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Abstract: In this paper we consider networks that consist of components operating under a
randomly changing common environment. Our work is motivated by power system networks that
are subject to fluctuating weather conditions over time that affect the performance of the
network. We develop a general setup for any network that is subject to such environment and
present results for network reliability assessment under two repair scenarios. We also present
Bayesian analysis of network failure data and illustrate how reliability predictions can be
obtained for the network. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 574–591, 2003.
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1. INTRODUCTION AND OVERVIEW

In this paper we consider networks that consist of components operating under a randomly
changing common environment. Our work is motivated by power system networks that are
subject to fluctuating weather conditions over time that effect the performance of the network.
The affect of environmental conditions on reliability of power networks have been recognized
in earlier papers by Gaver, Montmeat, and Patton [5] and Billinton and Bollinger [2], where the
authors pointed out that power systems networks are exposed to fluctuating weather conditions
and that the failure rates of equipment and lines increase during severe environmental condi-
tions. These earlier papers proposed use of a two-state Markov model to describe normal and
severe weather conditions and presented reliability results for parallel and series systems with
small number of components. A more recent overview of these models and their extensions can
be found in Billinton and Allan [1].

Özekici [12] discusses complex stochastic models where the deterministic and stochastic
model parameters change randomly with respect to a randomly changing environmental factor.
Thus, these parameters can be viewed as stochastic processes rather than simple deterministic
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constants. He provides many other examples involving queueing, inventory, and reliability
models. In the present setting, we consider a periodic-review reliability model where each
component of the network either fails or survives in a given period. The probability of survival
depends on the state of the environment in which the components operate. We consider two
possible repair scenarios: Either failed components are replaced by identical ones only if the
network fails (minimal repair), or any component that fails is replaced immediately by an
identical one (maximal repair).

The proposed model extends available literature on reliability theory where failure probabil-
ities of the devices change with respect to a randomly changing environment. The reader is
referred to Çınlar and Özekici [4] for a detailed discussion on this idea, and further results
presented, for example, by Lefèvre and Milhaud [9], Singpurwalla and Youngren [16], Sing-
purwalla [15] and Özekici [11]. In our approach, we use a discrete-time setting which allows us
to obtain useful and practical computational formulas on complex network reliability assess-
ment. We also present a Bayesian approach for network reliability assessment under this model
using Markov Chain Monte Carlo methods and in so doing make a contribution to the literature
in Bayesian analysis of network reliability. See Lynn, Singpurwalla, and Smith [10] for the
state-of-the-art in this area.

The details of the network reliability model is presented in Section 2. Section 3 is devoted to
its stochastic analysis under both repair scenarios. This culminates in explicit computational
procedures and formulas for network reliability and the mean-time-to-failure (MTTF). In
Section 4, we illustrate how these results can be used if uncertainty about model parameters are
described by a prior distribution in a Bayesian setup. We present posterior analysis of network
failure data and illustrate how reliability predictions can be obtained in Section 5. This analysis
is presented both for the case when the environment is observable and unobservable.

2. A MODEL FOR NETWORK RELIABILITY

Consider a network with K components with an arbitrary structure function � and reliability
function h. The components of the network are observed periodically at times t � 1, 2, . . . and
the state of component k at time t is

Xt�k� � � 1, if component k is functioning at time t,
0, if component k is not functioning at time t. (1)

The state of the reliability system, or the network, at time t is represented by the vector Xt �
(Xt(1), Xt(2), . . . , Xt(K)) and the binary variable �(Xt) is equal to 1 if and only if the network
is functioning at time t. We will let Lk denote the lifetime of component k while L denotes the
lifetime of the system. It is well known that if the network is a serial connection of components,
then

��Xt� � �
k�1

K

Xt�k� (2)

and

575Özekici and Soyer: Network Reliability Assessment in a Random Environment



L � min
k�1,2, . . . ,K

Lk, (3)

whereas, in a parallel configuration, we have

��Xt� � 1 � �
k�1

K

�1 � Xt�k�� (4)

and

L � max
k�1,2, . . . ,K

Lk. (5)

The reliability model is modulated by an environmental process Y � {Yt; t � 1, 2, . . .}
which is assumed to be a Markov chain with a discrete state space E and transition matrix P.
The process Y is central to our model since the survival probability of any component k at any
time t depends only on the prevailing environment such that

P�Xt�k� � 1�Yt � i� � �k�i�. (6)

In other words, if the environmental process Y is in state i, then component k survives the period
with probability �k(i). Given the environmental process Y, we assume that the survival
probabilities for the next period depend on Y only through its current state rather than on its
whole history. Moreover, the states of the components at different time epochs are conditionally
independent given Y. This model was first analyzed by Özekici [13] in the context of a Markov
modulated Bernoulli process where the success probability depends on a randomly changing
environment. He provides a rather complete analysis on the transient and ergodic behavior of
such processes.

