Chapter 13

RELIABILITY MODELING AND ANALYSIS
IN RANDOM ENVIRONMENTS

SuleymanOzekici

Department of Industrial Engineering
KogUniversity

80910 Sariyer-Istanbul, Turkey
sozekici@ku.edu.tr

Refik Soyer

Department of Management Science
The George Washington University
Washington, DC 20052, USA
soyer@gwu.edu

Abstract We consider a number of models where the main emphasis is on the effects
of random environmental changes on system reliability. They include complex
hardware and software systems which operate under some set of environmental
states that affect the failure structure of all components. Our discussion will be
of an expository nature and we will review mostly existing and ongoing research
of the authors. In so doing, we will present an overview of continuous and
discrete-time models and their statistical analyses in order to provide directions
for future research.
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1. Introduction and Overview

In this expository paper, we consider complex reliability models that oper-
ate in a randomly changing environment which affects the model parameters.
Here, complexity is due not only to the variety in the number of components of
the model, but also to the fact that these components are interrelated through

249



250 MATHEMATICAL RELIABILITY

their common environmental process. For example, a complex device like an
airplane consists of a large number of components where the failure structure
of each component depends very much on the set of environmental conditions
that it is subjected to during flight. The levels of vibration, atmospheric pres-
sure, temperature, etc. obviously change during take-off, cruising and landing.
Component lifetimes and reliabilities depend on these random environmental
variations. Moreover, the components have dependent lifetimes since they oper-
ate in the same environment. A similar observation holds in software systems.
For example, an airline reservation system consists of many modules where
failures may be experienced due to the faults or bugs that are still present. In
this case, the way that the user operates the system, or the so-called operational
profile, plays a key role in software reliability assessment. Failure probabili-
ties of the modules and system reliability all depend on the random sequence
of operations it performs. The operational profile in this setting provides the
random environment for the software system.

The term “environment” is used in the generic sense in this papers so that it
represents any set of conditions that affect the stochastic structure of the model
investigated. The concept of an “environmental” process, in one form or an-
other, has been used in the literature for various purposes. Neveu [25] provides
an early reference to paired stochastic processes where the first component is
a Markov process while the second one has conditionally independent incre-
ments given the first. Ezhov and Skorohod [8] refer to this as a Markov process
with homogeneous second component. In a more modern settimgy (3],

[4]) introduced Markov additive processes and provided a detailed description
on the structure of the additive component. The environment is modelled as
a Markov process in all these cases and the additive process represents the
stochastic evolution of a quantity of interest.

The use of an environmental process to modulate the deterministic and
stochastic parameters of operations research models is not limited to reliability
applications only.Ozekici [27] discusses other applications in inventory and
gueueing. In inventory models, the stochastic structure is depicted by the de-
mand and the lead-time processes. Song and Zipkin [41] argue that the demand
for the product may be affected by a randomly changing “state-of-the-world”,
which we choose to call the “environment” in our exposition. A periodic review
model in a random environment with uncertain supply is analyzéolzekici
and Parlar [31].

Queueing models also involve stochastic and deterministic parameters that
are subject to variations depending on some environmental factors. The cus-
tomer arrival rate as well as the service rate are not necessarily constants that
remain intact throughout the entire operation of the queueing system. A queue-
ing model where the arrival and service rates depend on a randomly changing
two-state environment was first introduced by Eisen and Tainiter [7]. This
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line of modelling is later extended by other authors such as Neuts ([23], [24])
and Purdue [36]. A comprehensive discussion on Markov modulated queueing
systems can be found in Prabhu and Zhu [35].

Although the literature cited above clearly illustrate the use of random envi-
ronments in inventory and queueing models, the concept is much more applica-
ble in reliability and maintenance models. It is generally assumed that a device
always works in a given fixed environment. The probability law of the deterio-
ration and failure process thus remains intact throughout its useful life. The life
distribution and the corresponding failure rate function is taken to be the one
obtained through statistical life testing procedures that are usually conducted
under ideal laboratory conditions by the manufacturer of the device. Data on
lifetimes may also be collected while the device is in operation to estimate the
life distribution. In any case, the basic assumption is that the prevailing envi-
ronmental conditions either do not change in time or, in case they do, they have
no effect on the deterioration and failure of the device. Therefore, statistical
procedures in estimating the life distribution parameters and decisions related
with replacement and repair are based on the calendar age of the item.

There has been growing interest in recent years in reliability and mainte-
nance models where the main emphasis is placed on the so-called intrinsic age
of a device rather than its real age. This is necessitated by the fact that devices
often work in varying environments during which they are subject to varying
environmental conditions with significant effects on performance. The dete-
rioration and failure process therefore depends on the environment, and it no
longer makes much sense to measure the age in real time without taking into
consideration the different environments that the device has operated in. There
are many examples where this important factor can not be neglected or over-
looked. Consider, for example, the jet engine of an airplane which is subject
to varying atmospheric conditions like pressure, temperature, humidity, and
mechanical vibrations during take-off, cruising, and landing. The changes in
these conditions cause the engine to deteriorate, or age, according to a set of
rules which may well deviate substantially from the usual one that measures
the age in real time irrespective of the environment.

As a matter of fact, the intrinsic age concept is being used routinely in prac-
tice in one form or another. In aviation, the calendar age of an airplane since
the time it was actually manufactured is not of primary importance in determin-
ing maintenance policies. Rather, the number of take-offs and landings, total
time spent cruising in fair conditions or turbulence, or total miles flown since
manufacturing or since the last major overhaul are more important factors.

