, however, a number of different test cases
are run during the testing procedure before the software is released. The model
parameters should therefore depend on the test case as well.

Musa [20], [21] argues that a consideration of the software’s operational
profile should reduce system risk. Moreover, it also makes the testing proce-
dure faster and more efficient. Optimal testing problems involving operational
profiles are discussed in detail byÖzekici et al. ([30], [29]) who present compu-
tational procedures to determine the optimal testing durations for the operations.
The notion of an operational profile was introduced by Musa et al. [22]. An
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operation is an externally initiated task performed by a system “as built”. A
software system is usually designed to perform a set of well-defined operations
or tasks. The operational profile of any software describes how users employ
the system. It is a quantitative and probabilistic characterization of how a sys-
tem will be used. An operational profile is defined as a set of operations and the
probabilities of their occurrence. Formally, letX be a generic random variable
that represents the operation to be performed by the system andE denote the set
of all possible operations. Suppose that the probability distribution function of
X isπ(n) = P [X = n]. Then, the pair(E, π) is the operational profile which
contains both the possible operations and the probability of the occurrences of
these operations.

We claim that the concept of an “operational profile” should be expanded
to that of an “operational process”, as a more meaningful approach to model
software usage. In such a model,E will still denote the set of all operations
but thekth operation performed by the system will be denoted by the ran-
dom variableXk. The operational process will then be the stochastic process
X = {Xk; k ≥ 0} with state spaceE. The operational process in software
reliability engineering clearly plays the role of the environmental process in
hardware reliability. It is simply a stochastic process that modulated the model
parameters.

Musa [20] describes how operational profiles can be built and states that there
is substantial benefit to be gained by applying it. It can increase user satisfac-
tion by capturing their needs more precisely, satisfy important user needs faster,
reduce costs with reduced operation software, speed up the development and
improve productivity by allocating resources in relation to use and criticality,
reduce the system risk by more realistic testing, and make testing faster and
more efficient. Wohlin and Runeson [44] also discuss the effect of usage mod-
elling in software certification. A stochastic model of software usage involving
Markov chains is employed in Whittaker and Poore [42] and Whittaker and
Thomason [43]. In their approach, the sequence of “inputs” provided by the
user is modelled as a Markov chain. This results in a model at the micro level
involving all possible values of input variables with a huge state space. An
operational process, on the other hand, provides a stochastic model at a more
refined macro level because an operation corresponds to a specific task which
usually involves ranges of values for many input variables at the same time. The
operational profile model concentrates on the user-initiated tasks performed by
the system rather than the sequence of user-supplied input values.

3.1. Optimal Testing Strategies

An important decision problem in software engineering is the determination
of the optimal release times of software. In life critical software, the most
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important attribute of the system is its reliability. Therefore, no effort is spared in
making the software as reliable as is possible before releasing it for operation. In
most of the business related software the total cost of the software is as important
as its reliability. This fact gives a trade-off between the reliability of the software
and its cost. A consequence of this consideration is the development of the
stopping rules for the testing procedure that will minimize the total expected
cost or maximize the total expected benefit. It is assumed that there are a
random number of faults in the software before testing. The objective of testing
is to remove as many of these faults as is possible by debugging. The important
issue to note is that all economic and stochastic parameters of the model depend
on the test case and the specific operation performed. InÖzekici et al. [30],
the time to failure caused by each fault is exponential and there are a total of
K operations that the software is required to perform. The software is to be
tested in all of these operations and the decision problem is to determine the
durations. Note that in the testing problem the operational process is controlled
and it is not stochastic.

One of the models discussed leads to the following optimization problem

min0≤tk<+∞
k=1,··· ,K

K∑
k=1

[
cktk + µ(fk − fk+1) exp(−

k∑
m=1

λmtm)