It follows from (6) that the life distribution of component k is characterized by

P�Lk � m�Y� � �
t�1

m

�k�Yt� (7)

since the component must survive the first m time periods. Moreover, we assume that, given the
environment, the component lifetimes are conditionally independent so that

P�L1 � m1, L2 � m2, . . . , LK � mK�Y� � �
k�1

K �
t�1

mk

�k�Yt�. (8)

Given the environmental process Y, the reliability of the network at time t is given by

E���Xt��Y� � h���Yt�� (9)
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where h � E[�(X)] is the reliability function corresponding to � and �(i) � (�1(i), . . . ,
�K(i)) is the vector of survival probabilities in environment i. As examples, for the series
system in (2), we have

h���Yt�� � �
k�1

K

�k�Yt� (10)

while for the parallel system in (4) this becomes

h���Yt�� � 1 � �
k�1

K

�1 � �k�Yt��. (11)

We will denote the set of all components that are functioning prior to period t by Zt such that
Z1 is the set of all functioning components at the outset and

Zt�1 � �k � 1, 2, . . . , K; Xt�k� � 1	 (12)

is the set of components that survive period t for all t � 1. The state space of the stochastic
process Z � {Zt; t � 1, 2, . . .} is the set of all subsets of the component set � � {1, 2, . . . ,
K}. Although it is not required in the following analysis, it is reasonable to assume that Z1 �
�. Moreover, it follows from the stochastic structure explained above that

P�Zt�1 � M�Zt � S, Yt � i� � Qi�S, M� � �
k�M

�k�i� �
k��S�Mc�

�1 � �k�i�� (13)

for any subsets M, S of � with M � S. In words, Qi(S, M) is the probability that the set of
functioning components after one period will be M given that the environment is i and the set
of functioning components is S. This function will play a crucial role in our analysis of the
network. The stochastic structure of our network reliability model is made more precise by
noting that, in fact, the bivariate process (Y, Z) is a Markov chain with transition matrix

P�Zt�1 � M, Yt�1 � j�Zt � S, Yt � i� � P�i, j�Qi�S, M� (14)

for any i, j � E and subsets M, S of � with M � S. In many cases, it is best to analyze network
reliability and other related issues using the Markov property of the chain (Y, Z).

Denote the set structure function 
 by


�M� � ��m� (15)

where m � (m1, m2, . . . , mK) is the binary vector with mk � 1 if and only if k � M. Then,

qi�S� � �
M�S,
�M��1

Qi�S, M� (16)
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is the conditional probability that the network will survive one period in environment i given
that the set of functioning components is S. The characterization in (16) can be written in terms
of the path-sets of the network. Let � denote the set of all combinations of components that
makes the network functional. In other words,

� � �M � �; 
�M� � 1	 (17)

then (16) becomes

qi�S� � �
M�S,M��

Qi�S, M� (18)

and

q�i� � qi��� � �
M��

Qi��, M� � �
M��

�
k�M

�k�i� �
k�Mc

�1 � �k�i�� (19)

is the probability that the network, with all components functioning, will survive one period in
environment i.

Although our model supposes that the transition probability matrix Q has the structure given
by (13), we would like to point out that this choice is made purely for computational tractability.
The results that follow are still true for any Q that properly describes the probabilistic structure
of failures. As an illustration of this idea, consider the network structure given in Figure 1
consisting of three components. For example, in a power distribution system, components 1 and
2 may represent two high voltage transmission lines carrying electricity to a given location
where component 3 is a transformer that reduces the voltage. In a manufacturing system,
components 1 and 2 may be two machines working in parallel where component 3 is another
machine that completes the production. Although this network and the numerical illustration that
will be presented in the last section has only a few components, our results still apply to much
larger systems. The size is kept small for illustrative purposes only.