Another example is a machine or a workstation in a manufacturing system
which may be subject to varying loading patterns depending on the production
schedule. In this case, the atmospheric conditions do not necessarily change
too much in time, and the environment is now represented by varying loading
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patterns so that, for example, the workstation ages faster when it is overloaded,
slower when it is underloaded, and not at all when it is not loaded or kept
idle. Therefore, the term “environment” is used in a loose sense here so that
it represents any set of conditions that affect the deterioration and aging of the
device.

In what follows, we assume that the system operates in a randomly changing
environment depicted by = {Y;;t € T} whereY; is the state of the envi-
ronment at time. The environmental proceds is a stochastic process with
time-parameter séf and some state spaéewhich is assumed to be discrete
to simplify the notation.

In Section 2, we consider continuous-time models applicable to hardware
systems. This will focus mainly on the intrinsic aging concept. Section 3 is on
continuous-time software reliability models where the operational profile plays
the key role in testing as well as reliability assessment. Discrete-time periodic
models are considered in Section 4 where we first discuss Markov modulated
Bernoulli processes in the context of reliability applications and extend this
discussion later to networks.

2. Continuous Time Models with Intrinsic Aging

An interesting model of stochastic component dependence was introduced by
Cinlar andOzekici [5] where stochastic dependence isintroduced by arandomly
changing common environment that all components of the system are subjected
to. This modelis based on the simple observation that the aging or deterioration
process of any component depends very much on the environment that the
component is operating in. They propose to construct an intrinsic clock which
ticks differently in different environments to measure the intrinsic age of the
device. The environment is modelled by a semi-Markov jump process and the
intrinsic age is represented by the cumulative hazard accumulated in time during
the operation of the device inthe randomly varying environment. Thisis arather
stylish choice which envisions that the intrinsic lifetime of any device has an
exponential distribution with parameter 1. There are, of course, other methods
of constructing an intrinsic clock to measure the intrinsic age. Also, the random
environment model can be used to study reliability and maintenance models
involving complex devices with many interacting components. The lifetimes
of the components of such complex devices are stochastically dependent due
to the common environment they are all subject to.

2.1. Intrinsic Aging in a Fixed Environment

The concept of random hazard functions is also used in Gaver [10] and Arjas
[1]. The intrinsic aging model of @lar andOzekici [5] is studied further in
Cinlar et al. [6] to determine the conditions that lead to associated component
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lifetimes, as well as multivariate increasing failure rate (IFR) and new better
than used (NBU) life distribution characterizations. It was also extended in
Shaked and Shanthikumar [38] by discussions on several different models with
multicomponent replacement policies. Lindley and Singpurwalla [17] discuss
the effects of the random environment on the reliability of a system consisting
of components which share the same environment. Although the initial state
of the environment is random, they assume that it remains constant in time and
components have exponential life distributions in each possible environment.
This model is also studied by Lé&fre and Malice [15] to determine partial
orderings on the number of functioning components and the reliabil#éyawit-
of-n systems, for different partial orderings of the probability distribution on the
environmental state. The association of the lifetimes of components subjected
to a randomly varying environment is discussed indveé and Milhaud [16].
Singpurwalla and Youngren [40] also discuss multivariate distributions that
arise in models where a dynamic environment affects the failure rates of the
components.

For a complex model withn components, intrinsic aging ini@ar and
Ozekici [5] is described by the basic relationship

dA
= %A (13.1)

t
whereA; = (A}, A?,--- , A7) is the intrinsic age of the system at timéhat
consists of the intrinsic ages of the componentsy = (Y;!,Y;2,---,Y%)

is the environmental process with state spacthat reflects the states of var-
ious environmental factors anfl is the intrinsic hazard rate function. For
example,Y;' can be the calendar tinteY;? could be the temperature @tY;?
could be the pressure at timeetc.. Moreover,f is of the form f(i,z) =
(f1(i,x), fa(i,x), -, fm(i,2)) where fi(i, z) is the intrinsic aging rate of
component in environment if the intrinsic ages of the components are given
by the vectorr = (1,22, - , Tm)-

In this exposition, we will further specialize on this basic model by adapt-
ing the notation and terminology @zekici [26] who analyzed the optimal
maintenance problem of a single-component device operating in a random en-
vironment. In particular, we suppose that the state spatediscrete and let
L denote the lifetime of the device. Suppose, for now, that the environment re-
mains fixed at some statec F so thatY; = i forall¢ > 0. In any environment
1 € E, the life distribution is given by the cumulative distribution function

Fi(t) = P[L < t|Y =] (13.2)

with failure rate function-;(¢) and hazard functiof;(¢) = th ri(s)ds so that
the survival probability functiod”; = 1 — F; can be written as

Fi(t) = P[L > t|Y = i] = exp(—Ri(t)). (13.3)



254 MATHEMATICAL RELIABILITY

Relationship (13.3) allows us to construct an intrinsic clock to measure the
intrinsic age of the device at timeas A, = R;(¢t) and the real lifetime is
characterized by

L=inf{s>0;A, > L} (13.4)

whereL is a random variable representing the intrinsic lifetime of component
k. Moreover, it has an exponential distribution with parameter 1 since

Fi(t) =P[L<t|]Y =i]=PlLpy < A]Y =i]=1—e.  (13.5)

Therefore, in the fixed environmeht FE, it follows that if the intrinsic age
is measured by the hazard function, then comporkemas an exponentially
distributed intrinsic lifetime with parameter 1. Moreover, its intrinsic clock
ticks at the rate;(¢) at timet. If the real time ist, then the intrinsic clock
shows timeR;(t). Similarly, when the intrinsic time ig, the corresponding
real time is given by the inverse function

Ri(z) = inf{t > 0; R;(t) > =}. (13.6)

In other words, it take®R;(x) units of real time operation to age a brand new
component to intrinsic age in environment.

