Rank and directional entropy

E. Arthur (Robbie) Robinson
(Joint work with Ayse Sahin)

The George Washington University

Talk at KIAS, Seoul, Korea.

September 27, 2010
1 INTRODUCTION

2 FINITE RANK, \mathbb{Z} CASE

3 THE FORMAL DEFINITION

4 THE \mathbb{Z}^2 CASE

5 DIRECTIONAL ENTROPY

6 DIRECTIONAL ENTROPY AND RANK 1

7 MORE...
1. **INTRODUCTION**

2. **FINITE RANK, \mathbb{Z} CASE**

3. **THE FORMAL DEFINITION**

4. **THE \mathbb{Z}^2 CASE**

5. **DIRECTIONAL ENTROPY**

6. **DIRECTIONAL ENTROPY AND RANK 1**

7. **MORE...**

8. **EXTRAS**
Cutting and Stacking

- **Elementary** method to construct examples in ergodic theory.
- Classical version: invertible Lebesgue measure preserving transformation \(T : [0, 1) \rightarrow [0, 1) \).
- Equivalently, a measure preserving \(\mathbb{Z} \) action (MPZA).
- Easily generalizes to \(\mathbb{Z}^d \) or \(\mathbb{R}^d \) to produce \(\text{MPZ}^d A \) or \(\text{MPR}^d A \).
- More general than substitutions.
Entrophy

- **Kolmogorov-Sinai, 1959**: Entropy $h(T)$ of a measure preserving transformation T. Average “information” per time step.
- Straightforward generalization to d-dimensional entropy $h(T)$ of $\text{MP}\mathbb{Z}^d A$ T.
- **Adler-Konheim-McAndrew, 1965**: Topological entropy $h_{\text{top}}(T)$ of continuous map (or \mathbb{Z}^d action) T. Exponential growth in “complexity”. $h(T) \leq h_{\text{top}}(T)$.
- **Milnor, 1986**: Directional entropy $h_n(V, T)$ of $\text{MP}\mathbb{Z}^d A, T$. Here $V \subseteq \mathbb{R}^d$ subspace, $\dim(V) = n$.
Von Neuman’s “Adding Machine”

Step 0

Step 1

Step 3

Step n

Figure: Ergodic mpt T, but not aperiodic (\ldots RRB RBB \ldots).
Illustrated as block concatenation

The tower is turned on its side, with individual levels blurred.

\[W_1 = 0, \quad W_{n+1} = W_n W_n. \]
As $T : [0, 1) \rightarrow [0, 1)$
As Toeplitz sequence

Action together with partition equals process.
Here the combinatorial data is \(W_1 = 0 \) and \(W_{n+1} = W_n W_n 1 W_n \).
Chacon's transformation

Step 0

Step 1

Step 2
Rank 1

Definition. T is **rank 1** if it can be constructed by cutting and stacking with one large **tower** in each step.

- Left over interval called a **spacer**.

Theorem

Rank 1 implies (uniquely) ergodic. (Also minimal if number of adjacent spacers is bounded.)

- Adding machine has **discrete spectrum**. Chacon’s transformation has **continuous spectrum** (i.e., is **weakly mixing**.)
- Any ergodic T with discrete spectrum is **rank 1** (e.g., irrational rotation transformation).
(Smorodinski)-Adams (1998) version (see also Ornstein (1968)).

Recurrence relation: $W_1 = 0$, $W_{n+1} = W_n W_n 1 W_n 1^2 \ldots W_n 1^{q_n}$. Mixing provided $q_n \uparrow \infty$ sufficiently fast.
The Morse dynamical system

\[W_1^0 = 0 \]
\[W_1^1 = 1 \]

\[\ldots W_{n+1}^0 = W_n^0 \]
\[\ldots W_{n+1}^1 = W_n^1 \]
Morse sequences

Step 0

Step 1

Step 2

Step 3

0 1 1 0 1 0 0 1 1 0 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1
Finite Rank

In this example, there are 2 towers at each step. We say T has rank ≤ 2.

- A. del Junco showed this T is not rank 1. Thus T is rank 2.
- The spectrum of T is simple, and mixed (both discrete and continuous).
- Can similarly define rank $\leq r$, rank r, and finite rank.

