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The Association of American Railroads wished to determine the effect of a maintenance practice known as grinding on the occurrence
of rail fatigue defects and on the subsequent total traffic usage before a track must be replaced. Because a designed experiment was not
practical, an analysis of historical data from the Canadian Northern Railroad is presented. In the analysis, certain covariate data are available,
specifically the amount of grinding and some physical characteristics of the rail; other important covariate data are not available, however.
A model for the number of defects as a function of traffic usage is developed based on a modulated Poisson point process. The model
incorporates the effect of the available covariates and a mixture of Dirichlet processes set-up for the scale parameters of the individual
rail sections that allows an assessment of the overall effect of the unavailable covariates. The model is then used to determine an optimal
replacement period for a whole rail track. The analysis demonstrates that grinding reduces the expected number of defects and increases the
optimal replacement interval.
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1. INTRODUCTION

Rail fatigue failure is a substantial economic burden and
a threat to safe operation in the railroad industry (Cannon
1999). Cracks that begin as tiny flaws inside steel rails can grow
into surface cracks and eventually cause the rails to fracture.
The growth of internal cracks is propagated by contact with
rolling stock, so the number of defects is a function of traffic us-
age, measured in millions of gross tons (MGT) of stock travers-
ing the rail. In an effort to prevent derailments caused by rail
fractures, the cracked rail can be either ground down, removing
the metal surrounding the crack and leaving only solid metal,
or welded, fusing the crack. In either case the repair is mini-
mal, providing that the crack has not led to complete fracture
of the rail. Grinding of the rails is performed by specialized
cars pulled by powerful locomotives. Circular stones are rotated
at high speed to wear away the surface metal. Hard stones are
used initially to remove most of the steel surface, followed by
softer stones used to smooth the surface and achieve the correct
profile.

This type of corrective maintenance is costly for railroad
companies (Stanford and Kalousek 2000), and because the re-
pair is minimal, the frequency of the need for grinding may
increase with rail age as measured in MGTs. As the expense
of maintaining an aging rail becomes too high, the entire track
must be replaced. During the 1990s, the railroad industry began
a transition from the traditional corrective mode of grinding
(i.e., grinding in response to discovered cracks) to a preven-
tative mode using regular removal of the surface of the rail
can to stop the propagation of existing surface-level cracks,
stop the initiation of new cracks, and remove inactive cracks.
Although the practice of preventative grinding is backed by
sound engineering theory, there have been no empirical stud-
ies to illustrate whether this practice is effective in improving
rail track reliability and prolonging the replacement period. In
fact, the Transportation Research Board of National Academy
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of Sciences’ Committee on Railway Maintenance developed
two specific research problem statements: (1) the “development
of predictive track maintenance models which utilize field data”
and (2) determining “when to renew or maintain track” (Trans-
portation Research Board 2000). This article outlines a study
of rail grinding performed for the Association of American
Railroads (AAR).

The initial suggestion to the AAR was to use their test tracks
to determine the effect of grinding by grinding only part of
the test track, leaving some track untouched to act as a con-
trol. The problem with performing such a study is the time it
would take to collect sufficient data for meaningful conclusions.
Historical data from the Canadian National Railroad (CN) was
made available by the AAR with different levels of grinding
performed on different tracks of rail to determine the effect of
grinding on the number of rail fatigue failures. However, be-
cause the data were not collected in a designed experiment,
other factors varied along the length of the rail tracks, some
available in the data and some not. These covariates had to be
accounted for in determining the effect of grinding.

An inference model for predicting track failures based on this
data was provided by Campodonico and Singpurwalla (1995)
without covariate information. The analysis presented in this ar-
ticle extends these results to address the questions posed by the
AAR and the two research problem statements from the Trans-
portation Research Board of the National Academy of Sciences.

The article is organized as follows. In Section 2 the man-
ner of data collection and the subsequent form of the data are
discussed. In Section 3 a semiparametric setup is proposed to
assess the effect of covariate data, including grinding, on the
intensity of failures and whether covariates unavailable in the
data have significant effects on the formation of cracks are as-
sessed. The effect of unavailable covariate data is assessed in
Section 4, before the effect of grinding and other available co-
variates are discussed in Section 5. In Section 6 optimal re-
placement strategies are developed for railroad tracks that may
have different physical characteristics and maintenance prac-
tices along its length. The decision-theoretic approach is used
to determine the effect of different levels of grinding on the use-
ful life of rail.
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2. CANADIAN NATIONAL RAILROAD DATA

CN operates 15,500 route miles of track across North
America and has been performing varying levels of preven-
tive grinding for many years. In the past, rail surface defects
were detected by inspections performed by human operators.
Modern detection techniques included visual image analy-
sis (Short 1993) and ultrasound. The detection equipment is
housed in specialized cars that travel along the rail detecting
and recording surface-level cracks and, more recently, internal
cracks. However, when a crack is detected in a given run of the
detection equipment, it is known only that the crack occurred
at some point between the current run and the previous run.
Because multiple cracks may be detected in a given run, the
data are in the form of counts over a defined interval (interval-
censored).