]
(13.11)

wheretk is the duration of testing for operationk, ck is the cost of testing per
unit time for operationk, fk is the benefit of testing for operationk andλk is
the rate of failures caused by each fault during operationk. Under reasonable
assumptions, this problem leads to the explicit solution

t∗k =
1
λk

ln
[(

bk − bk+1

ak − ak+1

)
/

(
bk−1 − bk
ak−1 − ak

)]
(13.12)

with ak = ck/λk andbk = µfk.
The optimal testing model is extended recently byÖzekici and Soyer [33] us-

ing a Bayesian framework. Uncertainty about model parameters are described
probabilistically using available prior information on them. The information
gathered during each test is used to update the model parameters and deter-
mine the testing durations sequentially. In particular,λk is assumed to have
a Gamma (αk, βk) prior and the initial number of faults have apriori Poisson
distribution. The operational process is still controlled but the durations of the
operations are not fixed at the beginning of testing. They are recalculated using
data obtained for each operation. WhenK = 1, we obtain the Jelinski and
Moranda [13] model for which Bayesian analysis has been done by Meinhold
and Singpurwalla [18] and more recently by Kuo and Yang [14] by using a
Gibbs sampler.
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At the nth stage of testing, having obtained dataDn−1 testing for the first
n− 1 operations, one is now faced with the optimization problem

min0≤tk<+∞
k=n,··· ,K

K∑
k=n

cktk + E[Nn|Dn−1](fk − fk+1)
k∏
j=n

(
βj

βj + tj

)αj


(13.13)

whereNn is the number of faults that still remain in the software at the beginning
of thenth stage. To solve this problem sequentially, Gibbs sampling is used
to do posterior analysis on the number of faults remaining. Although (13.13)
does not necessarily have an explicit optimal solution as (13.12), it can be
solved using various optimization procedure. Under reasonable conditions,
the objective function is convex. The details of the Bayesian analysis will be
presented in Section 3.3.

3.2. Software Reliability Assessment

Once testing is completed, the software is released to the users. This is done in
an uncontrolled setting and the sequence of operations as well as their durations
are now random. This operational process or the environmental process now
modulates the parameters of the reliability model and play a crucial role in
software reliability assessment. Now, the environmental stateYt at time t
represents the operation performed by the user. The analysis of the software
failure process obviously depend on the stochastic structure of the operational
process. InÖzekici and Soyer [32],Y is assumed to be a Markov process.
Briefly, this means that the sequence of operations performed is a Markov chain
and the amount of time spent on each operation is exponentially distributed.
More precisely, we letXn denote thenth operation that the system performs
andTn be the time at which thenth operation starts. It is well-known thatX is
a Markov chain with some transition matrix

P (i, j) = P [Xn+1 = j|Xn = i] (13.14)

and
P [Tn+1 − Tn > t|Xn = i] = e−µ(i)t (13.15)

so that the duration of thenth operation is exponentially distributed with rate
µ(i) if this operation isi.The probabilistic structure of the operational process is
given by the generatorA(i, j) = µ(i)(P (i, j)− I(i, j)) whereI is the identity
matrix.

An overview of software failure models is presented in Singpurwalla and
Soyer [39]. Perhaps the most important aspect of these models is related to the
stochastic structure of the underlying failure process. This could be a “times-
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between-failures” model which assumes that the times between successive fail-
ures follow a specific distribution whose parameters depend on the number of
faults remaining in the program after the most recent failure. One of the most
celebrated failure models in this group is that of Jelinski and Moranda [13]
where the basic assumption is that there are a fixed number of initial faults in
the software and each fault causes failures according to a Poisson process with
the same failure rate. After each failure, the fault causing the failure is detected
and removed with certainty so that the total number of faults in the software is
decreased by one. In the present setting, the time to failure distribution for each
fault in the software is exponentially distributed with parameterλ(k) during
operationk and this results in an extension of the Jelinski-Moranda model.

In dealing with software reliability, one is interested in the number of faults
Nt remaining in the software at timet. Then,N0 is the initial number of faults
and the processN = {Nt; t ≥ 0} depicts the stochastic evolution of the
number of faults. If there is perfect debugging, thenN decreases as time goes
on, eventually to diminish to zero. Defining the bivariate processZt = (Yt, Nt),
it follows thatZ = (Y,N) is a Markov process with discrete state spaceF =
E × {0, 1, 2, · · · }. This follows by noting thatY is a Markov process andN
is a process that decreases by1 after an exponential amount of time with a rate
that depends only on the state ofY . In particular, if the current state ofZ is
(i, n) for anyn > 0, then the next state is either(j, n) with rateµ(i)P (i, j) or
(i, n− 1) with ratenλ(i). If n = 0, then the next state is(j, 0) with rateµ(j).
Note that0 is an absorbing state forN .