2.2. Intrinsic Aging in a Random Environment

Suppose now that the environmental process is not fixed but described as
the minimal semi-Markov process associated with a Markov renewal process.
Let T,, denote the time of the’th environment change and,, denote the
n’th environmental state fak > 0 with 7; = 0. The main assumption is that
the proces$X,T) = {(X,,T,);n > 0} is a Markov renewal process on the
state spac& x R, with some semi-Markov kern€) whereR = [0, +00).
Moreover,Y = {Y;;t > 0} is the minimal semi-Markov process associated
with (X, 7). More preciselyY; = X,, wheneverT,, <t < T,;. For any
1,7 € Eandt > 0,

Qi,j,t) = P[Xpnt1 =7, Tns1 — T, < t| X, = 1] (13.7)

and it is well-known thatX is a Markov chain onE with transition matrix
P(i,j) = P[Xnt1 = j|Xn = 1] = Q(i, J, +00). We further assume that the
Markov renewal process has infinite lifetime so thap,, 7, = +oo.

A stylish choice to extend the construction of the intrinsic aging process in
this setting is to measure the age by the total hazard accumulated during the
operation of the device in the randomly varying environment. Therefore, the
age processl = {A;;t > 0} is the continuously increasing stochastic process
defined by

dA

= X (Rx,(Ar,) + (t = T)) (13.8)
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for T,, <t < T,41. To simplify the notation, it is convenient to set
Hi(x,t) = Rl('RZ(.T) + t) (139)

so that this represents the amount of aging caused by operating component
of initial agex in environment for ¢ real time units. If the device is initially at
agex at the beginning of environmentthen the amount of real time operation
required to age it time units in this environment is given by

Ti(z,u) = Ri(z + u) — Ri(x) . (13.10)

To observe the relationship between the intrinsic failure fate(13.1) and
the ordinary failure rate functionin the present setting, please note that (13.8)
implies f (i, z) = r;(R;(x)) in compact notation.

This intrinsic aging model simply combines the hazard functions of the com-
ponents in the environmental states. Given the failure rate functiofig; i €
E} and arealization of the environmental procEsshe age procesd is com-
pletely defined by (13.8). Ifthe initial age#s = x and the initial environment
is Xo = 7 with T, = 0, then the initial real age of the componenfig(x) and
it ages asds = H;(z,s) for s < 7. At some timeT; = u, the environment
jumps to statej € E with some probabilityQ(i, j, du) and the age is now
the accumulated hazard given By, = H;(Ay,s) foru +s < T,. The
sample path ofl is constructed similarly in time as the environmental process
evolves so that, in general, if the environment jumps to somestate at the
n'th jump time7,, = t, then the age evolves a5, = H;(A, s) so long as
t+s < Tn+1.

3. Continuous Time Models in Software Reliability
Engineering

An undesirable feature of almost all software reliability models is that the
parameters of the software failure process, as well as the costs, are independent
of the operations that the software performs. This assumes that the software is
used for a single operation or that there are no differences between the model
parameters under different operations. Moreover, it is generally assumed that
there is only one test case. In practice, however, a number of different test cases
are run during the testing procedure before the software is released. The model
parameters should therefore depend on the test case as well.

Musa [20], [21] argues that a consideration of the software’s operational
profile should reduce system risk. Moreover, it also makes the testing proce-
dure faster and more efficient. Optimal testing problems involving operational
profiles are discussed in detail Bzekici et al. ([30], [29]) who present compu-
tational procedures to determine the optimal testing durations for the operations.
The notion of an operational profile was introduced by Musa et al. [22]. An
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operation is an externally initiated task performed by a system “as built”. A
software system is usually designed to perform a set of well-defined operations
or tasks. The operational profile of any software describes how users employ
the system. It is a quantitative and probabilistic characterization of how a sys-
tem will be used. An operational profile is defined as a set of operations and the
probabilities of their occurrence. Formally, [§tbe a generic random variable
that represents the operation to be performed by the systeiid dadote the set

of all possible operations. Suppose that the probability distribution function of
Xisw(n) = P[X = n]. Then, the paif{E, ) is the operational profile which
contains both the possible operations and the probability of the occurrences of
these operations.

We claim that the concept of an “operational profile” should be expanded
to that of an “operational process”, as a more meaningful approach to model
software usage. In such a modél,will still denote the set of all operations
but the kth operation performed by the system will be denoted by the ran-
dom variableX. The operational process will then be the stochastic process
X = {Xy;k > 0} with state spacé’. The operational process in software
reliability engineering clearly plays the role of the environmental process in
hardware reliability. It is simply a stochastic process that modulated the model
parameters.

Musa [20] describes how operational profiles can be built and states that there
is substantial benefit to be gained by applying it. It can increase user satisfac-
tion by capturing their needs more precisely, satisfy important user needs faster,
reduce costs with reduced operation software, speed up the development and
improve productivity by allocating resources in relation to use and criticality,
reduce the system risk by more realistic testing, and make testing faster and
more efficient. Wohlin and Runeson [44] also discuss the effect of usage mod-
elling in software certification. A stochastic model of software usage involving
Markov chains is employed in Whittaker and Poore [42] and Whittaker and
Thomason [43]. In their approach, the sequence of “inputs” provided by the
user is modelled as a Markov chain. This results in a model at the micro level
involving all possible values of input variables with a huge state space. An
operational process, on the other hand, provides a stochastic model at a more
refined macro level because an operation corresponds to a specific task which
usually involves ranges of values for many input variables at the same time. The
operational profile model concentrates on the user-initiated tasks performed by
the system rather than the sequence of user-supplied input values.