Theorem (see Queffelec, (1987/2010))

A substitution on r letters is rank $\leq r$.
Theorem (Baxter, 1971)

Finite rank implies $h(T) = 0$.

Proof.
- Rank n implies spectral multiplicity $M_T \leq n$ (Chacon, 1970).
- Positive entropy ($h(T) > 0$) implies $M_T = +\infty$ (Bernoulli factor) (Sinai’s Theorem).
1 Introduction

2 Finite rank, \mathbb{Z} case

3 The formal definition

4 The \mathbb{Z}^2 case

5 Directional entropy

6 Directional entropy and rank 1

7 More...

8 Extras
Rohlin Towers

- Let $T : X \to X$ be a MPZA on a probability space (X, \mathcal{B}, μ).
- If $B, TB, T^2 B, \ldots, T^{h-1} B$ are pairwise disjoint, we call it a Rohlin tower with height h and base B.
- The error is $E = \left(\bigcup_{k=0}^{h-1} T^k B \right)^c$.
- Call $\xi = \{ B, TB, \ldots, T^{h-1} B, E \}$ a Rohlin partition.

Theorem (Rohlin’s Lemma)

If T is ergodic, then for any $h \in \mathbb{N}$ and $\epsilon > 0$, there is a height h Rohlin tower with $\mu(E) < \epsilon$.
Let ξ_n be a sequence of partitions. Say ξ_n separates ($\xi_n \to \varepsilon$) if for any $A \in \mathcal{B}$ there is $A_n \leq \xi_n$ so that $\mu(A \Delta A_n) \to 0$.

Definition

T is rank 1 if there is a sequence ξ_n of Rohlin towers so that $\xi_n \to \varepsilon$.

Cutting and stacking definition of Rank 1 implies this one: $\xi_n \to \varepsilon$ follows from $\text{diam}(B_n) \to 0$.

Theorem (Baxter, 1971)

ξ_n may be chosen so that $\xi_n \leq \xi_{n+1}$ and $B_{n+1} \subseteq B_n$.

Thus all these T may be obtained by cutting and stacking.
“Funny” Rank 1

Call a finite $R \subseteq \mathbb{Z}$ a shape.

Suppose $\mu(B) > 0$ and $T^k B \cap T^\ell B = \emptyset$ for all $k, \ell \in R$, $k \neq \ell$.

Call $\xi = \{E, T^k B : k \in R\}$ a funny Rohlin tower.

In rank 1, $R = \{0, 1, \ldots, h-1\}$.

Define funny rank 1 analogously.

Shape matters! Rank 1 implies “loosely Bernoulli” (Katok, 1977, Ornstein-Rudolph-Weiss 1982), but funny rank 1 does not (Ferenczi, 1985).
1. **INTRODUCTION**

2. **FINITE RANK, \(\mathbb{Z} \) CASE**

3. **THE FORMAL DEFINITION**

4. **THE \(\mathbb{Z}^2 \) CASE**

5. **DIRECTIONAL ENTROPY**

6. **DIRECTIONAL ENTROPY AND RANK 1**

7. **MORE...**

8. **EXTRAS**
Actions of \mathbb{Z}^d

- Let (X, \mathcal{B}, μ) be a **probability space**.
- Let $T_1, T_2 : X \to X$ be MP\mathbb{Z}As that **commute**: $T_1 T_2 = T_2 T_1$.
- For $n = (n_1, n_2) \in \mathbb{Z}^2$, define **MP$\mathbb{Z}^2$A** $T^n = T_1^{n_1} T_2^{n_2}$.
- Similar definition for **MP\mathbb{Z}^dA**, (i.e., T_1, T_2, \ldots, T_d commute).
- Call a finite $R \subseteq \mathbb{Z}^d$ a **shape**.

Definition. A shape-R **Rohlin tower** consists of disjoint sets $T^n B, n \in R$. The partition $\xi = \{E, T^n B : n \in R\}$ is a Rohlin partition.
Definition

A MP\(\mathbb{Z}^d\) \(A\) \(\mathbb{T}\) is rank 1 if there is a sequence \(\xi_n\) of shape \(R_n\) Rohlin partitions so that \(\xi_n \to \varepsilon\).