This implies that the sojourn in state(i, n) is exponentially distributed with
rate

β(i, n) = µ(i) + nλ(i) (13.16)

and the generatorQ of Z is

Q((i, n), (j,m)) =

 −(µ(i) + nλ(i)), j = i,m = n
µ(i)P (i, j), j 	= i,m = n
nλ(i), j = i,m = n− 1

. (13.17)

Reliability is defined as the probability of failure free operation for a specified
time. We will denote this by the function

R(i, n, t) = P [L > t|Y0 = i,N0 = n] = P [Nt = n|Y0 = i,N0 = n]
(13.18)

defined for all(i, n) ∈ F andt ≥ 0.Note that this is equal to the probability that
there will be no arrivals until timet in a Markov modulated Poisson process with
intensity functionλ̂(t) = nλ(Yt). Thus, using the matrix generating function
(22) in Fischer and Meier-Hellstern [9] withz = 0, we obtain the explicit
formula

R(i, n, t) =
∑
j∈E

[
e(A−nΛ)t

]
ij

(13.19)
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where

e(A−nΛ)t =
+∞∑
k=0

tk

k!
(A− nΛ)k (13.20)

is the exponential matrix andΛ(i, j) = λ(i)I(i, j).

3.3. Bayesian Analysis of Software Reliability Models

In the software reliability model of Section 3.2, it is assumed that the pa-
rameters are given. A Bayesian analysis of this model can be developed as
in Özekici and Soyer [32] by specifying prior probability distributions to de-
scribe uncertainty about the unknown parameters. InÖzekici and Soyer [32]
independent gamma priors are assumed on eachλ(i) with shape parameter
a(i) and scale parameterb(i), denoted asλ(i) ∼ Gamma(a(i), b(i)) for all
i ∈ E. Similarly, independent gamma priors are assumed for the components
of µ asµ(i) ∼ Gamma(c(i), d(i)) for all i ∈ E. A Poisson distribution with
parameterγ, denoted asN0 ∼ Poisson(γ), is assumed as the prior for initial
number of faultsN0. For the components of the transition matrix, theith row
Pi = {P (i, j); j ∈ E}has a Dirichlet prior

p(Pi) ∝
∏
j∈E

P (i, j)α
i
j −1 (13.21)

denoted as Dirichlet{αij ; j ∈ E}andPi’s are independent for alli ∈ E. Fur-
thermore, it is assumed that aprioriλ, µ,P andN0 are independent. We denote
the joint prior distribution of the parameters byp(Θ) whereΘ = (λ, µ, P,N0).

During the usage phase as debugging is performed, the failure times dur-
ing each operation as well as the operation types and their durations are ob-
served. Assuming that during a usage phase ofτ units of timeK operations
are performed andK − 1 of those are completed, the observed data is given
byD = {(Xk, Sk), (Uk1 , U

k
2 , . . . , U

k
Mk

); k = 1, · · · ,K} whereXk is thekth
operation performed, whileSk is the time at which thekth operation starts and
Ukj is the time (since the start of thekth operation) ofjth failure during thekth
operation. DefiningNk = NSk

to denote the total number of faults remaining
in the software just before thekth operation,Mk as the number of failures ob-
served during thekth operation and assuming that the initial operation isX1 = i
for some operationi starting atS1 = 0, L(Θ|D), the likelihood function ofΘ
is obtained as

LK {
K−1∏
k=1

P (Xk, Xk+1)µ(Xk)e−µ(Xk)(Sk+1−Sk) (13.22)

· Nk!
(Nk −Mk)!

λ(Xk)Mk e
−λ(Xk)[

Mk∑
j=1

Uk
j + (Nk−Mk)(Sk+1−Sk)]

}
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whereLK is the contribution of theKth operation to the likelihood given by

LK = e−µ(XK)(τ−SK) NK !
(NK −MK)!

(13.23)

·λ(XK)MK e
−λ(XK)[

MK∑
j=1

UK
j +(NK−MK)(τ−SK)]

.

Given the independent priors, the posterior distribution ofPi’s can be ob-
tained as independent Dirichlets given by

(Pi|D) ∼ Dirichlet {αij +
K−1∑
k=1

1(Xk = i,Xk+1 = j); j ∈ E} (13.24)

where1(·) is the indicator function. Similarly, the posterior distributions of
µ(i)’s are obtained as independent gamma densities given by

(µ(i)|D) ∼ Gamma(c(i)+
K−1∑
k=1

1(Xk = i), d(i)+
K∑
k=1

(Sk+1−Sk)1(Xk = i))

(13.25)
whereSK+1 = τ . We note that posterioriµ andP are independent ofλ and
N0 as well as each other.