Supposing for simplicity that there are only two environmental states, the survival probabil-
ities are given by six parameters {�k(i); i � 1, 2 and k � 1, 2, 3}. Take, for example, S �
� � {1, 2, 3} and M � � � {{1, 2, 3}, {1, 3}, {2, 3}}; the reliability structure prescribed
by (13) gives

Qi�S, M� � � �1�i��2�i��3�i�, if M � �1, 2, 3	,
�1�i��3�i��1 � �2�i��, if M � �1, 3	,
�2�i��3�i��1 � �1�i��, if M � �2, 3	,

(20)

Figure 1. A simple network.

578 Naval Research Logistics, Vol. 50 (2003)



and (19) yields

q�i� � �1�i��2�i��3�i� � �2�i��3�i��1 � �1�i�� � �1�i��3�i��1 � �2�i��

� �3�i��1 � �1 � �1�i���1 � �2�i���. (21)

The transition probabilities can be obtained in a similar manner for other S and M.
However, in many real life applications, the failure structure may be more complex than it is

assumed in (20). For example, it may be such that, as soon as one of the two parallel components
fail during the period, the other one may be more prone to failure. This is indeed the case in
power distributions systems where parallel lines share the total load. If a line fails, then the other
line will have to carry more load, and this will increase the probability of its failure. Suppose
that the decreased survival probabilities are given by two additional parameters �� 1(i) � �1(i)
and �� 2(i) � �2(i) given that the other parallel component has failed. In our analysis, it now
suffices to take

Qi�S, M� � � �1�i��2�i��3�i�, if M � �1, 2, 3	,
�� 1�i��3�i��1 � �2�i��, if M � �1, 3	,
�� 2�i��3�i��1 � �1�i��, if M � �2, 3	,

(22)

and (19) now yields

q�i� � �1�i��2�i��3�i� � �� 1�i��3�i��1 � �2�i�� � �� 2�i��3�i��1 � �1�i��

� �3�i���1�i��2�i� � �� 1�i��1 � �2�i�� � �� 2�i��1 � �1�i���. (23)

At this point, note that the structures of (22) are (23) are different than those of (13) and (19).
This is due to the fact that now the survival probability of the parallel component 1 or 2 depends
on the survival or failure of the other parallel component. Our technical analysis in the following
sections requires only that Qi(S, M) is known parametrically and that the environment changes
according to a Markov chain. There may in fact be interdependencies among the components as
in (22). Our choice of (13) is a stylish one that provides computational tractability in both
Markovian and Bayesian analysis.

The load-sharing effect is in fact quite crucial in power distribution networks. Our model can
be used to accommodate this generalization by defining the environment accordingly. The
environment is a generic term here that does not necessarily relate only to the weather conditions
that affect the failure probabilities. It may as well represent the demand structure so that, in our
example, if i � 1 is the “normal load” state, then (20) may apply since the effect of load-sharing
is negligible. However, if i � 2 is the “heavy load” state, then the transition probabilities may
be given by (22). The crucial assumption is that the environmental process is external to the
reliability system. For example, the failure of a component does not change the state of the
environment, but, if the external demand is high and the system is loaded, failure probabilities
of the components can also be higher due to the dependence on the environment.

Once the failure structure of the network is identified, we can define the transition probability
matrix Q accordingly, and this structure may indeed depend on the environment. The form of
(22) is only one possibility, and our results in the following sections are still applicable if it has
other forms. For example, it may well be the case that in environment i � 1 one of the two
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parallel components, say 2, is disengaged. The system then becomes a serial connection of 1 and
3 in environment 1, and it now suffices to take

Q1�S, M� � �
�1�1��3�1�, if M � �1, 2, 3	,
�1�1��1 � �3�1��, if M � �1, 2	,
�1 � �1�1���3�1�, if M � �2, 3	,
�1 � �1�1���1 � �3�1��, if M � �2	

(24)

since component 2 is not in operation and it cannot fail. The failure structure prescribed through
Q is indeed quite general, making it possible to analyze a wide range of reliability models.

3. NETWORK RELIABILITY ASSESSMENT

In assessment of network reliability, we are interested in failure free operation of the network
for m time periods. More specifically, we want to evaluate P[L � m] for any time m � 0. Note
that we can trivially write

P�L � m� � �
i�E,S��

P�L � m�Y1 � i, Z1 � S�P�Y1 � i, Z1 � S�, (25)

which requires computation of the conditional probability P[L � m�Y1 � i, Z1 � S] given any
initial state i and S.

