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Introduction
The ninth planet Pluto orbits the Sun in 248 years. Its orbit is highly eccentric (e=.248), and at the current
time (1993) it is near its perihelion, its closest approach to the Sun. In fact, it is actually slightly closer
currently than the nominal eighth planet, Neptune, which orbits the Sun every 164 years in a nearly circular
orbit (e=.01). At the current perihelion, Neptune is about 90◦ behind (in the counter-clockwise sense)
Pluto’s position, so Pluto is in no danger of collision or near-miss with it. What is remarkable, and was only
discovered in 1965 ([??65]), is that at every perihelion of Pluto, Neptune will occupy a position either 90◦

behind or 90◦ ahead of it. This is basically true because the orbital period of Pluto is 1.668 times that of
Neptune, and Pluto is probably in a 3/2 resonance with Neptune. Whether this resonance is stable over a
long time is what this present paper explores.

After the discovery of Pluto by Tombaugh in 1930, its orbit was computed and found to be remarkably
different from those of the other known planets. Its eccentricity is very high, and it is tilted from that of
Neptune by about 15◦. (Neptune’s orbit is within 2◦ of the plane of the other planets.) At perihelion, Pluto’s
distance from the Sun is .753 times its semi-major axis. Since Neptune’s near-circular orbit has a semi-major
axis of .763 times that of Pluto, it was obvious very early on that the possibility of collision or near-collision
existed between Neptune and Pluto. None of the other planets have intersecting orbits, however, and the
long-term perturbation calculation methods used since Lagrange are not valid in such a case. The orbits of
comets do frequently intersect those of planets, and methods have been created to compute the perturbation
of comets by planets, but those methods are good for only a few (tens of) orbits into the future, and are
also not applicable to the Neptune-Pluto system for long eons.

The paper [Hori & Giacaglia, 197?] computed the perturbations of the Neptune-Pluto system using
Hamiltonian dynamics. It confirmed the stability of the current resonance, and confirmed the 20,000 year
period first found by [Cohen & Hubbard, 1965]. Its methods are very advanced, though, and it will be the
purpose of this paper to investigate the N-P resonance using only elementary vector calculus.

Fundamental Equations of Motion
Encke’s Method of Special Perturbations [J.M.A. Danby, Fundamentals of Celestial Mechanics, Macmillan,
1962, p. 235] is often used to compute the orbit of comets. We apply it here to Pluto’s orbit. The notation
is a variation on Danby’s.

The symbolism I use is that a name with an overhanging right arrow is a vector, with both direction
and magnitude. The name bare is its magnitude, while the name covered by a circumflex is the unit vector
in that direction. Overhanging dots mean derivatives with respect to time, while an equals sign topped with
a triangle means definition. Thus, by these definitions,

−→r 4=rr̂

Newton’s 2nd Law of Motion combined with Newton’s Law of Gravity yields the differential equation
of motion for Pluto’s position vector, −→rP :

mP
−̈→rP = −GmSunmP

−→rP∣∣−→rP

∣∣3 +−→
F perturb

where the perturbation force on Pluto by Neptune is just the gravitational attraction:

−→
F perturb = −GmNmP (−→rP −−→rN )∣∣−→rP −−→rN

∣∣3

Clearly, the mass of Pluto, mP , may be divided out.
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Let the motion of Pluto be slightly perturbed from a reference orbit −→r0 by the minute position vector
−→ρ . That is, let

−→rP = −→r0 +−→ρ
The reference orbit is an elliptical path in the orbital plane of Neptune:

−→r0 = aP

[
(cos E − e)x̂ +

√
1− e2 sin Eŷ

]

Pluto’s eccentricity e = 0.247, while the parameter E is called the eccentric anomaly, and is connected to
the mean anomaly M by Kepler’s equation [Danby, p. ??]:

M = E − e sin E

From now on, we will choose Pluto’s orbital semi-major axis, aP , as our unit of length. The x-axis x̂
points in the direction of Pluto’s perihelion; choose the most recent perihelion as the origin of time. Lastly,
choose the unit of time such that one period of Pluto’s orbital motion is exactly 2π; the mean anomaly M
is now identical with the time.

Let Neptune follow a coplanar, circular orbit whose period is exactly 2
3 that of Pluto:

−→rN = aN

(
sin

3M

2
x̂− cos

3M

2
ŷ
)

By Kepler’s 3rd Law of Motion, relating semi-major axes to periods, aN = (2/3)
2
3 aP ≈ 0.76314. Note that

at the time origin M = E = 0, when Pluto is at perihelion and has no position component along the ŷ
axis, that Neptune will be 90◦ behind Pluto. (As usual, orbital motion is counterclockwise when seen from
above.) At Pluto’s next perihelion, when M = E = 2π, Neptune will be 90◦ ahead. In fact, at no point in
its reference orbit will Pluto come closer than ??◦ to Neptune. Therefore, there is little chance of collision
between the planets. (This was first noted by [Cohen & Hubbard, Astr. J., 1965].) But only if Pluto’s orbit
remains stable or oscillatory around this resonance configuration, will this situation hold over the long term.

Thus, the equations of motion become two: one for the reference orbit, and a second for the perturbed
orbit:

−̈→r0 = −GmSun
−→r0∣∣−→r0

∣∣3

−̈→r0 + −̈→ρ = −GmSun(−→r0 +−→ρ )∣∣−→r0 +−→ρ ∣∣3 − GmN (−→r0 +−→ρ −−→rN )∣∣−→r0 +−→ρ −−→rN

∣∣3

From [Danby, p. 125], we have GmSun = a3
P (2π/periodP )2. Due to our simplifying choice of units, we

find that GmSun = 1.
The size of the perturbation vector −→ρ is determined by the ratio of the two terms in the latter equation.