3.1. Optimal Testing Strategies

An important decision problem in software engineering is the determination
of the optimal release times of software. In life critical software, the most
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importantattribute of the systemisits reliability. Therefore, no effortis sparedin
making the software as reliable as is possible before releasing it for operation. In
most of the business related software the total cost of the software is as important
asitsreliability. This factgives a trade-off between the reliability of the software
and its cost. A consequence of this consideration is the development of the
stopping rules for the testing procedure that will minimize the total expected
cost or maximize the total expected benefit. It is assumed that there are a
random number of faults in the software before testing. The objective of testing
is to remove as many of these faults as is possible by debugging. The important
issue to note is that all economic and stochastic parameters of the model depend
on the test case and the specific operation performe®zekici et al. [30],
the time to failure caused by each fault is exponential and there are a total of
K operations that the software is required to perform. The software is to be
tested in all of these operations and the decision problem is to determine the
durations. Note that in the testing problem the operational process is controlled
and it is not stochastic.

One of the models discussed leads to the following optimization problem

K

m|n0<tk<+oo Z
K =

k
crtr + pu(fx — frr1) exp(— Z /\mtm)] (13.11)

m=1

wheret,, is the duration of testing for operatidn ¢;, is the cost of testing per
unit time for operatiork, fi is the benefit of testing for operatignand A\, is
the rate of failures caused by each fault during operatiddnder reasonable
assumptions, this problem leads to the explicit solution

tz—ianbk_ka)/(bk_l_bk)} (13.12)
Ak ag — Q41 ag—1 — Qg
with ap = Ck/)\k andbk = /Lfk.

The optimal testing model is extended recentlydmekici and Soyer [33] us-
ing a Bayesian framework. Uncertainty about model parameters are described
probabilistically using available prior information on them. The information
gathered during each test is used to update the model parameters and deter-
mine the testing durations sequentially. In particulgy,is assumed to have
a Gammady, 8x) prior and the initial number of faults have apriori Poisson
distribution. The operational process is still controlled but the durations of the
operations are not fixed at the beginning of testing. They are recalculated using
data obtained for each operation. Wh&n= 1, we obtain the Jelinski and
Moranda [13] model for which Bayesian analysis has been done by Meinhold
and Singpurwalla [18] and more recently by Kuo and Yang [14] by using a
Gibbs sampler.
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At the nth stage of testing, having obtained d®& ! testing for the first
n — 1 operations, one is now faced with the optimization problem

K
mln(;c<tk<+}>(0 D | exte + EINJD" (i — frir) H <
n
k=n j=n

Qaj
7i1)

(13.13)
whereN,, is the number of faults that still remain in the software at the beginning
of the nth stage. To solve this problem sequentially, Gibbs sampling is used
to do posterior analysis on the number of faults remaining. Although (13.13)
does not necessarily have an explicit optimal solution as (13.12), it can be
solved using various optimization procedure. Under reasonable conditions,
the objective function is convex. The details of the Bayesian analysis will be
presented in Section 3.3.

3.2. Software Reliability Assessment

Oncetestingis completed, the software isreleased to the users. Thisisdonein
an uncontrolled setting and the sequence of operations as well as their durations
are now random. This operational process or the environmental process now
modulates the parameters of the reliability model and play a crucial role in
software reliability assessment. Now, the environmental statat timet¢
represents the operation performed by the user. The analysis of the software
failure process obviously depend on the stochastic structure of the operational
process. InDzekici and Soyer [32]Y is assumed to be a Markov process.
Briefly, this means that the sequence of operations performed is a Markov chain
and the amount of time spent on each operation is exponentially distributed.
More precisely, we lefX,, denote thenth operation that the system performs
andT,, be the time at which theth operation starts. It is well-known that is
a Markov chain with some transition matrix

P(i,j) = P[Xn41 = j|Xn = 1] (13.14)

and A
P[Tpy1 — Ty > t|X,, = i] = e H0)t (13.15)

so that the duration of theth operation is exponentially distributed with rate
w(7) ifthis operation ig. The probabilistic structure of the operational process is
given by the generatot(i, j) = u(i)(P(i,j) — 1(7,j)) wherel is the identity
matrix.

An overview of software failure models is presented in Singpurwalla and
Soyer [39]. Perhaps the most important aspect of these models is related to the
stochastic structure of the underlying failure process. This could be a “times-
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between-failures” model which assumes that the times between successive fail-
ures follow a specific distribution whose parameters depend on the number of
faults remaining in the program after the most recent failure. One of the most
celebrated failure models in this group is that of Jelinski and Moranda [13]
where the basic assumption is that there are a fixed number of initial faults in
the software and each fault causes failures according to a Poisson process with
the same failure rate. After each failure, the fault causing the failure is detected
and removed with certainty so that the total number of faults in the software is
decreased by one. In the present setting, the time to failure distribution for each
fault in the software is exponentially distributed with parametgt) during
operationkt and this results in an extension of the Jelinski-Moranda model.