Proposition (R-Sahin, 2010)

Rank 1 (any shape) implies ergodic and simple spectrum.

Corollary

Rank 1 (any shape) implies \(h(T) = 0\).
The \mathbb{Z}^2 case

\mathbb{Z}^d RANK r

Definition

Suppose T is an MP \mathbb{Z}^d-A there are shapes R^j_n and positive measure sets B^j_n, for $j = 1, \ldots, r$ and $n \in \mathbb{N}$, so that

$$\xi_n = \{T^n B^j_n : n \in R^j_n, j = 1, \ldots, n\} \cup \{X \setminus \bigcup_{j=1}^{n} \bigcup_{n \in R^j_n} T^n B^j_n\}$$

is a partition, and $\xi_i \rightarrow \varepsilon$. We say T is rank $\leq r$ for shapes $\{R^1_n, R^2_n, \ldots, R^j_n\}$.

Rank r if rank $\leq r$ and not rank $\leq r - 1$.

Proposition

Rank $\leq r$ implies $M_T \leq r$ and $h(T) = 0$, but not necessarily ergodic.
A sequence $\mathcal{R} = \{R_k\}$ of shapes in \mathbb{Z}^2 is a Følner sequence (van Hove sequence) if for any $n \in \mathbb{Z}^2$

$$\lim_{k \to \infty} \frac{|R_k \triangle (R_k + n)|}{|R_k|} = 0,$$

- A natural choice is rectangles

$$R_k = [0, \ldots, w_k - 1] \times [0, \ldots, h_k - 1],$$

where $w_k, h_k \to \infty$.
Types of rank 1

- **Rank 1**: no shape restriction.
- **Følner rank 1**: R_n a Følner sequence.

Proposition (R-Sahin, 2010)

If Følner, can get $\xi_n \leq \xi_{n+1}$ with the same $\mathcal{R} = \{R_n\}$.

- Cutting and stacking works!
- **Rectangular rank 1**: rectangles
- **Geometric restrictions** (on rectangular Rank 1):
 - Bounded eccentricity: $1/K \leq w_k/h_k \leq K$.
 - Subexponential eccentricity: $\log(w_k)/h_k \rightarrow 0$ ($w_k \geq h_k$).
Chacon \(Z^2 \) actions

Weak mixing, not strong mixing, & “MSJ” (R-Park, 1991).

Note. \(w_n/h_n = 1 \): “bounded” eccentricity.
Rudolph’s example

One of \((\Delta w_n)(\Delta h_n) \) blocks.

\(N_n \) of these blocks in a row.
Rudolph’s example (continued)

A block consisting of all possible
\(((\Delta w_n)(\Delta h_n))^{N_n}\)
rows, in some particular order.

There are \((((\Delta w_n)(\Delta h_n))^{N_n})!\)
of these.
Rudolph’s example (continued)

- All \(\left(\left(\left(\Delta w_n \right) \left(\Delta h_n \right) \right)^n \right)! \)
 blocks (every possible order) stacked.
- \(w_{n+1} = \left(\left(\Delta w_n \right) \left(\Delta h_n \right) \right)^n \times (w_n + \Delta w_n). \)
- \(h_{n+1} = \left(\left(\left(\left(\Delta w_n \right) \left(\Delta h_n \right) \right)^n \right)! \times \left(\left(\Delta w_n \right) \left(\Delta h_n \right) \right)^n \times (h_n + \Delta h_n). \)
Properties of Rudolph’s example

- Requires appropriate choice of $\Delta w_n \to \infty$, $\Delta h_n \to \infty$ and $N_n \to \infty$.
- Side lengths
 \[w_{n+1} = \left((\Delta w_n)(\Delta h_n) \right)^{N_n} (w_n + \Delta w_n), \text{ and} \]
 \[h_{n+1} = \left((\Delta w_n)(\Delta h_n) \right)^{N_n}! \left((\Delta w_n)(\Delta h_n) \right)^{N_n} (h_n + \Delta h_n). \]
- Sides satisfy $\log(h_n)/w_n \to \infty$. Super exponential eccentricity.