The AAR supplied failure count data from five CN tracks.
The detection technology used to find cracks in these five tracks
was the same over period during which these data were col-
lected. Each of the tracks had a constant level of grinding across
its length, either 0, .75, or 1 mm of steel removed each year.
Because the grinding level is constant for a given track, no nom-
inal covariate to identify the different tracks was included in
the analysis, because this would be confounded with the grind-
ing covariate. Other covariate data were available, specifically
the curvature of the track, the weight of the track (in lb/yard),
and the speed limit for traffic traversing the rail (in mph). Each
of these other covariates varied along the length of a track;
thus the data were made available for sections of each track that
had constant covariate values, 132 sections in all with varying
lengths, ranging from a few hundred feet to 2 miles. The AAR
suggested converting the curvature of the rails from simple cur-
vature in degrees to the percentage of the section length that was
curved by more than 3 degrees. This measure varied from 0%
to 91%, whereas the rail weight varied from 100 to 136 lb/ft
and the maximum speed varied from 30 to 70 mph. The num-
ber of failures per mile between inspections ranged from 1
to 10. Rail wear is measured as a function of traffic usage,
not chronological age (Campodonico and Singpurwalla 1995).
Thus the intervals between inspections are defined by the num-
ber of MGTs at the time of each inspection. The lowest MGT
value was 3, and the highest was 799. This implies that no fail-
ure data are available for new track; the newest track recorded
had already had 3 MGTs of traffic usage. In other words, the
data are left-censored as well as interval-censored.

As an illustration of the form of the data, Table 1 gives the
number of failures per mile over the recorded inspection in-
tervals for five rail sections that form a continuous segment of
a single track. For each section, the start value indicates the
MGT of traffic usage at the beginning inspection for that sec-
tion. The values for interval 1 are then the MGT values at the
next inspection and the number of defects per mile found during
the inspection. These failures must have occurred between the
two inspections, that is, in the first inspection interval. The co-
variate values for these sections are also given in Table 1. The
experts at the AAR noted that some relevant covariate infor-
mation was not available in the data. Examples given were the
hardness of the steel used in the rail manufacture (measured
by the Brunnel hardness number), whether the track was lubri-
cated, a wear-reducing maintenance strategy, and the environ-
mental conditions to which the rails were exposed. This was of
major concern to the AAR, because they did not want the effect
of grinding to be masked by the unavailable covariates.

3. MODELING THE EFFECT OF GRINDING

First, we define the necessary notation. Let i = 1, . . . ,132 in-
dex the rail sections and let ri denote the total number of inspec-
tion runs in the data for the ith rail section. The inspection runs
are performed at ti,0, . . . , ti,ri MGTs and Ni(ti,1), . . . ,Ni(ti,ri)

defects are discovered. The covariate data for the ith section
is constant, with Zi,1 denoting the level of grinding, Zi,2 the
curvature, Zi,3 the rail weight, and Zi,4 the maximum speed.
Campodonico and Singpurwalla (1995) modeled the number
of defects occurring in rail tracks as a function of the cumula-
tive traffic usage using a nonhomogenous Poisson point process
(NHPP). They chose a parametric intensity function that, repa-
rameterized for our analysis, may be written as

(
Ni(t)|α,γ,Li

) ∼ NHPP(Liαγ tγ−1) (1)

for i = 1, . . . ,132, where Li is the length of the section in
miles. This is the well-known power-law form commonly used
in reliability because the intensity function Liαγ tγ−1 can be
increasing (γ > 1), constant (γ = 1), or decreasing (γ < 1).
An increasing intensity function would signify that the rate of
occurrence of defects is increasing with usage; that is, the rail
is degrading. When the form αγ tγ−1 is chosen for the intensity
function, the process is known as a Weibull process, because the
parametric form is the same as the hazard rate of a Weibull dis-
tribution (Ebeling 1997). It should be noted, however, that the

Table 1. Failures per Mile, MGT Intervals, and Covariate Values for Five Rail Sections

Intervals Covariates

Section Start 1 2 3 4 5 Grind Curve Weight Speed

1 MGT 219.11 236.59 249.47 .75 42% 136 30
Failures 1.803 1

2 MGT 219.11 255.19 274.64 294.73 .75 9% 115 40
Failures 1 2.496 1.499

3 MGT 231.99 255.19 274.64 .75 0% 115 40
Failures 1.318 1.53

4 MGT 231.99 268.07 287.52 .75 0% 115 40
Failures 1 2.33

5 MGT 231.99 249.47 268.07 287.52 307.61 324.77 .75 24% 115 40
Failures 1 1.931 2.048 1.116 1.466
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interfailure times are not in fact Weibull-distributed as the name
would appear to imply. Additional discussion of the NHPP, par-
ticularly the validity of the assumption of the NHPP for this
type of failure process, is offered in Appendix A.