In dealing with software reliability, one is interested in the number of faults
N, remaining in the software at timte Then, Ny is the initial number of faults
and the proces®v = {N;;t > 0} depicts the stochastic evolution of the
number of faults. If there is perfect debugging, thérdecreases as time goes
on, eventually to diminish to zero. Defining the bivariate pro¢gss (Y, IV;),
it follows thatZ = (Y, N) is a Markov process with discrete state space:
E x{0,1,2,---}. This follows by noting thal” is a Markov process aniy
is a process that decreaseslkgfter an exponential amount of time with a rate
that depends only on the state¥of In particular, if the current state &f is
(i,n) for anyn > 0, then the next state is eithef, n) with rateyu(:) P (i, j) or
(i,n — 1) with ratenA(4). If n = 0, then the next state {g, 0) with rateu(j).
Note that0 is an absorbing state faY.

This implies that the sojourn in state n) is exponentially distributed with
rate

B(i,n) = p(i) + nA(7) (13.16)

and the generatap of Z is

() 4 nA@),  j=im=n

n(7), j=im=n-—1

Reliability is defined as the probability of failure free operation for a specified
time. We will denote this by the function

R(i,n,t) = P[L > t|Yp =i, No = n| = P[N; = n|Yy =i, Ny = n|
(13.18)
defined foralli,n) € F andt > 0. Note that this is equal to the probability that
there will be no arrivals until timein a Markov modulated Poisson process with
intensity function\(¢) = nA(Y;). Thus, using the matrix generating function
(22) in Fischer and Meier-Hellstern [9] with = 0, we obtain the explicit

formula
R(i,n,t) = gAML (13.19)
S,
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where

k
e Sy RN (13.20)
k=0
is the exponential matrix andl(i, ) = \(4)1(4, ).

3.3. Bayesian Analysis of Software Reliability Models

In the software reliability model of Section 3.2, it is assumed that the pa-
rameters are given. A Bayesian analysis of this model can be developed as
in Ozekici and Soyer [32] by specifying prior probability distributions to de-
scribe uncertainty about the unknown parametersOzakici and Soyer [32]
independent gamma priors are assumed on eathwith shape parameter
a(i) and scale parameté(i), denoted as\(i) ~ Gamma(a(s), b(i)) for all
1 € E. Similarly, independent gamma priors are assumed for the components
of pasu(i) ~ Gamma(c(i), d(i)) for all i € E. A Poisson distribution with
parametety, denoted asVy ~ Poisson(~), is assumed as the prior for initial
number of faultsVy. For the components of the transition matrix, ttierow
P, ={P(i,j);j € E} has a Dirichlet prior

p(P) o< [T PG, 5)% " (13.21)
JEE

denoted as Dirichle{a;'-;j € E}andP;’s are independent for alle E. Fur-
thermore, itis assumed that apriariy, P and Ny are independent. We denote
the joint prior distribution of the parameters p{©) where®© = (\, u, P, Ny).

During the usage phase as debugging is performed, the failure times dur-
ing each operation as well as the operation types and their durations are ob-
served. Assuming that during a usage phase ohits of time K’ operations
are performed an&” — 1 of those are completed, the observed data is given
by D = {(Xx, Sx), (U}, Uy, ...,Uy; )ik = 1,--- , K} whereX, is thekth
operation performed, whil§;, is the time at which théth operation starts and
U]’? is the time (since the start of ti¢h operation) ofjth failure during thesth
operation. DefiningV, = Ng, to denote the total number of faults remaining
in the software just before thgh operation M, as the number of failures ob-
served during th&th operation and assuming that the initial operatiokis= ¢
for some operationstarting atS; = 0, £(0|D), the likelihood function of©
is obtained as

K-1
L { ] P(Xny Xpegr) (X e HER) Str =51) (13.22)
k=1
Mg
Nk' )\(Xk)Mk ef )‘(Xk)[]gl Uj+(Nk*Mk)(Sk+1*Sk)]
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whereL is the contribution of thé{th operation to the likelihood given by

Nt
(N — Mg)!
Mg
A " AERL L US4+ (Vi = M) (r=Sk)]
AXg) e 9=t .

Lx = e MXK)(T=5k) (13.23)

Given the independent priors, the posterior distributiorPgé can be ob-
tained as independent Dirichlets given by

K-1
(P;|D) ~ Dirichlet {a + » " 1(Xy =i, Xp11 = j);j € E}  (13.24)
k=1

where1(-) is the indicator functionSimilarly, the posterior distributions of
wu(1)'s are obtained as independent gamma densities given by

K-1 K
(u(i)] D) ~ Gamma(c(i)+ > 1(Xg = i), d(i)+ Y _ (Skp1—Sk)1(Xx = 7))
= = (13.25)
whereSk 1 = 7. We note that posteriori, and P are independent o and
Ny as well as each other.

A tractable Bayesian analysis farand Ny is not possible due to the infinite
sums involved in the posterior terms, but the Bayesian analysis can be made
by using a Gibbs sampler [see Gelfand and Smith [12]]. The implementation
of the Gibbs sampler requires the full posterior conditiondlS,|\, D) and
p(\@)|AD, Ny, D)foralli € E whereA(=)={\(j); j #1i,j € E}. Using
the fact thatvV; = NNy, it can be shown that

K
= 20 M Xk)(Sk+1—Sk)

(No — M |\, D) ~ Poisson(ye =1 %), (13.26)
where M = S°K | M. The full conditionals,p(A(i)|A\(=%), Ny, D)'sare
obtained as

K K
Gamma(a(i) + > M 1(Xy =1),b(i) + > Wil(Xp=1i) (13.27)
k=1 k=1
wherelV,, = Z;”:’“l UJ’?+ (N — My)(Sk+1—Sk). Thus all of the posterior dis-
tributions can be evaluated by recursively simulating from the full conditionals

in a straightforward manner. It is important to note that using the independent
priors, givenN,, aposteriori the\(i)’s are independent.
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We note that in the controlled testing setup @fzekici and Soyer [33],
presented in Section 3.2, the operations and their durations are deterministic.
Thus, the Bayesian inference in the controlled testing setup can be obtained as
a special case by using (13.26) and (13.27) above #yith (Si+1 — Sy) and
Br = b(k) and the expected cost term (13.13) can be evaluated and optimized
sequentially after each testing stage.