We will denote the conditional network survival probability by

f�i, S, m� � P�L � m�Y1 � i, Z1 � S�, (26)

which is simply the probability that the network will survive m time periods given the set S of
initially functioning components and the initial state i of the environment. Similarly, we define
the conditional MTTF as

g�i, S� � E�L�Y1 � i, Z1 � S� � �
m�0

��

P�L � m�Y1 � i, Z1 � S�. (27)

We will now exploit the Markov property of the process (Z, Y) to obtain computational
results for f and g. Once they are computed, it is clear that we obtain the desired results as f(i,
�, m) and g(i, �) since it is reasonable to assume that Z1 � � initially.

3.1. Minimal Repair Model

In this section, we assume that there is minimal repair and all failed components are replaced
only if the whole system fails. The Markov property of (Z, Y) at the first transition yields the
recursive formula

f�i, S, m � 1� � �
j�E

�
M�S,M��

P�i, j�Qi�S, M�f�j, M, m�. (28)
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This follows by noting that for the system to survive m � 1 periods given (Y1 � i, Z1 � S),
it must first survive the next period by moving to some state (Y2 � j, Z2 � M(M � S with

(M) � 1 or M � �)) with probability P(i, j)Qi(S, M). Then, being in state ( j, M), it must
survive the remaining m periods with probability f( j, M, m). The recursive system (28) can be
solved for any (i, S) starting with m � 1 and the boundary condition f( j, M, 0) � 1 whenever
M � �. Note that we only need to compute f(i, S, m � 1) for S � � since f( j, M, m) �
0 whenever M � �.

Similarly, using (27) or the Markov property directly we obtain the system of linear equations

g�i, S� � 1 � �
j�E

�
M�S,M��

P�i, j�Qi�S, M�g�j, M� (29)

which can be solved easily since both E and � are finite. Once again, the dimension of the
system of linear equations in (29) is reduced by noting that we only need to compute g(i, S) for
S � � since g( j, M) � 0 whenever M � �.

3.2. Maximal Repair Model

We now assume that there is maximal repair and all failed components are replaced at the
beginning of each period. This implies that all components are functioning at the beginning of
a period and we can take Z1 � S � �. Then, (28) can be written as

f�i, �, m � 1� � �
j�E

�
M��,M��

P�i, j�Qi��, M�f�j, �, m� (30)

with the same boundary condition f(i, �, 0) � 1. Note that (30) is dimensionally simpler than
(28) since it can be rewritten as

f�i, m � 1� � � �
M��

Qi��, M�� �
j�E

P�i, j�f�j, m� (31)

� q�i� �
j�E

P�i, j�f�j, m� (32)

after suppressing � in f. Defining the matrix R(i, j) � q(i) P(i, j), we obtain the explicit
solution

f�i, m� � �
j�E

Rm�i, j�, (33)

where R0 � I is the identity matrix. This follows by noting that we can write (32) as f( � , m �
1) � Rf( � , m) which implies f( � , m) � Rmf( � , 0) through recursion.

A similar analysis on the MTTF yields the system of linear equations

g�i� � 1 � q�i� �
j�E

P�i, j�g�j�, (34)
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which can be written in compact form as g � 1 � Rg with the explicit solution

g�i� � �
j�E

�I � R�1�i, j�. (35)

For the series system in (10),

q�i� � �
M��

Qi��, M� � �
k��

�k�i� (36)

and

q�i� � �
M��

Qi��, M� � 1 � �
k��

�1 � �k�i�� (37)

for the parallel system in (11).

4. PRIOR ANALYSIS OF NETWORK RELIABILITY

The computational formulas provided in the previous section can be used to determine
network reliability and the MTTF if the model parameters are known. In what follows, we
consider the case where these parameters are unknown and present a Bayesian analysis by
describing our uncertainty about the unknown parameters probabilistically. This requires de-
scription of our uncertainty about the elements of the parameter vector � � (P, �(i), i � E).
For the components of the transition matrix P of the environmental process, we assume that the
ith row Pi � {P(i, j); j � E} has a Dirichlet prior

p�Pi���
j�E

P�i, j�	j
i1 (38)

and that the Pi’s are independent of each other. For a given environment i � E, we assume that
the elements of the vector �(i) � (�1(i), . . . , �K(i)) have independent beta densities

p��k�i�����k�i��ak�i�1�1 � �k�i��bk�i�1 (39)

denoted as �k(i) � Beta(ak(i), bk(i)). Also, we assume that �(i)’s are independent of each
other for all i � E, and they are independent of the components of P. We will denote the prior
distribution of � as p(�).