A tractable Bayesian analysis forλ andN0 is not possible due to the infinite
sums involved in the posterior terms, but the Bayesian analysis can be made
by using a Gibbs sampler [see Gelfand and Smith [12]]. The implementation
of the Gibbs sampler requires the full posterior conditionalsp(N0|λ, D) and
p(λ(i)|λ(−i), N0, D) for all i ∈ E whereλ(−i)= {λ(j); j 	= i , j ∈ E}. Using
the fact thatN1 = N0, it can be shown that

(N0 −M |λ, D) ∼ Poisson(γe
−

K∑
k=1

λ (Xk)(Sk+1−Sk)
), (13.26)

whereM =
∑K

k=1Mk. The full conditionals,p(λ(i)|λ(−i), N0, D)’s are
obtained as

Gamma(a(i) +
K∑
k=1

Mk 1(Xk = i), b(i) +
K∑
k=1

Wk 1(Xk = i)) (13.27)

whereWk =
∑Mk

j=1 U
k
j + (Nk−Mk)(Sk+1−Sk). Thus all of the posterior dis-

tributions can be evaluated by recursively simulating from the full conditionals
in a straightforward manner. It is important to note that using the independent
priors, givenN0, aposteriori theλ(i)’s are independent.
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We note that in the controlled testing setup ofÖzekici and Soyer [33],
presented in Section 3.2, the operations and their durations are deterministic.
Thus, the Bayesian inference in the controlled testing setup can be obtained as
a special case by using (13.26) and (13.27) above withtk = (Sk+1 − Sk) and
βk = b(k) and the expected cost term (13.13) can be evaluated and optimized
sequentially after each testing stage.

Once uncertainty aboutΘ is revised top(Θ|D), it is of interest to make
posterior reliability predictions asP [L > t|D]. Note that bothA andΛ are
functions ofΘ. Conditional onΘ, using the Markov property of theZ process
and (13.19), we obtain

P [L > t|Θ, D] =
∑
j∈E

[
e(A(Θ)−(N0−M)Λ(Θ))t

]
XK ,j

. (13.28)

Conditional onΘ, e(A(Θ)−(N0−M)Λ(Θ))t can be computed from the matrix ex-
ponential form using one of the available methods, for example, in Moler and
van Loan [19]. Then the posterior reliability prediction can be approximated
as a Monte Carlo integral

P [L > t|D] ≈ 1
G

∑
g

P [L > t|Θ(g), D] (13.29)

usingG realizations from the posterior distributionp(Θ|D). Similarly, prior to
observing any data, reliability predictions can be made by replacing(N0 −M)
with N0 and the index(XK , j) with (i, j) in (13.28) and using (13.29) with
realizations from the prior distributionp(Θ).

4. Discrete Time Models

We now consider discrete-time models for hardware systems where a device
is observed periodically at discrete time points. The device survives each period
with a probability that depends on the state of the prevailing environment in that
period. Since each period ends with a failure or survival, one can model this
system as a Bernoulli process where the success probability is modulated by
the environmental process. Using this setup with a Markovian environmental
process,̈Ozekici [28] focuses on probabilistic modeling and provides a complete
transient and ergodic analysis. We suppose throughout the following discussion
the sequence of environmental statesY = {Yt; t = 1, 2, · · · } is a Markov chain
with some transition matrixP on a discrete state spaceE.

4.1. Markov Modulated Bernoulli Process

Consider a system observed periodically at timest = 1, 2, · · · and the state
of the system at timet is described by a Bernoulli random variable
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Xt =
{

1, if system is not functioning at timet
0, if system is functioning at timet.

Given that the environment is in some statei at timet, the probability of failure
in the period is

P [Xt = 1|Yt = i] = π(i) (13.30)

for some0 ≤ π(i) ≤ 1. The states of the system at different points in time
constitute a Bernoulli processX = {Xt; t = 1, 2, · · · } where the success
probability is a function of the environmental processY .