It is interesting to examine the data to determine whether our
choice of the parametric form for the intensity function of the
NHPP is reasonable. Most of the available procedures for val-
idating the form of the intensity function are based on failure
time data, unlike here where the data are left- and interval-
censored. An empirical estimate of the intensity function, de-
noted by λ̂i(t) for the ith rail section, can be obtained by taking
the failure count per mile and dividing by the length of the inter-
val, specifically λ̂i(ti,k) = Ni(ti,k)−Ni(ti,k−1)

ti,k−ti,k−1
for i = 1, . . . ,132 and

k = 2, . . . , ri. Now consider the parametric form of the intensity
function, which we assume to be λ(t) = Liαγ tγ−1. Dividing
by Li and taking the natural logarithm of each side yields

ln

(
λ(t)

Li

)
= ln(α) + ln(γ ) + (γ − 1) ln(t). (2)

This implies that if we plot the natural logarithm of the empir-
ical intensity function divided by the section length against the
natural logarithm of MGT, then we should obtain an approxi-
mate straight line. Figure 1 shows such a plot for the CN data.
Deviations from the line are to be expected, due to the natural
variability in the data. However, performing a linear regression
on this data does yield a significant fit ( p < .001). This implies
that the parametric form for the intensity function is reasonable
in this application.

The model of Campodonico and Singpurwalla can be ex-
tended to take into account the effect of covariates on failure in-
tensity. In doing so, an obvious choice is the modulated Poisson
process model proposed by Cox (1972a), specifically

(
Ni(t)|α,γ,β,Li,Zi

) ∼ NHPP
(
Liαγ tγ−1e

∑4
j=1 βjZi,j

)
(3)

Figure 1. An Empirical Validation of the Parametric Form for the In-
tensity Function.

for i = 1, . . . ,132, where β = (β1, . . . , β4) and Zi = (Zi,1, . . . ,

Zi,4). Additional discussion of the modulated Poisson process
is offered in Appendix A. Our empirical validation can be ex-
tended to consider the differences between the rail sections and
to ascertain whether the assumption of a proportional effect for
the covariates is reasonable. Taking the new parametric form
for the intensity function, dividing by Li, and taking the natural
logarithm of each side yields

ln

(
λ(t)

Li

)
= ln(α) + ln(γ ) + (γ − 1) ln(t) +

4∑

j=1

βjZi,j. (4)

Note that in the new form, each rail section essentially has an
added constant that depends on the level of the covariates. In
fact, if we take the natural logarithm of the empirical intensity
function and fit a model that includes a linear term for the nat-
ural logarithm of MGT and an additive term for each rail sec-
tion, then we again obtain a significant model ( p < .001), with
the additive rail effect term itself being significant ( p < .001).
This implies that the covariates do have a proportional effect on
the intensity function for each rail section.

However, this simple parametric model has disadvantages
when there is missing relevant covariate information, as in our
case. We can test for such additional heterogeneity using an
empirical approach. If we take the natural logarithm of the em-
pirical intensity function and fit the model given in (4), then
we may examine the residuals of this model for heterogeneity
across the rails. This procedure removes the covariate effects
for the four known covariates and the baseline failure inten-
sity, but leaves any additional section-to-section differences.
An analysis of variance on these residuals across the different
rail sections is significant ( p = .0268), indicating that there are
additional additive differences between the failure intensities on
the logarithmic scale. This confirms that section-to-section dif-
ferences in failure intensity do exist beyond the effect of the
known covariates and that there is indeed a proportional effect
on the failure intensity.

A reasonable way to take into account this section-to-section
variation is to index the scale parameter α as αi and formulate
the problem as a hierarchical Bayes problem in the sense of
Lindley and Smith (1972). In this application, we may write
this formulation as

(
Ni(t)|αi, γ ,β,Li,Zi

) ∼ NHPP
(
Liαiγ tγ−1e

∑4
j=1 βjZi,j

)
,

(5)
αi ∼ G0,

for i = 1, . . . ,m. The terms αi are assumed to be drawn from
a mixing distribution G0, whose form is known but whose pa-
rameters are not known. In this case examination of the poste-
rior distribution of the scale parameters for each individual rail
section, the αi’s, allows the analyst to determine which rail sec-
tions have significantly different failure intensities due to un-
available covariates. We should be cautious about this model
form, though. The model in (5) implies that the values of miss-
ing covariates vary from one rail section to another, as reflected
by the αi’s, and that the αi’s are conditionally independent
given G0. This is not appropriate in our case, because many rail
sections may in fact share the same values for the unavailable
covariates as for the known covariates (e.g., only three different
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levels of grinding) and thus share the same value for αi. Thus
the simple parametric model with a single scale parameter is in-
sufficient for the problem at hand, because it cannot model the
unavailable covariates, whereas the hierarchical Bayes model
does not allowing groups of rail sections to share the same scale
parameter value.