As we will see in the following section, the above specification of the prior distributions
provides us with a tractable posterior analysis. These prior distributions yield a conjugate
Bayesian analysis, that is, they result in posterior distributions with the same form as the prior
but with revised parameters (see Gelman et al. [7] for conjugate Bayesian analysis). When prior
information exists about the network failure process and about the behavior of the environmental
transitions these can be incorporated into the analysis via the selection of prior parameters. In
specifying the prior distributions of Pi’s the prior parameters 	j

i’s can be chosen by specifying
a best guess about the transition probability P(i, j) and an uncertainty measure about the best
guess from the reliability analysts. The best guess can treated as the mean of P(i, j), which is

582 Naval Research Logistics, Vol. 50 (2003)



given by E[P(i, j)] � 	j
i/¥j�E 	j

i for the Dirichlet prior, and the elicited uncertainty measure
can be used to obtain the prior variance estimate under the Dirichlet distribution. The mean and
variance identities can be solved to obtain the prior parameters 	j

i’s. Similarly, for specifying the
prior distributions of �k(i)’s, we can use the mean and variance identities for the beta
distribution to obtain ak(i)’s and bk(i)’s. Other methods for prior elicitation in beta and Dirichlet
distributions are given in Chaloner and Duncan [3].

We note that the network reliability function f in (28) and (32) is a function of �, that is, the
probability statement about the failure free performance of the network is conditional on the
parameter vector �. To make this explicit, we will write

f�i, S, m��� � P�L � m�Y1 � i, Z1 � S, ��. (40)

Similarly, the MTTF function g in (29) and (34) will be written as

g�i, S��� � E�L � �Y1 � i, Z1 � S, ��. (41)

We will demonstrate how the prior analysis can be done on network reliability f for the
minimal repair model only. The analysis for the case of maximal repair follows along the same
lines. Conditional on �, we can evaluate the network reliability f under the minimal repair
scenario using the recursive formula (28)

f�i, S, m � 1��� � �
j�E

�
M�S,M��

P�i, j�Qi�S, M���i��f�j, M, m��� (42)

with the boundary condition f(i, S, 0��) � 1. Then, prior to observing any data, we can make
network reliability predictions as

f�i, S, m� � 	 f�i, S, m���p��� d�. (43)

The above integral cannot be evaluated analytically, but it can be approximated via simulation
as a Monte Carlo integral

f�i, S, m� 

1

G �
g

f�i, S, m���g�� (44)

by generating G realizations from the prior distribution p(�). It is clear that similar analysis can
be developed for the maximal repair case and also for approximating the MTTF g under both
scenarios.

5. POSTERIOR ANALYSIS OF NETWORK RELIABILITY

If the system is observed for n time periods, then we can write the likelihood function of the
unknown parameters � � (P, �(i), i � E). The observed data consist of Xn � {Xt; t �
1, . . . , n}, where Xt � (Xt(1), Xt(2), . . . , Xt(K)) and may include Yn � {Yt; t � 1, . . . ,
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n} if the environmental process is observable. Recall that the failure data X also provides the
values Zn � {Zt; t � 1, . . . , n � 1} since Zt�1 � {k � 1, 2, . . . , K; Xt(k) � 1}.

Once the network is observed for n periods, our uncertainty about � is revised as described
by the posterior distribution p(��D), where D denotes the observed data. In developing the
posterior analysis under both minimal and maximal repair scenarios, we will consider two cases
based on what the observed data D consist of. Specifically, in the first case we will assume that
the environmental process Y will be observed. This may be appropriate for situations where the
environment such as weather conditions will be observable and components such as tempera-
ture, wind velocity, etc. can be measured during each period. In this case, the observed data will
consist of both the component failure history X and the history of the Y process over n periods.
In the second case, we consider the situation where the environment may not be observable due
to its complexity, and thus the history of the Y process will not be available for the posterior
analysis. In this case the Bayesian analysis of the network reliability presents a structure similar
to the hidden Markov models, which were considered by a host of authors such as Robert,
Celeux, and Diebolt [14] for analyzing mixture models.