Given the environmental processY, the random quantitiesX1, X2, · · · rep-
resent a conditionally independent sequence, that is,

P [X1 = x1, X2 = x2, · · · , Xn = xn|Y ] =
n∏
k=1

P [Xk = xk|Y ]. (13.31)

In the above setup, the reliability of the system is modulated by the environ-
mental processY which is assumed to be a Markov process and thus the model
is referred to as the Markov Modulated Bernoulli Process (MMBP). If the sys-
tem fails in a period, then it is replaced immediately by an identical one at the
beginning of the next period. It may be possible to think of the environmental
processY as a random mission process such thatYt is thetth mission to be
performed. The success and failure probabilities depend on the mission itself.
If the device fails during a mission, then the next mission will be performed by
a new and identical device.

If we denote the lifetime of the system byL, then the conditional life distri-
bution is

P [L = m|Y ] =
{
π(Y1), if m = 1
π(Ym)

∏m−1
j=1 (1 − π(Yj)) if m ≥ 2. (13.32)

Note that if π(i) = π for all i ∈ E, that is, the system reliability is independent
of the environment, then (13.32) is simply the geometric distributionP [L =
m|Y ] = π(1 − π)m−1 . We can also write

P [L > m|Y ] = (1 − π(Y1))(1 − π(Y2)) · · · (1 − π(Ym)) (13.33)

for m ≥ 1.
We represent the initial state of the Markov chain byY1, rather thanY0, as it is

customarily done in the literature, so that it represents the first environment that
the system operates in. Thus, most of our analysis and results will be conditional
on the initial stateY1 of the Markov chain. Therefore, for any eventA and
random variableZ we setPi[A] = P [A|Y1 = i] andEi[Z] = P [Z|Y1 = i] to
express the conditioning on the initial state.
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The life distribution satisfies the recursive expression

Pi[L > m+ 1] = (1 − π(i))
∑
j∈E

P (i, j)Pj [L > m] (13.34)

with the obvious boundary conditionPi[L > 0] = 1. The survival probabilities
can be explicitly computed via

Pi[L > m] =
∑
j∈E

Qm0 (i, j) (13.35)

whereQ0(i, j) = (1 − π(i))P (i, j). Using (13.35), the conditional expected
lifetime can be obtained as

Ei[L] =
+∞∑
m=0

∑
j∈E

Qm0 (i, j) =
∑
j∈E

R0(i, j) (13.36)

whereR0(i, j) =
∑+∞

m=0Q
m
0 (i, j) = (I − Q0)−1(i, j) is the potential matrix

corresponding toQ0.

4.2. Network Reliability Assessment

Özekici and Soyer [34] consider networks that consist of components oper-
ating under a randomly changing common environment in discrete time. Their
work is motivated by power system networks that are subject to fluctuating
weather conditions over time that effect the performance of the network. The
effect of environmental conditions on reliability of power networks have been
recognized in earlier papers by Gaver, Montmeat and Patton [11] and Billinton
and Bollinger [2] where the authors pointed out that power systems networks are
exposed to fluctuating weather conditions and that the failure rates of equipment
and lines increase during severe environmental conditions.

Consider a network withK components with an arbitrary structure func-
tion φ and reliability functionh. The components of the network are observed
periodically at timest = 1, 2, · · · and the probability that thekth component
survives the period in environmenti with probabilityπk(i).

It follows that the life distribution of componentk is characterized by

P [Lk > n|Y ] =
n∏
t=1

πk(Yt) (13.37)

since the component must survive the firstn time periods. Moreover, we as-
sume that, given the environment, the component lifetimes are conditionally
independent so that

P [L1 > n,L2 > n, · · ·LK > n|Y ] =
K∏
k=1

n∏
t=1

πk(Yt). (13.38)
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We will denote the set of all components that are functioning prior to period
t byZt such thatZ1 is the set of all functioning components at the outset and

Zt+1 = {k = 1, 2, · · · ,K;Xt(k) = 1} (13.39)

is the set of components that survive periodt for all t ≥ 1. The state space of
the stochastic processZ = {Zt; t = 1, 2, · · · } is the set of all subsets of the
component setK = {1, 2, · · · ,K}. Although it is not required in the following
analysis, it is reasonable to assume thatZ1 = K. Moreover, it follows from the
stochastic structure explained above that

P [Zt+1 = M |Zt = S, Yt = i] ≡ Qi(S,M) =
∏
k∈M

πk(i)
∏

k∈(S∩Mc)

(1−πk(i))