A model that can incorporate differences between the rail
sections beyond the available covariates but allows for sim-
ilarity between groups of rails would be more appropriate.
Such a model can be obtained using the mixture of Dirichlet
processes (MDP) setup proposed by Antoniak (1974). In this
manner, we are using the MDP setup in a similar manner
to Escobar and West (1995), who examined the clustering of
galaxies. In our case we are looking for the clustering of rail
sections after known covariate effects have been removed. We
may use the MDP setup by writing

(
Ni(t)|αi, γ ,β,Li,Zi

) ∼ NHPP
(
Liαiγ tγ−1e

∑4
j=1 βjZi,j

)
,

(6)
αi ∼ G,

for i = 1, . . . ,132. The mixing distribution G is assumed to
be unknown and thus is a parameter of the model. The prior
distribution assumed for the mixing distribution is a Dirichlet
process, hence the term “Dirichlet process mixed models” used
by Mukhopadhyay and Gelfand (1997). Due to the discreteness
of G (as a result of the Dirichlet process prior), there is a posi-
tive probability that some of the αi’s will take the same values.
This formation of groups of αi’s allows grouping of similar rail
sections. This represents the fact that some of the values of the
unavailable covariates will be the same across multiple rail sec-
tions. The baseline distribution for the Dirichlet process prior
is naturally assumed to be the same distribution chosen for the
mixing distribution G0 in the hierarchical Bayes model with
additional uncertainty reflected by the smoothing parameter of
the Dirichlet process, denoted by M. The value of M effects
the degree to which grouping occurs. Escobar and West (1995)
added an additional level of hierarchy by assuming that the
prior distribution of M is a gamma distribution. This assump-
tion allows updating of the uncertainty concerning this critical
smoothing parameter from the data and reveals the number of
groups of rails that have similar values for the unavailable co-
variates. Examination of the distribution of the number of sep-
arate groups of rails allows us to discover whether the simple
parametric model is appropriate (if there is strong support for
only one group of rails) or whether the hierarchical form is ap-
propriate (if there is strong support for 132 separate groups of
rails). This latter case would indicate differences in the failure
intensities of each rail section beyond that accounted for by the
known covariates.

4. ARE THE UNAVAILABLE
COVARIATES IMPORTANT?

Although the experts felt a priori that important covariates
were missing from the available data, our analysis allows us to
evaluate the actual effect of missing covariates. We have shown
using our ad hoc approach that there are additional proportional
contributions to the failure intensities of the rail sections beyond
the four available covariates. In this section we demonstrate
that each of our model elaborations in the previous sections

improves the fit of the model. Next we examine the posterior
distribution of the number of groups in the scale parameters
of the MDP model to discover whether there are groupings in
the remaining differences between the rail sections. Finally, we
compare the marginal posterior distributions of the scale para-
meters to assess the size of the differences. To perform such an
analysis, we must first determine appropriate prior distributions
for the parameters of the model and update these priors with the
available data.

In the MDP setup, the prior best guess for the mixing
distribution G of the αi’s is assumed to be a diffuse gamma
distribution with mean 1 and variance 1,000. The prior distri-
bution on the smoothing parameter M of the Dirichlet process
prior is assumed to be a gamma distribution with parameters
.132 and .001 that has a mean equal to the number of rail sec-
tions used in the analysis and a high variance. This choice was
suggested by a knowledgeable referee to allow for values of M
that would support from 1 to 132 groups of rail sections. A dif-
fuse normal prior truncated at 0 with mean 1 and variance 10 is
assumed for γ . The scientists at the AAR were uncertain about
the effect of the covariates. Thus the prior distributions for the
parameters in β , representing the effect of the covariates, are
assumed to be independent normal distributions with mean 0
and variance 20, reflecting this uncertainty. In the analysis the
covariate data are rescaled (by dividing each covariate by its
maximum value), to avoid computational difficulties. Note that
all prior specifications are diffuse, to allow the data to dominate
in the analysis. This was a choice made by the AAR. Details
of the Markov chain Monte Carlo (MCMC) methods for infer-
ence for our model are given in Appendix B. We ran single-
chain Gibbs samplers to obtain 2,500 samples in each case,
with a warm-up of 5,000 and a lag of 25 between successive
samples. We denote the posterior sample that we obtained by
(αk

1, . . . , α
k
132, β

k
1, . . . , βk

4, γ k,Mk) for k = 1, . . . ,2,500. At the
suggestion of the referees and editors, we varied the variance
specifications and found no differences in the posterior results.
The algorithm in Appendix B can be modified to accommo-
date the simpler models. The parametric model with no covari-
ates in (1) can be obtained by forcing the number of groups
to be one and leaving out the covariate terms. The paramet-
ric model with covariates in (3) can be obtained by forcing the
number of groups to be one, but including the covariate terms.
The hierarchical Bayes model in (5) can be obtained by forcing
the number of groups to be 132. In each of these models, the
prior on the single scale parameter is the gamma distribution
assumed for the mixing distribution G of the αi’s in the MDP
setup. All other priors are the same if used.