Theorem (Rudolph, 1978)

Horizontal T_1 is Bernoulli shift with arbitrary finite entropy $0 < h(T_1) < \infty$.

Before defining directional entropy, we briefly review the ordinary (d-dimensional) entropy of a MP $\mathbb{Z}^d A T$.

- Let ξ be a finite partition. The entropy of ξ is
 \[H(\xi) = -\sum_{A \in \xi} \mu(A) \log \mu(A). \]

- Define $\xi_n = \bigvee_{n \in [0, \ldots, n]^d} T^{-n} \xi$

- The ξ-entropy of T is
 \[h(T, \xi) = \lim_{n \to \infty} \frac{1}{n^d} H(\xi^n). \]

- The entropy of T is given by
 \[h(T) = \sup_\xi h(T, \xi). \]

This gives usual entropy of transformation T when $d = 1$.
Subspace $V \subseteq \mathbb{R}^d$, $n = \dim(V) < d$.

$Q \subseteq V$, $Q' \subseteq V^\perp$ unit cubes, and

$S(V, t, m) = (tQ + mQ')$ (we call it a window.)
Let T be a MPZ^nA, with ξ a finite partition, and $\dim(V) = n$.

- $\xi_{V,t,m} := \bigvee_{n \in S(V,t,m)} T^{-n} \xi$.

- $h_n(T, V, \xi, m) := \limsup_{t \to \infty} \frac{1}{t^n} H(\xi_{V,t,m})$.

- $h_n(T, V, \xi) := \sup_{m > 0} h_n(T, V, \xi, m)$

Definition (Milnor, 1986)

If $1 \leq n < d$, *n*-dimensional directional entropy in direction V is

$$h_n(T, V) = \sup_{\xi} h_n(T, \xi, V).$$

If $n = d$, then $h_d(T, V) = h(T)$, (where $V = \mathbb{R}^d$).
Directional entropy (\mathbb{Z}^2 case)

- $h_1(V, T) < \infty$ for some V, implies $h_2(T) = 0$.
 - Ledrappier’s \mathbb{Z}^2 shift T has $h_1(T, V) > 0$ for all V.
 - K. Park (unpublished, c 1987) Chacon MP\mathbb{Z}^2A T has $h_1(T, V) = 0$ for all V.
- $h_1(T, V) = ||(p, q)||^{-1} h(T^{(q, p)}), V = (p, q)\mathbb{R}, p/q \in \mathbb{Q}$.
 - Rudolph rank 1 \mathbb{Z}^2 has $h_1(V, T) > 0$ where $V = e_1\mathbb{R}$.
- (K. Park, 1999) If $V = v\mathbb{R}, ||v|| = 1$, then $h_1(T, V) = h(F^t v)$ for the unit \mathbb{R}^2 suspension F^t of T.
- (K. Park, 1999) The function $h(v) = h(T, v\mathbb{R}), ||v|| = 1$, is upper semicontinuous, and $\{v : h(v) = 0\}$ is G_δ.
1 Introduction

2 Finite rank, \mathbb{Z} case

3 The formal definition

4 The \mathbb{Z}^2 case

5 Directional entropy

6 Directional entropy and rank 1

7 More...

8 Extras
The first result has no assumptions beyond rectangular rank 1.

Theorem 1. (R-Sahin, 2010)

Let T be a rectangular rank-1 $MP\mathbb{Z}^d A$. Then there is a 1-dimensional subspace $V \subseteq \mathbb{R}^d$ so that $h_1(T, V) = 0$.

With additional hypotheses on the eccentricity, we can say more.