(13.40)
for any subsetsM,S of K with M ⊆ S. In words,Qi(S,M) is the probability
that the set of functioning components after one period will beM given that
the environment isi and the set of functioning components isS. This function
will play a crucial role in our analysis of the network. The stochastic structure
of our network reliability model is made more precise by noting that, in fact,
the bivariate process(Y, Z) is a Markov chain with transition matrix

P [Zt+1 = M,Yt+1 = j|Zt = S, Yt = i] ≡ P (i, j)Qi(S,M) (13.41)

for anyi, j ∈ E and subsetsM,S of K withM ⊆ S. In many cases, it is best to
analyze network reliability and other related issues using the Markov property
of the chain(Y, Z).

Denote the set structure functionΨ by

Ψ(M) = φ(m) (13.42)

wherem = (m1,m2, · · · ,mK) is the binary vector withmk = 1 if and only
if k ∈M. Then,

pi(S) =
∑

M⊆S, Ψ(M)=1

Qi(S,M) (13.43)

is the conditional probability that the network will survive one period in environ-
menti given that the set of functioning components isS. The characterization
in (13.43) can also be written in terms of the path-sets of the network. Let
P denote the set of all combinations of components that makes the network
functional. In other words,

P = {M ⊆ K; Ψ(M) = 1} (13.44)

then (13.43) becomes

qi(S) =
∑

M⊆S, M∈P
Qi(S,M) (13.45)
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and
q(i) = qi(K) =

∑
M∈P

Qi(K,M) =
∑
M∈P

∏
k∈M

πk(i) (13.46)

is the probability that the network, with all components functioning, will survive
one period in environmenti.

In assessment of network reliability, we are interested in failure free operation
of the network forn time periods. More specifically, we want to evaluate
P [L > n] for any timen ≥ 0. Note that we can trivially write

P [L > n] =
∑
i∈E

P [L > n|Y1 = i, Z1 = S]P [Y1 = i, Z1 = S] (13.47)

that requires computation of the conditional probabilityP [L > n|Y1 = i, Z1 =
S] given any initial statei andS. We will denote the conditional network
survival probability by

f(i, S, n) = P [L > n|Y1 = i, Z1 = S] (13.48)

which is simply the probability that the network will surviven time periods
given the setS of initially functioning components and the initial statei of the
environment. Similarly, we define the conditional mean time to failure (MTTF)
as

g(i, S) = E[L|Y1 = i, Z1 = S] =
+∞∑
n=0

P [L > n|Y1 = i, Z1 = S]. (13.49)

We will now exploit the Markov property of the process(Z, Y ) to obtain
computational results forf andg. Once they are computed, it is clear that we
obtain the desired results asf(i,K, n) and g(i,K) since it is reasonable to
assume thatZ1 = K initially.

Minimal and Maximal Repair Models If we assume that there is minimal
repair and all failed components are replaced only if the whole system fails,
then the Markov property of(Z, Y ) at the first transition yields the recursive
formula

f(i, S, n+ 1) =
∑
j∈E

∑
M⊆S, Ψ(M)=1

P (i, j)Qi(S,M) f(j,M, n). (13.50)

The recursive system (13.50) can be solved for any(i, S) starting withn = 1
and the boundary conditionf(i, S, 0) = 1. A further simplification of (13.50)
is obtained by noting that we only need to computef(i, S, n) for S ∈ P. The
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definition ofP in (13.44) implies that we can rewrite (13.50) as

f(i, S, n+ 1) =
∑
j∈E

∑
M⊆S, M∈P

P (i, j)Qi(S,M) f(j,M, n) (13.51)

for S ∈ P sincef(j,M, n) = 0 wheneverM /∈ P.
Similarly, using (13.49) or the Markov property directly we obtain the system

of linear equations

g(i, S) = qi(S) +
∑
j∈E

∑
M⊆S, Ψ(M)=1

P (i, j)Qi(S,M) g(j,M) (13.52)

which can be solved easily since bothE andK are finite. Once again, the
dimension of the system of linear equations in (13.52) can be reduced by noting
thatg(j,M) = 0 wheneverM /∈ P and we only need to computeg(i, S) for
S ∈ P. The reader should bear in mind that this computational simplification
applies in all expressions withΨ(M) = 1 since this is true if and only ifM ∈ P.