The deviance information criterion (DIC) was proposed
by Spiegelhalter et al. (2002) as a measure of fit for com-
plex hierarchical models when the number of parameters is
not clearly defined. This is the case with the MDP setup.
The Bayesian deviance, denoted by DV(α1, . . . , α132, γ ,β),
is defined as −2 ln P(D|α1, . . . , α132, γ ,β) + 2 ln f (D), where
f (D) is some fully specified standardizing term that is a function
of the data alone and thus does not effect model comparison.
The model “fit” is represented by DV = E[DV(α1, . . . , α132,

γ ,β)|D], which can be approximated from the posterior sam-
ple. An estimate of the effective number of parameters, de-
noted by pDV , is represented by E[DV(α1, . . . , α132, γ ,β)|D]−
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Table 2. A Comparison of the Models

Model DV pDV DIC

Parametric with no covariates 408.2 1.1 406.0
Parametric with covariates 251.3 6.6 257.9
Hierarchical Bayes 137.4 102.6 240.0
MDP setup 143.7 47.7 191.4

DV(E[α1, . . . , α132, γ ,β|D]), where the latter term is simply
the function DV calculated at the posterior means of the para-
meters. The DIC is then defined as the sum DIC = DV + pDV ,
which is equivalent to the Akaike information criterion if the
prior information is neglible (see Spiegelhalter et al. 2002 for
details). The results of the DIC calculations are given in Table 2.
Because lower values are preferable, the DIC results show that
each elaboration that we made to model the failure process is
warranted. Introducing the four known covariates yields an im-
provement in the DIC, as does modeling the unknown covari-
ates through the MDP setup. The hierarchical Bayes model does
in fact show a better fit statistic than the MDP setup, but the
large numbers of parameters gives a worse overall DIC value.
Note that the effective numbers of parameters for the paramet-
ric model with and without covariates are very close to the true
number of parameters, six and two. For the MDP model, the
effective number of parameters is about 48, whereas the model
includes 4 covariate effect parameters, 1 shape parameter, and
132 scale parameters. This indicates that there are groups of
similar rail sections in the data for which the scale parameters
are clustered, reflecting groups of rails with the same values for
the unavailable covariates. We should be careful when attempt-
ing to estimate the number of groups from the effective number
of parameters, however. The value of pDV appears to suggest
48 − 4 − 1 = 43 clusters of scale parameters, but because the
hierarchical mixing distribution is handled in a nonparametric
manner with a Dirichlet process prior, the true number of pa-
rameters and their interpretation are more complex than this
simple calculation.

A better mechanism for examining the idea of clusters in the
scale parameters, the posterior distribution of the number of
groups in the αi’s is shown in Figure 2, confirming the exis-
tence of groups of rails with common values for the unavailable

Figure 3. Boxplots of the Marginal Posterior Distributions of a Subset
of the Scale Parameters on a Log Scale.

covariates. In fact, the estimated posterior probability of a sin-
gle group is only .00041, evidence against the parametric model
with a single scale parameter, and the estimated posterior prob-
ability of 132 groups is approximately 0, evidence against the
hierarchical model with 132 scale parameters. This reinforces
the conclusions made using the DIC. We note that the posterior
distribution has its mass somewhere between 2 and 15, imply-
ing that whereas the data imply some differences between the
failure intensities of the rail sections beyond the known covari-
ate effects, there is in fact a relatively small number of groups.
To demonstrate the magnitude of the effect of these differences
in failure intensities, boxplots of the marginal posterior distrib-
utions of the log of a subset of the scale parameters, log(αi)’s,
are shown in Figure 3. The scale parameters’ marginal posterior
distributions show variation from rail section to rail section. The
variation in the αi’s reflects differences between the rail sec-
tions that are not explained by the four covariates included in
this analysis and then must be assigned to the unavailable co-

(a) (b)

Figure 2. Marginal Posterior Distributions of the Parameter M (a) and the Number of Groups of αi ’s (b) in the Dirichlet Process Mixing.
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variates. However, in terms of the model, the scale parameters
have accounted for these differences, allowing a meaningful ex-
amination of the effect of the known covariates.

5. IS GRINDING EFFECTIVE?

With the effect of missing covariates verified and accounted
for, the important questions about grinding effectiveness can
be answered by examining the marginal posterior distributions
of the parameters of the model. Although the effect of grind-
ing is the one most pertinent to this analysis, the AAR was
also interested in the effect of the other available covariates
and whether the effects of the unavailable covariates are signif-
icant. Figure 4 shows the marginal posterior distributions of the
covariate effect parameters, β1, . . . , β4. The prior distributions
are also shown, but they do not show up well, because they are
extremely flat in the region containing the posterior mass. For
each covariate effect parameter, positive (negative) values in-
dicate that an increase in the covariate measurement increases
(decreases) the failure intensity of the rail. We first turn to the
grinding effect parameter, the primary interest of the present
study. Most of the mass of this posterior distribution is between
−2 and 0, implying that the practice of grinding is beneficial
for increasing the life of a rail section. This verifies the engi-
neering theory that led to the practice and was good news for
the AAR and the railroad industry in general. We examine the
end result of this effect in Section 6 by examining the optimal
replacement interval for different levels of grinding.