Theorem 2. (R-Sahin, 2010)

Let T be a rectangular rank-1 $MP\mathbb{Z}^d A$ with subexponential eccentricity. If $V \subseteq \mathbb{R}^d$ is an n-dimensional subspace, $1 \leq n \leq d$, then $h_n(T, V) = 0$.
Two lammmas

Lemma (Milnor, 1988)

The formulas that define directional entropy simplify to

\[h_n(T, V, \xi, m) = \lim_{t \to \infty} \frac{1}{t^n} H(\xi_{V,t,m}), \text{ and} \]

\[h_n(T, V, \xi) = \lim_{m \to \infty} h_n(T, V, \xi, m). \]

Theorem (Boyle-Lind, 1997)

If \(\xi_k \leq \xi_{k+1} \) and \(\xi_k \to \epsilon \) then

\[h_n(T, V) = \lim_{k \to \infty} h_n(T, V, \xi_k). \]
Suppose $\xi_k \leq \xi_{k+1}$ and $\xi_k \to \epsilon$. If $t_j \to \infty$, and

$$\lim_{j \to \infty} \frac{1}{(t_j)^n} H((\xi_k)_V, t_j, m) = 0,$$

for all k and all $m > 0$, then $h_n(T, V) = 0$.

We will use this lemma in the proofs of both theorems.
Proofs (set-up)

We do the case $d = 2$.

Let $V \subseteq \mathbb{R}^2$ be a 1-dimensional subspace (to be specified later for Theorem 1), and let ξ_k be a sequence of shape-R_k Rohlin towers for T.

Assume WOLOG:

- $\xi_k \leq \xi_{k+1}$ (Baxter’s Theorem),
- R_k is $w_k \times h_k$ where $h_k \leq w_k$ for all k.

Note. There are no eccentricity assumptions in Theorem 1.

Let $t_j \to \infty$ be a slowly increasing sequence, to be specified later.

Ultimate Goal. For fixed m, k, show that $H((\xi_k)_{V,t_j,m})/t_j \to 0$.
Let $j > k$.

Call a level $T^n B_j$ in ξ_j **good** if $S(V, t_j, m) \subseteq R_j - n$.

Let $G_j \subseteq \mathbb{Z}^2$ be the set of good levels.

Let $F_j = (\bigcup_{n \in G_j} T^n B_j)^c$.

And, recall $E_j = (\bigcup_{n \in R_j} T^n B_j)^c$.
Proofs (Good Levels)
Proofs (New partitions)

- $\xi_j^* := \{T^n B_j : n \in G_j\} \cup \{F_j\}$.
- $\eta_j := (\xi_k)^{T,t_j,m} \vee \xi_j^*$.
- Note that $(\xi_k)^{T,t_j,m} \leq \eta_j$.
- Thus $H((\xi_k)^{T,t_j,m}) \leq H(\eta_j)$.
- So it suffices to show $H(\eta_j)/t_j \to 0$.
- (This will achieve our **Ultimate Goal**.)
Proofs (Relations among partitions)

Key observation: Each of the sets $T^n B_j$ for $n \in G_j$ belong to the partition η_j.

"Goodness" insures the partition $(\xi_k)_{V,t_j,m}$ is "constant" on levels $T^n B_j$, for $n \in G_j$. In other words, each $T^n B_j$ is a subset of some $A \in (\xi_k)_{V,t_j,m}$.

\[
H(\eta_j)/t_j = -\frac{1}{t_j} \sum_{A \in \eta_j} \mu(A) \log \mu(A)
\]

\[
= -\frac{1}{t_j} \left(\sum_{n \in G_j} \mu(T^n B_j) \log \mu(T^n B_j) + \sum_{A \in \eta'_j} \mu(A) \log \mu(A) \right)
\]

\[
= -\frac{1}{t_j} \left(|G_j| \mu(B_j) \log \mu(B_j) - \sum_{A \in \eta'_j} \mu(A) \log \mu(A) \right).
\]
Proofs (Left term Goal)

\[-\frac{1}{t_j}|G_j|\mu(B_j) \log \mu(B_j) \leq -\frac{1}{t_j}|R_j|\mu(B_j) \log \mu(B_j)\]

\[= -\left(\frac{w_j h_j}{t_j}\right) \left(\frac{1 - \epsilon_j}{w_j h_j}\right) \log \left(\frac{1 - \epsilon_j}{w_j h_j}\right)\]

\[\leq \frac{\log(w_j h_j) - \log(1 - \epsilon_j)}{t_j},\]

where \(\epsilon_j = \mu(E_j)\).