Once uncertainty aboud is revised top(©|D), it is of interest to make
posterior reliability predictions a®[L > ¢|D]. Note that bothA and A are
functions of ©. Conditional or®, using the Markov property of th& process
and (13.19), we obtain

PIL>10,D] =Y [eW@)*(NO*M)A(@))t] s (13.28)
jEE ’

Conditional on@, e(A(©)~(No—M)A©))t can be computed from the matrix ex-
ponential form using one of the available methods, for example, in Moler and
van Loan [19]. Then the posterior reliability prediction can be approximated
as a Monte Carlo integral

P[L > t|D] ~ éz PIL > 1|09, D] (13.29)
Y

usingG realizations from the posterior distributigi©| D). Similarly, prior to
observing any data, reliability predictions can be made by repldéigg- M)
with Ny and the indeX X, 7) with (i, 7) in (13.28) and using (13.29) with
realizations from the prior distributiop(©).

4. Discrete Time Models

We now consider discrete-time models for hardware systems where a device
is observed periodically at discrete time points. The device survives each period
with a probability that depends on the state of the prevailing environment in that
period. Since each period ends with a failure or survival, one can model this
system as a Bernoulli process where the success probability is modulated by
the environmental process. Using this setup with a Markovian environmental
processQzekici [28] focuses on probabilistic modeling and provides a complete
transient and ergodic analysis. We suppose throughout the following discussion
the sequence of environmental states- {Y;;¢ = 1,2, - - - } isa Markov chain
with some transition matri¥’ on a discrete state spaée

4.1. Markov Modulated Bernoulli Process

Consider a system observed periodically at times1, 2, - - - and the state
of the system at timeis described by a Bernoulli random variable
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X, — 1, if system is not functioning at time
70, if system is functioning at time

Given that the environment is in some stag timet, the probability of failure
in the period is
P[X, =1Y; = i] = 7(3) (13.30)

for some0 < 7(i) < 1. The states of the system at different points in time
constitute a Bernoulli proces¥ = {X;;t = 1,2,---} where the success
probability is a function of the environmental procéss

Given the environmental procegsthe random quantitieX;, Xo, - - - rep-
resent a conditionally independent sequence, that is,

PXy =21, Xo =12, , Xy = 2p|Y] = H (X =2|Y]. (13.31)

In the above setup, the reliability of the system is modulated by the environ-
mental proces¥ which is assumed to be a Markov process and thus the model
is referred to as the Markov Modulated Bernoulli Process (MMBP). If the sys-
tem fails in a period, then it is replaced immediately by an identical one at the
beginning of the next period. It may be possible to think of the environmental
processY” as a random mission process such tHais thetth mission to be
performed. The success and failure probabilities depend on the mission itself.
If the device fails during a mission, then the next mission will be performed by
a new and identical device.

If we denote the lifetime of the system lay then the conditional life distri-
bution is

B [ m(Y1), ifm=1
Pl ={ S ng) itmza 039
Note thatif 7(i) = wforalli € E, thatis, the system reliability is independent
of the environment, then (13.32) is simply the geometric distributtoh =
m|Y] = m(1—7)™"!. We can also write

PIL>m|Y] = (1= 7)1 —7(¥2)) - (1= 7(Vn)  (13.33)

form > 1.

We represent the initial state of the Markov chairthyrather tharY), asitis
customarily done in the literature, so that it represents the first environment that
the system operatesin. Thus, most of our analysis and results will be conditional
on the initial stateY; of the Markov chain. Therefore, for any eveatand
random variableZ we setP;[A] = P[A|Y, = i] andE;[Z] = P[Z|Y; =i|to
express the conditioning on the initial state
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The life distribution satisfies the recursive expression

B[L>m+1] = (1—x(i)) Y P(i,j)Pj[L > m] (13.34)
JEE
with the obvious boundary conditid®[L > 0] = 1. The survival probabilities
can be explicitly computed via

P,[L > m)] Z Qo' (1, 7) (13.35)
jerE

whereQo(i,5) = (1 — w(i))P(i, 7). Using (13.35), the conditional expected
lifetime can be obtained as

400
=Y > Q7)) =Y Roli,j) (13.36)

m=0jer JjeEE

whereR(i,7) = 3.+%, Q1 (4,5) = (I — Qo) (i, ) is the potential matrix
corresponding t@)g.

4.2. Network Reliability Assessment

Ozekici and Soyer [34] consider networks that consist of components oper-
ating under a randomly changing common environment in discrete time. Their
work is motivated by power system networks that are subject to fluctuating
weather conditions over time that effect the performance of the network. The
effect of environmental conditions on reliability of power networks have been
recognized in earlier papers by Gaver, Montmeat and Patton [11] and Billinton
and Bollinger [2] where the authors pointed out that power systems networks are
exposed to fluctuating weather conditions and that the failure rates of equipment
and lines increase during severe environmental conditions.