For the posterior distribution of the rail weight effect parame-
ter, the posterior mass is located mostly on the negative values,
implying a decrease in failure intensity with the use of heavier
rail. This is to be expected, because heavy rail will stand up to
the wear of traffic load better than light rail. The results for the
other two covariates at first appeared counterintuitive. Curved
rails experience higher stresses and thus would be expected to
fail more often. Moreover, trains traveling at higher speed exert
more stress on the rail and should increase the failure intensity.
However, the posterior distribution of the curvature effect para-
meter and the maximum speed effect parameter have a negative
mean, implying that curved rails and rails with high speed lim-
its fail less often. At first, this result created confusion, until one
expert pointed out that the rail used in curved sections is gener-
ally of better quality than that used in straight sections and that
rail sections on which trains are allowed to travel at high speed
are also usually good-quality rails. The quality of steel used in
the rail manufacturing process is rated on the Brunnel hardness
number, one of the covariates not available in the data. We also
note that the results for these two parameters was not as con-
clusive as the other two, because there was significant posterior
mass on either side of 0. For completeness, the posterior distri-
bution of the shape parameter, γ , is concentrated around values
between 1 and 1.4. This implies that the rail section degrades
with higher traffic load. This finding is to be expected and is in
agreement with previous studies, and so for the sake of brevity
a figure illustrating this is not included.

(a) (b)

(c) (d)

Figure 4. The Marginal Prior (· · · · · ·) and Posterior (—–) Distributions of the Covariate Effect Parameters. (a) Grinding effect parameter; (b) cur-
vature effect parameter; (c) rail weight effect parameter; (d) maximum speed effect parameter.
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This analysis demonstrates conclusively that the practice of
grinding railroad tracks reduces the intensity of the failure
process. It can also be concluded that the rails deteriorate with
use. The variation in the αi’s indicates that some covariates that
affect the failure behavior may be missing. The inclusion of
such covariates as the Brunnel hardness number, an indicator of
the quality of the steel used, may be helpful in explaining the
effect of rail curvature and maximum speed found in the analy-
sis, but in our analysis this effect is modeled by the MDP setup.
In a predictive sense, not knowing these additional covariates
will add to the uncertainty because we will not know to which
of these groups a new piece of rail may belong.

6. DOES GRINDING IMPROVE THE LIFE OF A RAIL?

In the previous section we illustrated the effectiveness of
grinding as a preventive maintenance practice. It is also desir-
able to determine optimal replacement strategies and to exam-
ine the effect of grinding on these strategies. As pointed out in
the Research Problem Statements report of the Transportation
Research Board of the National Research Council, this is es-
sential in determining an optimal rail-grinding schedule. In de-
termining optimal strategies (see, e.g., Cho and Parlar 1991 for
a review), the use of covariate information has not been con-
sidered. This is an important issue in our application, where
a procedure is needed for determining the optimal block re-
placement period for a group of continuous rail sections and for
assessing the effect of the grinding policy on their replacement
interval. We follow the development of Mazzuchi and Soyer
(1995, 1996), extending the approach to include covariate infor-
mation and our MDP setup. The development of maintenance
policies for railroad tracks, such as a grinding policy and re-
placement strategies, requires failure predictions for different
rail sections at various MGT intervals. Once a posterior sample
has been obtained under the MDP model, the expected number
of failures occuring up to t MGT for an existing rail section i is
approximated as

E[Ni(t)|D] ≈ 1

2,500

2,500∑

k=1

αk
i tγ

k
e
∑4

j=1 βk
j Zi,j . (7)

For predictions for a new rail section i > 132, under the
MDP approach, a sample must first be obtained from the
new scale parameter of the rail section i, denoted by αk

i .
A multinomial draw is performed, with probability Mk

Mk+132
that the draw is from the prior best-guess distribution G0 and
probabilities 1

Mk+132
for each of the sampled scale parameters

(αk
1, . . . , α

k
132). Once the draw is made from the scale parameter,

the expected number of failures can be approximated using (7).
One of the most commonly used replacement strategies for

systems/items subject to wear is block replacement (see Cox
1962 for an early introduction). Under the block replacement
protocol, all units are replaced at time points tB,2tB, . . . , irre-
spective of their ages, and an in-service replacement or repair
is made whenever failures occur. This replacement protocol is
relevant to the rail track example because multiple continuous
rail sections are replaced at one time, implying that the sec-
tions are grouped in to a block. In the case of rail replacement,
the intervals are measured in terms of traffic usage instead of

time. As discussed previously, fatigue defects discovered be-
tween replacements are repaired either by corrective grinding
or by welding. Under this scenario, in a planned replacement
cycle of length tB MGTs, the cost per MGT for the ith rail sec-
tion, C(tB,Ni(tB)), is given by