Left Term Goal. Show \(\log(w_j h_j)/t_j \to 0\). (Insubstantial entropy from (uniformly covered) good set)
Local entropy lemma

Theorem (Shields, 1996)

Suppose ξ is a partition, $\xi' \subseteq \xi$ and $\beta = \mu(\bigcup_{A \in \xi'} A)$. Then

$$- \sum_{A \in \xi'} \mu(A) \log \mu(A) \leq \beta \log |\xi'| - \beta \log \beta.$$
Proofs (Right Term)

- $|\xi'_j| \leq (|R_k| + 1)|S(V, t_j, m)|.$
- $\log |\xi'_j| = |S(V, t_j, m)| \log(|R_k| + 1) \leq 2|S(V, t_j, m)| \log |R_k|.$
- $|S(V, t_j, m)| \leq 2t_j m.$
- $\log |R_k| = K.$

Thus

$$\log |\xi'_j| \leq 2Kt_j m.$$
Also

\[\beta = \mu(F_j) = |B_j \setminus G_j| \mu(B_j) + \mu(E_j) \leq \frac{|B_j \setminus G_j|}{w_j h_j} + \epsilon_j. \]

So by the local entropy lemma

\[-\frac{1}{t_j} \sum_{A \in \xi'} \mu(A) \log \mu(A) \leq 2Km \left(\frac{|B_j \setminus G_j|}{w_j h_j} + \epsilon_j \right) - \frac{\beta \log \beta}{t_j}. \]

\((t_j/t_j \text{ cancels in the first term}). \text{ Since } \beta < 1, (\beta \log \beta)/t_j \to 0.\)

Right Term Goal. \[\frac{|B_j \setminus G_j|}{w_j h_j} \to 0. \text{ (This is essentially that measure of bad part, } \beta \to 0). \)
Proof of Theorem 1 (Left Term Goal)

- Assume $w_j \geq h_j$ for all j.
- Take $V = e_1 \mathbb{R}$.
- We want $t_j \to \infty$ so that $\frac{\log(w_j)}{t_j} \to 0$ and $\frac{t_j}{w_j} \to 0$.

Define $t_j = \sqrt{w_j \log w_j}$.

$$\frac{\log(w_j h_j)}{t_j} \leq 2 \frac{\log(w_j)}{t_j} \to 0.$$ **Left Term Goal Achieved.**
Proof of Theorem 1 (Right Term Goal)

We have, \(|R_j \setminus G_j| \leq h_j t_j + mw_j\).

\[
\frac{|R_j \setminus G_j|}{w_j h_j} = \frac{t_j}{w_j} + \frac{m}{h_j} \to 0,
\]

since \(\frac{t_j}{w_j} = \sqrt{w_j \log w_j} = \sqrt{\frac{\log w_j}{w_j}} \to 0\). **Right Term Goal Achieved.**
Proof of Theorem 2 (Left Term Goal)

- Take $V \subseteq \mathbb{R}^2$, $\dim(V) = 1$.
- Assume $w_j \geq h_j$ and define $t_j = \sqrt{h_j \log w_j}$.

$$\frac{\log w_j}{t_j} = \frac{\log w_j}{\sqrt{w_j \log(w_j)}} = \sqrt{\frac{\log w_j}{w_j}} \to 0$$

$$\frac{t_j}{h_j} = \frac{\sqrt{h_j \log w_j}}{h_j} = \sqrt{\frac{\log w_j}{h_j}} \to 0$$

(by subexponential eccentricity).

$$\frac{\log(w_j h_j)}{t_j} \leq \frac{2 \log(w_j)}{t_j} \to 0.$$

Left Term Goal achieved.
Proof of Theorem 2 (Right Term Goal)

We have, \(|R_j \setminus G_j| \leq h_j(t_j + m) \cos \theta + w_j(t_j + m) \sin \theta.\)

\[
\frac{|R_j \setminus G_j|}{w_j h_j} = \frac{t_j + m}{w_j} \cos \theta + \frac{t_j + m}{h_j} \sin \theta \to 0,
\]

since \(\frac{t_j}{h_j} \to 0,\) (and \(\frac{t_j}{w_j}, \frac{m}{h_j}, \frac{m}{w_j} \to 0.\)) **Right Term Goal achieved.**
1 Introduction

2 Finite rank, \mathbb{Z} case

3 The formal definition

4 The \mathbb{Z}^2 case

5 Directional entropy

6 Directional entropy and rank 1

7 More...

8 Extras
Here is what we can prove in rank r. For simplicity, we discuss only the case T is an ergodic rectangular rank ≤ 2 $MP\mathbb{Z}^2 A$. Let R^1_n be $w^1_n \times h^1_n$ and R^2_n be $w^2_n \times h^2_n$.