In the minimal repair model, we assume that the system will be observed until its failure
without replacing any of its components. In other words, the failed components will not be
replaced as long as the system operates and the system will be observed either n periods or until
its failure, whichever occurs first. Upon the failure of the system, all failed components will be
replaced with new ones. Under this scenario, if Xt(k) � 0, then X
(k) � 0 for all 
 � t. For
the case where the environmental process Y is observable, we can write the likelihood function
of � in the minimal repair model as

���; X, Y� � �
t�1

n

P�Yt1, Yt�� �
k�Zt�1

�k�Yt� �
k��Zt�Zt�1

c �

�1 � �k�Yt���. (45)

For the case where Y is not observable, the joint likelihood function of � and Yn is obtained
from (45) by excluding the term P(Yt1, Yt). Under the minimal repair scenario, we have

Z1 � · · · � Zn�1 (46)

with Z1 � �.
In the maximal repair model, whenever a component fails it will be replaced with a

functioning component of the same type. In this scenario, when the process Y is observable the
likelihood function of � is given by

���; X, Y� � �
t�1

n

P�Yt1, Yt���
k��

��k�Yt��
Xt�k��1 � �k�Yt��

1Xt�k��. (47)

Similar to the minimal repair model when Y process is not observable, the likelihood function
is obtained from (47) by excluding the term P(Yt1, Yt). Note that in (45) and (47), we set P(Y0,
Y1) � 1 when t � 1, and we observe only n  1 transitions of Y.

5.1. Environmental Process Is Observable

In this case we assume that both component failure data Xn � {Xt; t � 1, 2, . . . , n} and
the history of the environmental process Y are observed, that is, D � {Xn, Yn} � {Zn, Yn}.
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Thus, the likelihood function of � is given by (45) for the minimal repair scenario and by (47)
for the maximal repair scenario.

As noted by Lee, Judge, and Zellner [8] in Bayesian analysis of Markov chains, the Dirichlet
prior for Pi’s results in Dirichlet posteriors. Using the Dirichlet prior (38) with likelihood
functions (45) and (47), for both models, we can show that the posterior distribution of Pi’s can
be obtained as independent Dirichlets given by

�Pi�D� � Dirichlet�	j
i � �

t�1

n

1�Yt � i, Yt�1 � j�; j � E�, (48)

where 1� is the indicator function. Similarly, since the beta distribution is a conjugate prior for
Bernoulli likelihood functions (see, e.g., Gelman et al. [7]), the posterior analysis for component
survival probabilities is tractable. Using the beta prior (39) with likelihoods (45) and (47)
separately, the posterior distributions of �k(i)’s are obtained as independent beta densities given
by

��k�i��D� � Beta�a*k�i�, b*k�i�� (49)

with

a*k�i� � ak�i� � �
t�1

n

1�Yt � i�1�k � Zt�1�, (50)

b*k�i� � bk�i� � �
t�1

n

1�Yt � i�1�k � �Zt � Zt�1
c �� (51)

for the minimal repair model and with

a*k�i� � ak�i� � �
t�1

n

1�Yt � i�Xt�k�, (52)

b*k�i� � bk�i� � �
t�1

n

1�Yt � i��1 � Xt�k�� (53)

for the maximal repair model. We note that posteriori elements of �(i)’s and P are independent
of each other for all i � E. We also note that the conditional independence of the elements of
�(i)’s is preserved posterior when the history of the Y process is known. Thus, the posterior
distribution p(��D) can be easily evaluated using this independence structure.

Once this posterior analysis is completed we can make reliability predictions conditional on
the observed data D. In this case the data consists of both the failure data X and the history of
the environmental process Y. Thus, we have p(��D) � p(��Zn, Yn). In obtaining posterior
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network reliability predictions, we want to evaluate P[L̂ � m�Zn, Yn], where L̂ � L  n is the
time remaining to network failure. Note that for the minimal repair case, using the Markov
property of the chain (Y, Z), we can write the posterior network reliability as

P�L̂ � m�Zn, Yn� � �
j�E

	 P�Yn, j�f�j, Zn�1, m���p���Zn, Yn� d�, (54)

where f( j, Zn�1, m��) is obtained as the solution of (42). The posterior reliability can be
approximated as a Monte Carlo integral via

P�L̂ � m�Zn, Yn� 

1

G �
g

�
j�E

P�Yn, j�f�j, Zn�1, m���g�� (55)

by generating G realizations from the posterior distribution p(��Zn, Yn). Similarly, we can
approximate the posterior prediction for MTTF of the network. For the maximal repair case, we
can obtain the results by replacing Zn�1 with � in (42) and all the terms above.