Consider a network with components with an arbitrary structure func-
tion ¢ and reliability functionh. The components of the network are observed
periodically at timeg = 1,2, --- and the probability that theth component
survives the period in environmentith probability 7y (7).

It follows that the life distribution of componehtis characterized by

P[L > n|Y] = Hwk (Y3) (13.37)

since the component must survive the fmstnme periods. Moreover, we as-
sume that, given the environment, the component lifetimes are conditionally
independent so that
K n
P[Ly >n,Ly >n,-- L > n|Y] = [] [[ (). (13.38)
k=1t=1
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We will denote the set of all components that are functioning prior to period
t by Z; such that7; is the set of all functioning components at the outset and

Zii={k=1,2,-  K; X;(k) =1} (13.39)

is the set of components that survive periddr all t > 1. The state space of
the stochastic process = {Z;;t = 1,2,--- } is the set of all subsets of the
componentset = {1,2,--- , K'}. Although itis not required in the following
analysis, it is reasonable to assume that= K. Moreover, it follows from the
stochastic structure explained above that

PlZiyyr=M|Z =8V, =i] = Qi(S,M) = [[ m()) [] (1-m(d)
keM ke(SnMe)

(13.40)
for any subsetd/, S of IC with M C S. In words,Q; (S, M) is the probability
that the set of functioning components after one period willbagiven that
the environment i and the set of functioning componentsSisThis function
will play a crucial role in our analysis of the network. The stochastic structure
of our network reliability model is made more precise by noting that, in fact,
the bivariate procesd’, Z) is a Markov chain with transition matrix

PlZi11 = M, Y1 = jlZe = S, Yy = 1] = P(3,7)Qi(S, M) (13.41)

foranyi, j € E and subsets/, S of K with A C S. In many cases, itis best to
analyze network reliability and other related issues using the Markov property
of the chain(Y, 7).

Denote the set structure functidnby

U(M) = ¢(m) (13.42)
wherem = (mq,ma,--- ,my) is the binary vector withn; = 1 if and only
if £k € M. Then,

pi(S)= D QS M) (13.43)

MCS, W(M)=1
is the conditional probability that the network will survive one period in environ-
ment: given that the set of functioning componentsisThe characterization
in (13.43) can also be written in terms of the path-sets of the network. Let
‘P denote the set of all combinations of components that makes the network
functional. In other words,

P={MCK;¥(M)=1} (13.44)
then (13.43) becomes
a(S)= D QiS,M) (13.45)

MCS, MeP
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and

q(i) = > Q. M)y= > ] mi (13.46)

MeP MeP keM

is the probability that the network, with all components functioning, will survive
one period in environmerit

In assessment of network reliability, we are interested in failure free operation
of the network forn time periods. More specifically, we want to evaluate
P[L > n] for any timen > 0. Note that we can trivially write

PIL>n)=> PlL>nYi=i,Z=S|PYi=4,Z1=5] (13.47)
i€E

that requires computation of the conditional probabify. > n|Y; =i, Z; =
S] given any initial state andS. We will denote the conditional network
survival probability by

£(i,8,n) = P[L >n|Y1 =i,7; = S| (13.48)

which is simply the probability that the network will survivetime periods
given the sef of initially functioning components and the initial statef the
environment. Similarly, we define the conditional mean time to failure (MTTF)
as

+oo
9(i,8) = E[LIY1 =4,Z1 =S| =Y P[L>n|[Y1 =471 =5]. (13.49)
n=0

We will now exploit the Markov property of the proce&g,Y') to obtain
computational results fof andg. Once they are computed, it is clear that we
obtain the desired results g%i, XC,n) and g(i, ) since it is reasonable to
assume that; = K initially.

Minimal and Maximal Repair Models If we assume that there is minimal
repair and all failed components are replaced only if the whole system fails,
then the Markov property ofZ, V') at the first transition yields the recursive
formula

fG,Sn+1)=>"" Y P(i,j)QiS, M) f(j,M,n). (13.50)

JEE MCS, ¥(M)=1

The recursive system (13.50) can be solved for @ny) starting withn = 1
and the boundary conditiofi(i, S, 0) = 1. A further simplification of (13.50)
is obtained by noting that we only need to compfitg S, n) for S € P. The
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definition of P in (13.44) implies that we can rewrite (13.50) as
FG,S8n+1)=>"" > P@i,5)QiS, M) f(j,M,n)  (13.51)

jEE MCS, MeP

for S € P sincef(j, M,n) = 0 wheneverM ¢ P.
Similarly, using (13.49) or the Markov property directly we obtain the system
of linear equations

9(i,9) = a(S) +> Y P(i,/)Qi(S, M) g(j, M) (13.52)

JEE MCS, U (M)=

which can be solved easily since bathand K are finite. Once again, the
dimension of the system of linear equations in (13.52) can be reduced by noting
thatg(j, M) = 0 wheneverM ¢ P and we only need to computgi, S) for

S € P. The reader should bear in mind that this computational simplification
appliesinall expressions with(1/) = 1since thisistrue ifandonly i/ € P.

If we assume that there is maximal repair and all failed components are
replaced at the beginning of each period, then this implies that all components
are functioning at the beginning of a period and we can téke= S = K.