If we assume that there is maximal repair and all failed components are
replaced at the beginning of each period, then this implies that all components
are functioning at the beginning of a period and we can takeZ1 = S = K.
Now (13.50) can be written as

f(i,K, n+ 1) =
∑
j∈E

∑
M⊆K, Ψ(M)=1

P (i, j)Qi(K,M) f(j,K, n) (13.53)

with the same boundary conditionf(i,K, 0) = 1. Note that (13.53) is dimen-
sionally simpler than (13.50) since it can be rewritten as

f(i, n+ 1) =

 ∑
Ψ(M)=1

Qi(K,M)

∑
j∈E

P (i, j) f(j, n) (13.54)

= q(i)
∑
j∈E

P (i, j) f(j, n) (13.55)

after suppressingK in f.
A similar analysis on the MTTF yields the system of linear equations

g(i) = q(i) + q(i)
∑
j∈E

P (i, j) g(j). (13.56)

Defining the matrixR(i, j) = q(i)P (i, j), (13.56) can be written in compact
form asg = q +Rg with the explicit solution

g = (I −R)−1q. (13.57)
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4.3. Bayesian Analysis of Discrete Time Models

The results presented for the MMBP and the network reliability assessment
are all conditional on the specified parameters. In what follows we will consider
the case where the parameters are treated unknown and present a Bayesian
analysis. In so doing, we will present the Bayesian inference for the network
reliability model and show that results for the MMBP can be obtained as a
special case.

Under the network reliability setup of Section 4.2, we describe our uncer-
tainty about the elements of the transition matrixP and the elements of the
vectorπ(i) = (π1(i), . . . , πK(i)). Thus, in terms of our previous notation we
haveΘ = (P, π(i), i ∈ E). As in Section 3.3, for theith row ofP we assume
the Dirichlet prior given by (13.21) withPi’s are independent fori ∈ E. For a
given environment, we assume thatπ(i) has independent components with beta
densities denoted asπk(i) ∼ Beta(ak(i), bk(i)). Also, we assume thatπ(i)’s
are independent of each other for alli ∈ E and they are independent of the
components ofP.

If the network is observed forn time periods, then the observed data consists
of D = {Xt; t = 1, . . . , n} whereXt = (Xt(1), Xt(2), . . . , Xt(K)). The
failure data also provides the valuesZn = {Zt; t = 1, . . . , n + 1} since
Zt+1 = {k = 1, 2, · · · ,K;Xt(k) = 1}. It is assumed that the environmental
process is unobservable. In this case the Bayesian analysis of the network
reliability presents a structure similar to thehidden Markov modelswhich were
considered by Robert, Celeux and Diebolt [37].

In the minimal repair model, we can write the likelihood function as

L(Θ, Y n;D) ∝
n∏
t=1

P (Yt−1, Yt)

 ∏
k∈Zt+1

πk(Yt)
∏

k∈(Zt∩Zc
t+1)

[1 − πk(Yt)]

 ,

(13.58)
whereZ1 ⊇ · · · ⊇ Zn+1with Z1 = K andY n = (Y1, ..., Yn). In the maximal
repair model, the likelihood function is given by

L(Θ, Y n;D) ∝
n∏
t=1

P (Yt−1, Yt)

{∏
k∈K

[πk(Yt)]Xt(k) [1 − πk(Yt)]1−Xt(k)

}
.

(13.59)
Note that in (13.58) and (13.59), we setP (Y0, Y1) = 1 whent = 1 and we
observe onlyn− 1 transitions ofY .

As pointed out inÖzekici and Soyer [34], when the history ofY process is
not observable, there is no analytically tractable posterior analysis. Thus, as in
Section 3.3 the posterior analysis can be developed using the Gibbs sampler.
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The full conditional distributions ofPi’s are obtained as independent Dirichlet
densities

(Pi|D,Y n) ∼ Dirichlet {αij +
n∑
t=1

1(Yt = i, Yt+1 = j); j ∈ E}. (13.60)

The full conditionals of πk(i); i ∈ E, k = 1, ...,K are independent beta
densities given by(πk(i)|D,Y n) ∼ Beta(a∗k(i), b