cP + cFNi(tB)

tB
, (8)

where Ni(tB) represents the number of in-service failures for
the ith rail section occurring in an interval of length tB, cP is the
cost of a planned replacement, and cF is the cost of a repair con-
sisting of corrective grinding or welding. Assuming that m rail
sections will be replaced at tB MGTs, the total cost per MGT,
C(tB,N(tB)), is given by

m∑

i=1

C(tB,Ni(tB)), (9)

where N(tB) = (N1(tB), . . . ,Nm(tB)). Following Mazzuchi and
Soyer (1996), the optimal block replacement strategy t∗B is de-
termined by minimizing expected value of the cost, C(tB,N(tB)).
An approximate Bayesian optimal block replacement interval is
determined by minimizing

E[C(tB)|D] ≈ 1

2,500

2,500∑

k=1

m∑

i=1

cP + cFαk
i tγ

k

B e
∑4

j=1 βk
j Zi,j

tB
, (10)

with respect to tB.
To determine the effect of grinding on replacement intervals,

we consider five sections of rail for which a common optimal
block replacement period is required. The selected rail sections
are the ones shown in Table 1 and form a continuous segment
of a single rail track. Following the suggestion of experts, the
cost of a planned replacement is assumed to be 20 times the
cost of a minimal repair. The optimal block replacement period
is approximately 620 MGTs at the current level of grinding,
.75 mm per year. To illustrate the beneficial effect of grinding
the optimal replacement interval for varying levels of grinding
are shown in Figure 5. The figure demonstrates that the opti-
mal replacement intervals significantly increases with increas-
ing level of grinding, again demonstrating the effectiveness of
grinding practices. This conclusion is good evidence in favor

Figure 5. The Optimal Replacement Period for a Group of Rail Sec-
tions Under Varying Grinding Policies.
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of the practice of grinding and thus is of great interest to the
railroad industry.

7. CONCLUSIONS

In this analysis, the preventive maintenance practice known
as grinding has been shown to have a beneficial effect on the
rate of occurrence of fatigue defects in rail tracks. Several other
covariates were also included in the analysis, whereas rele-
vant covariates that were not available in the CN data were
accounted for using the MDP setup for the scale parameters of
the NHPP model. A decision-theoretic approach to determining
optimal replacement intervals was used to illustrate the effect
of grinding on the optimal replacement intervals, demonstrat-
ing that grinding will not only reduce the occurrence of fatigue
failures, but also reduce their economic impact on the railroad
industry.

APPENDIX A: THE MODULATED POISSON PROCESS

Let Ni(t) denote the number of failures for the ith rail section in an
interval of length t MGT. When a crack is found, the surface metal
is ground away in a small area around the defect, leaving most of the
rail section unaffected by the failure or the repair. Thus the failure rate
of the rail section after repair is equal to the failure rate just before
failure. This is known as minimal repair and implies that Ni(t) can be
described by a NHPP with intensity function λi(t) = d

dt E[Ni(t)], where
E[·] denotes the expectation. For a discussion of minimal repair and its
association with the NHPP, see such standard texts as that by Ebeling
(1997, p. 198).

Let Zi denote the p-dimensional vector of available covariates that
describe the characteristics of the ith rail section and are not dependent
on traffic usage. The modulated Poisson process was introduced by
Cox (1972a) by assuming that in our case the intensity function of the
ith rail section is related to the covariate vector via

λi(t;Zi) = λ0(t)e
βT Zi , (A.1)

where λ0(t) is the baseline intensity function and β is a vector of
p parameters. The modulated Poisson process defined by (A.1) is
analogous to the proportional hazards model of Cox (1972b), where
a similar form was used for the failure rate of a nonrepairable sys-
tem. Under the modulated Poisson process, the ratio of the inten-
sity functions of two rail sections at traffic usage t is given by
λi(t;Zi)
λj(t;Zj)

= eβT (Zi−Zj), which does not depend on t. Hence the ratio of

the hazard rates for two rails with different covariate effects is the same
over time. In the modulated Poisson process, the effect of the wear on
failure behavior of rail sections is described by the baseline intensity

function λ0(t), and covariate effects are captured by the term eβT Zi .

APPENDIX B: INFERENCE FOR THE MDP MODEL

Inference for the MDP model is an extension of the MCMC in-
ference procedure for the parametric proportional hazards model de-
veloped by Dellaportas and Smith (1993) to include the likelihood
for failure count data rather than actual failure times. However, in-
ference for the MDP setup (Kuo 1986) requires efficient inference
algorithms, such as those developed by Escobar and West (1995)
and MacEachern (1994), with excellent reviews by MacEachern
(1998) and MacEachern and Muller (2000). MacEachern and Muller
also noted that the MDP setup is implicitly robust due to the wide
range of possible prior distributions that can result from realiza-
tions of the Dirichlet process prior. In the specific application for
each rail section i = 1, . . . ,132, Ni(t) is observed at traffic us-
ages t = ti,0, . . . , ti,ri MGTs, where ti,0 < · · · < ti,ri . Thus the data

for the ith rail section are given by Di = {Ni(tij) = ni(tij), j =
1, . . . , ri,Li,Zi}. Using the independent increments property of the
NHPP, the joint distribution of (Ni(ti,1), . . . ,Ni(ti,ri)|αi, γ ,β,Li,Zi),
denoted by P(Ni(t)|αi, γ ,β,Li,Zi), can be written as

ri∏

j=1

(Li[αit
γ
i,j − αit

γ
i,j−1]e

∑4
k=1 βkZi,k )ni(ti,j)−ni(ti,j−1)