Theorem A. If $w^1_n \geq h^1_n$ and $w^2_n \geq h^2_n$ for infinitely many n then there exists V so that $h_1(T, V) = 0$ (i.e., $h(T_1) = 0$).

Theorem B. Under the same hypotheses as above, if $\log(w^1_n)/h^1_n \to 0$, and $\log(w^2_n)/h^2_n \to 0$, then $h_1(T, V) = 0$ for all 1-dimensional V.

Theorem C. If $w^1_n \geq h^1_n$ and $w^2_n \leq h^2_n$ for all n, and $\log(w^1_n)/h^1_n \to 0$, and $\log(h^2_n)/w^2_n \to 0$, then $h_1(T, V) = 0$ for all 1-dimensional V.

As mentioned before, a substitution on r letters has rank $\leq r$. This is also true for a substitution tiling with r distinct prototiles. The eccentricity is bounded. This implies a substitution tiling system has all directional entropies zero.

Another way to prove this is to note that the complexity of a substitution tiling satisfies $c(n) \leq Kn^e$ (where $e = d$ in the self similar case).

A. Julien (2009) proved $c(n) \leq Kn^e$ for a cut and project tiling where the acceptance domain is polyhedral and “almost canonical”. This implies all directional entropies zero.

More generally a model set with a topologically and measure theoretically regular acceptance domain has discrete spectrum, so is rank 1. This implies all directional entropies zero.
Ledrappier’s shift has \(c(n) = Ke^{2n} \) (exponential complexity in smaller dimension). It has positive directional entropy in every direction.

Radin showed that any uniquely ergodic \(\mathbb{Z}^2 \) SFT has \(c(n) \leq Ke^{\ell n} \). Can it have positive directional entropy.

Not for the examples that come from substitutions and model sets!
Theorem (Johnson-Sahin, 1998)

A rectangular rank 1 MP $\mathbb{Z}^2 A T$ with bounded eccentricity is loosely Bernoulli.

- This T can be chosen to have T_1 be non LB.
- Johnson-Sahin (1998) prove that the same result holds for rank $r > 1$ provided towers have uniformly bounded eccentricity.
Loosely Bernoulli

Theorem (R-Sahin 2011?)

If T is a loosely Bernoulli $MP_{\mathbb{Z}^d}A$ with $h_d(T) = 0$ then $h_n(T, V) = 0$ for all V.

Implications:
- Ledrappier’s shift is not loosely LB (a “folk theorem”).
- Rudolph’s rank 1 is not LB.
1. INTRODUCTION
2. FINITE RANK, \mathbb{Z} CASE
3. THE FORMAL DEFINITION
4. THE \mathbb{Z}^2 CASE
5. DIRECTIONAL ENTROPY
6. DIRECTIONAL ENTROPY AND RANK 1
7. MORE . . .
8. EXTRAS
Say the Rohlin lemma holds for a shape $R \subseteq \mathbb{Z}^d$ if for any ergodic \mathbb{Z}^d action T, and $\epsilon > 0$, there exists $B \in \mathcal{B}$ so that X is partitioned by $\xi = \{ E, T^n B : n \in R \}$ and $\mu(\cup_{n \in R} T^n B) > 1 - \epsilon$.

A shape R tiles \mathbb{Z}^d if there exists $C \subseteq \mathbb{Z}^d$ so that $\{ T^n R : n \in C \}$ is a partition of \mathbb{Z}^d.

Theorem (Ornstein-Weiss, 1980)

A Rohlin lemma holds for a shape R if and only if R tiles \mathbb{Z}^d.