∗
k(i)) with

a∗k(i) = ak(i) +
n∑
t=1

1(Yt = i)1(k ∈ Zt+1), (13.61)

b∗k(i) = bk(i) +
n∑
t=1

1(Yt = i)1(k ∈ (Zt ∩ Zct+1)) (13.62)

for the minimal repair model and with

a∗k(i) = ak(i) +
n∑
t=1

1(Yt = i) Xt(k), (13.63)

b∗k(i) = bk(i) +
n∑
t=1

1(Yt = i) (1 −Xt(k)) (13.64)

for the maximal repair model. We note that posteriori elements ofπ(i)’s and
Pi’s are independent of each other for alli ∈ E. The full conditional distri-
butions of the environmental process,p(Yt|D,Y (−t), π(Yt),P ) whereY (−t) =
{Yτ ; τ 	= t} is obtained for the minimal repair model as

p(Yt|D,Y (−t), π(Yt),P ) ∝ (13.65)

P (Yt−1, Yt)

 ∏
k∈Zt+1

πk(Yt)
∏

k∈Zt∩Zc
t+1

[1 − πk(Yt)]

P (Yt, Yt+1)

and for the maximal repair case as

p(Yt|D,Y (−t), π(Yt),P ) ∝ (13.66)

P (Yt−1, Yt)

{∏
k∈K

[πk(Yt)]Xt(k) [1 − πk(Yt)]1−Xt(k)

}
P (Yt, Yt+1).
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Thus, for both repair scenarios, a posterior sample fromp(Θ, Y n|D) can be
easily obtained by iteratively drawing from the given full posterior conditionals.

Once the posterior distribution is obtained, posterior reliability predictions
can be made by evaluatingP [L̂ > m|D], whereL̂ = L−n is the time remaining
to network failure. For the minimal repair case, using (13.51) and the Markov
property of the chain(Y, Z), by generatingG realizations from the posterior
distributionp(Θ, Yn|D) we can approximate the posterior network reliability
as a Monte Carlo integral

P [L̂ > m|D] ≈ 1
G

∑
g

∑
j∈E

P (Y (g)
n , j)f(j, Zn+1,m− 1|Θ(g)), (13.67)

wheref(j, Zn+1,m|Θ) is obtained as the solution of (13.51). In the maximal
repair model, similar results can be obtained by using (13.55) to computef for
each realizationg.

For the MMBP we can obtain the Bayesian inference by considering the
special caseK = 1 in the maximal repair model. By settinga∗k(i) = a∗(i),
b∗k(i) = b∗(i), πk(i) = π(i), andXt(k) = Xt in (13.63), (13.64) and (13.66)
we can obtain posterior analysis for the MMBP.
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[6] Çınlar,E., Shaked, M. and Shanthikumar, J.G. (1989). On Lifetimes Influ-
enced by a Common Environment.Stochastic Processes and their Appli-
cations, 33: 347–359.

[7] Eisen, M., and Tainiter, M. (1963). Stochastic Variations in Queuing Pro-
cesses.Operations Research, 11: 922–927.

[8] Ezhov, I. I. and Skorohod, A.V. (1969). Markov Processes with Homoge-
neous Second Component: I.Teor. Verojatn. Primen., 14: 1–13.



REFERENCES 271

[9] Fischer, W. and Meier-Hellstern, K. (1992). The Markov-modulated Pois-
son Process Cookbook.Performance Evaluation, 18: 149–171.

[10] Gaver, D.P. (1963). Random Hazard in Reliability Problems.Technomet-
rics, 5: 211–226.

[11] Gaver, D.P., Montmeat, F. E. and Patton, A. D. (1964). Power System
Reliability I - Measures of Reliability and Methods of Calculation.IEEE
Transactions on Power Apparatus and Systems, 83: 727–737.

[12] Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based Approaches
to Calculating Marginal Densities.Journal of the American Statistical
Association, 85: 398–409.

[13] Jelinski, Z. and Moranda, P. (1972). Software Reliability Research. In
W. Freiberg, editor,Statistical Computer Performance Evaluation,, pp.
465–484, Academic Press, New York, NY.

[14] Kuo, L. and Yang, T. Y. (1995). Bayesian Computations of Software
Reliability. Journal of Computational and Graphical Statistics, 4: 65–82.
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[26] Özekici, S. (1995). Optimal Maintenance Policies in Random Environ-
ments.European Journal of Operational Research, 82: 283–294.
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[31] Özekici, S. and Parlar, M. (1999). Inventory Models with Unreliable Sup-
pliers in a Random Environment.Annals of Operations Research, 91: 123–
136.
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