5.2. Environmental Process Is Unobservable

When the history of Y process is not observable, we can no longer obtain an analytically
tractable posterior analysis as in the previous section. Thus, in what follows we will develop
posterior analysis using Markov Chain Monte Carlo methods and, more specifically, using
Gibbs sampling (see, e.g., Gelfand and Smith [6]). Assuming the same priors for components
of � as in the previous section and defining observed data D � {Xn} � {Zn}, a Gibbs sampler
can be developed to iteratively draw from the full posterior conditional distributions of all
unknown quantities to obtain a sample from, p(�, Yn�D), the joint posterior distribution of (�,
Yn). We note that when the environmental process is unobservable, as pointed out in Section 5,
the likelihood functions (45) and (47) are adjusted to obtain the joint likelihood functions of �
and Yn for the minimal and maximal repair scenarios.

The implementation of the Gibbs sampler requires the full posterior conditional distributions
{ p(Pi�D, Yn); i � E} that are independent Dirichlet densities as given by (48), { p(�k(i)�D,
Yn); i � E, k � 1, . . . , K} that are independent beta densities with parameters given by
(50)–(53) depending on the repair scenario and p(Yt�D, Y(t), �(Yt), P), where Y(t) � {Y
;

 � t}.

For the minimal repair scenario the full posterior conditional distribution of Yt can be
obtained by looking at (45) as a function of Yt given everything else. Similar to the development
considered by Robert, Celeux, and Diebolt [14], it can be shown that

p�Yt�D, Y�t�, ��Yt�, P� � P�Yt1, Yt�� �
k�Zt�1

�k�Yt� �
k�Zt�Zt�1

c

�1 � �k�Yt���P�Yt, Yt�1� (56)

with constant of proportionality

� �
j�E

P�Yt1, j�� �
k�Zt�1

�k�j� �
k�Zt�Zt�1

c

�1 � �k�j���P�j, Yt�1��1

. (57)
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The full posterior conditional distribution of Yt for the maximal repair case can be obtained
by looking at (47) as a function of Yt. In this case it can be shown that

p�Yt�D, Y�t�, ��Yt�, P� � P�Yt1, Yt���
k��

��k�Yt��
Xt�k��1 � �k�Yt��

1Xt�k��P�Yt, Yt�1� (58)

with constant of proportionality

� �
j�E

P�Yt1, j�� �
k��

��k�j��Xt�k��1 � �k�j��1Xt�k��P�j, Yt�1��1

. (59)

For the boundary cases of t � 1 and t � n, one should set P(Y0, Y1) � P(Yn, Yn�1) � 1 in
(56)–(59).

For both repair scenarios, a posterior sample from p(�, Yn�D) can be easily obtained by
iteratively drawing from the given full posterior conditionals. As we have noted before, the
Bayesian analysis we have presented in the above shares common features with the Bayesian
analysis of hidden Markov models considered by Robert, Celeux, and Diebolt [14].

The data now consists only of Zn in the above and the posterior distribution is given by p(�,
Yn�Zn). To obtain posterior network reliability predictions, we want to evaluate P[L̂ � m�Zn].
Note that for the minimal repair model this can be obtained as

P�L̂ � m�Zn� � �
Yn

	 �
j�E

P�Yn, j�f�j, Zn�1, m���p��, Yn�Zn� d�, (60)

where f( j, Zn�1, m��) is obtained as the solution of (42). Note that there is no closed form
solution for the above integral, but it can be easily approximated by a Monte Carlo integral as

P�L̂ � m�Zn� 

1

G �
g

�
j�E

P�Yn
�g�, j�f�j, Zn�1, m���g�� (61)

by generating G realizations from the posterior distribution p(�, Yn�Z). For the maximal repair
scenario we replace Zn�1 with � in (42) and all the terms above. Evaluation of MTTF
predictions follows along the same lines.

6. NUMERICAL ILLUSTRATION

To illustrate the use of proposed network reliability models and the Bayesian inference
procedures for reliability assessment we consider the simple network shown in Figure 1.
Assuming that components 1 and 2 are identical and component 3 is different, we considered
a scenario which consists of two environments which can be regarded as normal and severe
environments, and simulated the probabilistic structure and the component failure/survival
process discussed in Section 2. The network was simulated for 365 time periods, and it was
assumed that the maximal repair protocol was used. In so doing, the transition matrix
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P � � 0.8 0.2
0.9 0.1 � (62)

was used in simulating the environmental process with the initial state given as Y1 � 1. Actual
component survival probabilities �1(1) � �2(1) � 0.9 and �3(1) � 0.95 for environment 1, and
�1(2) � �2(2) � 0.2 and �3(2) � 0.25 for environment 2 were used to simulate the failure data.
The simulated component failure data are not given here due to space limitations.