[ni(ti,j) − ni(ti,j−1)]!

× exp
{−Li[αit

γ
i,j − αit

γ
i,j−1]e

∑4
k=1 βkZi,k

}
. (B.1)

Given the observed data from 132 rail sections, D = ⋃132
i=1 Di, the like-

lihood function of G and β is
∏132

i=1
∫

P(Ni(t)|αi, γ ,β,Li,Zi)dG(αi).
Given an arbitrary prior π(β, γ ), which are independent of the

αi’s and G, the posterior distribution of G given β , γ , and D can
be obtained as an MDP (see, e.g., Kuo and Mallick 1997). In imple-
menting the Gibbs sampler, it is difficult to sample from the distrib-
ution (G|γ,β,D) (see, e.g., Kuo 1986). The approach introduced by
Escobar and West (1995) can be adopted to the MDP setup given for
the modulated Poisson process. The attractive feature of the Escobar
and West approach is that in our case computation of the joint dis-
tribution π(α1, . . . , α132, γ ,β|D) can be achieved without sampling
from the posterior distribution of (G|γ,β,D). It can be shown that
π(α1, . . . , α132|γ,β,D) is equal to

132∏

i=1

P
(
Ni(t)|αi, γ ,β,Li,Zi

)MG0(αi) + ∑i−1
j=1 δαj (αi)

M + i − 1
, (B.2)

where δαj(αi) equals 1 if αi = αj and 0 otherwise. The αi’s will have
a full conditional distribution (αi|α(−i), β,D), given by

qi,0Gb
(
αi|Ni(t), γ,β,Li,Zi

) + qi,j
∑

j �=i

δαj(αi), (B.3)

where α(−i) = (α1, . . . , αi−1, αi+1, . . . , α132) and Gb(αi|Ni(t), γ,

β,Li,Zi) is the baseline posterior distribution, which is proportional
to P(Ni(t)|αi, γ ,β,Li,Zi)dG0(αi). The probabilities qi,0 and qi,j
are given by qi,0 ∝ M

∫
P(Ni(t)|αi, γ ,β,Li,Zi)dG0(αi) and

qi,j ∝ P(Ni(t)|αj, γ ,β,Li,Zi), where P(Ni(t)|αj, γ ,β,Li,Zi) is the
joint distribution for the ith rail section when αi = αj and qi,0 +∑

j �=i qi,j = 1.
Because of the discreteness of G (as a result of the Dirichlet process

prior), there is a positive probability that some of the αi’s will take
the same values. An algorithm proposed by MacEachern (1994) ex-
ploits this fact to increase the efficiency of the algorithm and up-
dates the αi’s in clusters. We use a further extension of the MDP
setup incorporating M in to the Gibbs sampling analysis. Our ap-
proach follows that of Escobar and West (1995), assuming a pri-
ori that M follows an arbitrary prior π(M). In their development,
Escobar and West defined K to be the number of unique values of
α1, . . . , α132, also referred to as the number of cliques by MacEachern
(1998). Conditioned on K, M is independent of all other parameters
with density proportional to MK−1(M + 132)B(M + 1,132)π(M),
where B is the standard beta function. Escobar and West offered
a simple two-step process for sampling from this distribution if
π(M) is assumed to be a gamma distribution. K is also recorded
in the Gibbs sample, because the distribution of the number of
cliques is of interest in the reliability analysis in Section 5. The
full conditional π(β1|α1, . . . , α132, γ ,β2, . . . , β4,D) is proportional
to

∏132
i=1 P(Ni(t)|αi, γ ,β,Li,Zi)π(β1), with similar expressions for

β2, . . . , β4, and the full conditional density π(γ |α1, . . . , α132,β,D)

is proportional to
∏132

i=1 P(Ni(t)|αi, γ ,β,Li,Zi)π(γ ). Obtaining sam-
ples from these distributions requires using the adaptive rejection sam-
pling algorithm of Gilks and Wild (1993), because the densities are
log-concave for appropriate π(β) and π(γ ). This is similar to the ap-
proach used by Dellaportas and Smith (1993) for inference on the
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parametric proportional hazards model. For choices of π(β) and π(γ )

that do not satisfy this condition, other algorithms, such as Metropolis
sampling, can be applied.

[Received February 2000. Revised March 2004.]
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