Now (13.50) can be written as

faGKm+1)=>" > PGH)HQK,M)f(j,K,n) (1353)

JEE MCK, ¥ (M)=1

with the same boundary conditigf{i, K, 0) = 1. Note that (13.53) is dimen-
sionally simpler than (13.50) since it can be rewritten as

flin+1) = { Y Qi M)| > P(i4) f(j,n) (13.54)
T(M)=1 jeE
= q(i) Y P(i,5) f(G.n) (13.55)

JEE
after suppressing in f.
A similar analysis on the MTTF yields the system of linear equations
g(i) = q(i) + q(i) > P(i,5) 9(j). (13.56)
JEE
Defining the matrixRk(i, j) = q(i)P(i,j), (13.56) can be written in compact
form asg = ¢ + Rg with the explicit solution

= (I -R)"'q. (13.57)



268 MATHEMATICAL RELIABILITY

4.3. Bayesian Analysis of Discrete Time Models

The results presented for the MMBP and the network reliability assessment
are all conditional on the specified parameters. In what follows we will consider
the case where the parameters are treated unknown and present a Bayesian
analysis. In so doing, we will present the Bayesian inference for the network
reliability model and show that results for the MMBP can be obtained as a
special case.

Under the network reliability setup of Section 4.2, we describe our uncer-
tainty about the elements of the transition matfxand the elements of the
vectorm (i) = (m1(i),...,7x(2)). Thus, in terms of our previous notation we
have© = (P, n(i),i € E). As in Section 3.3, for théth row of P we assume
the Dirichlet prior given by (13.21) witl®;’s are independent fore E. For a
given environment, we assume that) has independent components with beta
densities denoted as; (i) ~ Beta(ag(i),br(7)). Also, we assume that(i)’s
are independent of each other for alE E and they are independent of the
components ofP.

If the network is observed fortime periods, then the observed data consists
of D ={Xy;t=1,...,n} whereX; = (X;(1), X¢(2),...,X¢(K)). The
failure data also provides the valug® = {Z;; ¢t = 1,...,n + 1} since
Zi1 =4k =1,2,---,K; X (k) = 1}. It is assumed that the environmental
process is unobservable. In this case the Bayesian analysis of the network
reliability presents a structure similar to thilden Markov modelshich were
considered by Robert, Celeux and Diebolt [37].

In the minimal repair model, we can write the likelihood function as

£, YD)« [[PYVicr. Y [ =)  JI [D-mOD]p,
t=1 k€Zi41 kE(ZeNZE, )
(13.58)
whereZ; O -+ D Z,4with Z; = K andY™ = (Y3,...,Y,). In the maximal
repair model, the likelihood function is given by

L(©,Y"; D) ﬁP(Y}_h Y:) {H [Wk(Y;)]Xt(k) [1— 7.‘.k(Y%)]lXt(lc)} .

t=1 kek
(13.59)
Note that in (13.58) and (13.59), we sBtY;, Y:) = 1 whent = 1 and we
observe onlyr — 1 transitions ofY".
As pointed out inOzekici and Soyer [34], when the history Bfprocess is
not observable, there is no analytically tractable posterior analysis. Thus, as in
Section 3.3 the posterior analysis can be developed using the Gibbs sampler.
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The full conditional distributions ofP;’s are obtained as independent Dirichlet
densities

(P,|D,Y™) ~ Dirichlet {a; + Y "1(Y; =14,Y;11 = j);j € E}.  (13.60)
t=1

The full conditionals of mx(i);7 € E, k = 1,..., K are independent beta
densities given by, (i)| D,Y™) ~ Beta(aj (), bj(¢)) with

NE

ai(i) = ap(i)+ Y 1Y =D)1(k € Zipr), (13.61)

t=1

M:

D) = b))+ S 1Vi= ik e (ZiN2ZE,)  (13.62)

t=1

for the minimal repair model and with

ap(i) = ax(i)+ Y 1(Y: =) Xe(k), (13.63)
t=1

bi()) = be(i) + Y 1Y =) (1= X4 (k) (13.64)
t=1

for the maximal repair model. We note that posteriori elements @f’s and
P;’s are independent of each other foralk E£. The full conditional distri-
butions of the environmental processy;|D, Y (=Y = (Y;),P) whereY (-9 =

{Y;;7 # t} is obtained for the minimal repair model as

p(Yy|D, YD 7(¥;),P) o (13.65)

P(Ytl,m{ I =0 I [1wk(n)]}P<n,Yt+1>

kEZt+1 kJEZtﬂZf_'_l

and for the maximal repair case as

p(Y:|D,Y ™) n(¥;),P) (13.66)

P(Y-1, 1) { T e (Yo%) 1 - Fk(Yt)]l_Xt(k)} P(Y, Yer1).
kek
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Thus, for both repair scenarios, a posterior sample fpgé, Y| D) can be
easily obtained by iteratively drawing from the given full posterior conditionals.
Once the posterior distribution is obtained, posterior reliability predictions
can be made by evaluatid{. > m|D], wherel, = L—n is the time remaining
to network failure For the minimal repair case, using (13.51) and the Markov
property of the chaifY, Z), by generating~ realizations from the posterior
distributionp(0©, Y,,| D) we can approximate the posterior network reliability
as a Monte Carlo integral

> 1 N pr
PIL>m|D]~ 5 > POV ) f (G, Zna,m—1109), (13.67)
g jeE

wheref (4, Z,+1, m|O) is obtained as the solution of (13.51). Inthe maximal
repair model, similar results can be obtained by using (13.55) to conffote
each realization.

For the MMBP we can obtain the Bayesian inference by considering the
special casd{ = 1 in the maximal repair model. By setting (i) = a*(i),
bi(i) = b*(3), mi(i) = n(4), and X, (k) = X in (13.63), (13.64) and (13.66)
we can obtain posterior analysis for the MMBP.
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