In our illustration we assume that the environmental process is not observed, and we use
diffused prior distributions for the elements of �. More specifically, for the Dirichlet priors in
(38) we assume that 	j

i � 1 for all (i, j), implying that E[Pi] � 0.5 for i � 1, 2. For the beta
priors of �k(i)’s in (39) we assume that ak(i) � 1 and bk(i) � 1 for i � 1, 2 and k � 1, 2,
3, implying that E[�k(i)] � 0.5. The above choice of parameters implies uniform prior
distributions over (0, 1) for each of the parameters and represents a high degree of prior
uncertainty about components of �. In a situation where prior information exists, the prior

Table 1. Posterior means and standard deviations for
transition probabilities.

P(i, j) E[P(i, j)�D] �V[P(i, j)�D]

P(1, 1) 0.811 0.030
P(1, 2) 0.189 0.030
P(2, 1) 0.926 0.043
P(2, 2) 0.074 0.043

Figure 2. Posterior distributions of component survival probabilities in Environments 1 and 2.
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parameters can be specified by eliciting best guess values for elements of � and uncertainties
about these values from reliability analysts. In what follows, we will focus on posterior analysis
of the simulated data and discuss how posterior reliability predictions can be obtained.

In Figure 2 we present the density plots for the posterior distributions of component survival
probabilities for environments 1 and 2. We note that, compared to the uniform prior distribu-
tions, the posterior distributions are peaked and are concentrated in different regions depending
on the environment. In fact, the posterior means of the �k(i)’s are very close to the actual values
used in simulating the data. For the identical components 1 and 2, the posterior mean of the
survival probability is 0.891 and the posterior standard deviation is 0.016 under environment 1.
The posterior mean and standard deviation for component 3 are 0.936 and 0.016, respectively.
The posterior means of survival probabilities are 0.13 for components 1 and 2 and 0.215 for
component 3 under environment 2. Note that the posterior distributions under environment 2
have higher variances than the ones under environment 1. This is expected since the environ-
mental process spends more time in state 1 than in state 2. We can see this by looking at the
posterior distribution of the probability transition matrix P given in Table 1. We note that the
posterior means are very close to the actual values of the transition probabilities given in (62)
implying that the environmental process will be in state 1 most of the time.

Table 2. Posterior distributions of selected Yt’s and their
actual values.

t P[Yt � 1�D] P[Yt � 2�D] Yt

2 0.218 0.782 2
10 0.963 0.037 1
40 0.933 0.067 1
58 0.008 0.992 2

365 0.935 0.065 1

Figure 3. Comparison of actual and posterior reliability functions.
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The Gibbs sampler enables us to obtain the posterior distributions of the environmental states
Y1, . . . , Yn. In Table 2 we present these posterior distributions for selected states as well as
their actual (but unobserved) values used in the simulation of the data. For example, at time
period 40 the actual value of the unobserved environment is 1 and based on the proposed
approach posterior probability that the environmental process is in state 1 is obtained as 0.933.
Table 2 illustrates the posterior probabilities for five periods. The posterior distributions are
available for all periods and in almost all cases the posterior probability of the correct state is
very high. Thus, the approach is able to infer the unobserved environment correctly for the data.

Once the posterior samples are available, we can make posterior reliability predictions using
the Monte Carlo approximation

P�L̂ � m�Zn� 

1

G �
g

�
j�E

Rm�Yn
�g�, j���g��, (63)

where Rm(Yn
( g), j��( g)) is obtained from (32) for the maximal repair scenario. This requires that

Rm(Yn, j��) is evaluated for each realization of Yn and � from the posterior distribution. In
Figure 3 we show the posterior reliability function and compare it with the actual reliability
function based on the values of � used in simulating the failure process. We note that the
posterior reliability function is very close to the actual reliability function. In the Bayesian setup
we can also make probability statements about reliability at a given mission time m; that is,
given data we can look at the posterior distribution of the random variable ¥j�E Rm(Yn, j��)
for fixed m using the posterior samples of Yn and �. In Figure 4 we show the posterior
distribution of reliability at mission times m � 2 and 5. At mission time 2, the posterior
distribution of reliability is concentrated around 0.7. As expected the posterior distribution of the

Figure 4. Posterior distributions of reliability for mission times 2 and 5.
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reliability shifts to the left as mission time increases. We note that the posterior reliability
function presented in Figure 3 represents the means of the posterior reliability distributions at
different mission times.
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591Özekici and Soyer: Network Reliability Assessment in a Random Environment