In turn, that is dominated by the ratio of masses mN/mSun ≈ 0.00005 ¿ 1. Therefore, |−→r0 | and |−→rN | are
both O(1), while |−→ρ | = O(mN/mSun) ¿ |−→r0 |. In what follows, we will lump together all 2nd order small
terms of O(|−→ρ |2) as an error term.

Expand the −3 power of the length of the vector sum using the inner product and the Binomial Theorem
(and here we diverge from Encke’s Method):

∣∣−→r0 +−→ρ
∣∣−3 = |−→r0 |−3

[
1 + 2

|−→ρ |
|−→r0 | (ρ̂ · r̂0) +

|−→ρ |2
|−→r0 |2

]−3/2

= |−→r0 |−3
[
1− 3

|−→ρ |
|−→r0 | (ρ̂ · r̂0) + O

( |−→ρ |2
|−→r0 |2

)]

Subtract the equation of motion for the reference orbit in −→r0 from the perturbed equation of motion
and combine small 2nd order terms. Since the perturbing term has a coefficient of small order, any O(|−→ρ |)
terms within it will therefore be of 2nd order smallness overall.

2



−̈→ρ =
−−→ρ + 3(−→ρ · r̂0)r̂0

|−→r0 |3 −−→pN + O(|−→ρ |2)

where the middle term, representing the perturbation by Neptune, is

−→pN =
(mN/mSun)(−→r0 −−→rN )∣∣−→r0 −−→rN

∣∣3

Note that −→ρ has dropped completely out of the perturbing term.
This is the differential equation which we must solve. Rather than solve a single vector equation, let us

eliminate −→ρ in favor of its scalar components.

Perturbation Components Relative to the Reference Orbit

Separate the perturbation vector −→ρ into its radial and tangential (or transverse) components with respect
to the reference orbit. That is, since the z-axis is perpendicular to the common orbital plane,

−→ρ 4
=A(M)−→r0 + B(M)ẑ ×−→r0

Note that the full vector −→r0 is used here, not the unit vector r̂0.
Since the scalars A and B are functions of time M , we wish to find their scalar differential equations,

to replace the single vector differential equation for −→ρ .
First, substitute this redefinition of −→ρ into the Newtonian perturbation equation on the right hand side:

−̈→ρ =
1

|−→r0 |3
[
(−A−→r0 −Bẑ ×−→r0) + 3(Ar0)r̂0

]−−→pN + O(|−→ρ |2)

Next, on the left hand side of the perturbation equation, formally differentiate the redefinition of −→ρ
twice with respect to time:

−̈→ρ = Ä−→r0 + 2Ȧ−̇→r0 + A−̈→r0 + B̈ẑ ×−→r0 + 2Ḃẑ × −̇→r0 + Bẑ × −̈→r0

In order to proceed further, we must now compute the time derivatives of the reference orbit position
vector −→r0 .
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Time Derivatives of the Reference Orbit Vector
All of the following definitions of variables for the reference orbit of Pluto are adapted from [Danby, p.
125-7]. As stated above, M and E are connected by Kepler’s equation:

M = E − e sin E

Let us abbreviate an expression to be used frequently:

b
4
=

√
1− e2

Since the semi-major axis of the orbit is aP = 1, b is in fact the semi-minor axis. From above,

−→r0 = (cos E − e)x̂ + b sin Eŷ

The length of this vector (i.e. the distance of Pluto from the Sun) is the square root of the inner product:

r0
4
=|−→r0 | = 1− e cos E

We are now able to compute derivatives with respect to time. Differentiate Kepler’s equation:

Ṁ = 1 = Ė(1− e cosE)

Thus:
Ė =

1
r0

Differentiate the definition of r0:

ṙ0 = e sin EĖ =
e sinE

r0

Differentiate the definition of −→r0 :

−̇→r0 = (− sin EĖ)x̂ + (b cosEĖ)ŷ

=
1
r0

(− sin Ex̂ + b cosEŷ)

To determine the radial and tangential components of this formula, take its inner product and its vector
product, respectively, with −→r0 . The result is:

−̇→r0 =
ṙ0

r0

−→r0 +
b

r2
0

ẑ ×−→r0

As an aside, we may compute the angular momentum of Pluto in the reference orbit from its definition
as a vector product:

−→r0 ×mP
−̇→r0 = mP bẑ

As expected, the angular momentum is constant, altho our units of length and time have simplified the result
slightly.

Return to the formula for −̇→r0 in terms of x̂ and ŷ, and differentiate it:

−̈→r0 =
−ṙ0

r2
0

(− sin Ex̂ + b cosEŷ) +
Ė

r0
(− cosEx̂− b sin Eŷ)

This readily simplifies to
−̈→r0 = −

−→r0

r3
0

which simply states that the reference orbit obeys Newton’s Law of Gravity.
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Perturbation Components Relative to the Reference Orbit (Continued)

Substitute the time derivatives found in the last section into the formal double derivative of −→ρ :

−̈→ρ =
(
Ä +

2ṙ0

r0
Ȧ− 1

r3
0

A− 2b

r2
0

Ḃ
)−→r0 +

(2b

r2
0

Ȧ + B̈ +
2ṙ0

r0
Ḃ − 1

r3
0

B
)
ẑ ×−→r0

which equates to the right hand side of the perturbation equation:

=
1
r3
0

(
2A−→r0 −Bẑ ×−→r0

)−−→pN + O(|−→ρ |2)

Equating the two sides, we find that some groups of terms combine to form perfect derivatives:

1
r2
0

[ d

dM
(r2

0Ȧ)− 2bḂ − 3
r0

A
]−→r0 +

1
r2
0

[
2bȦ +

d

dM
(r2

0Ḃ)
]
ẑ ×−→r0 = −−→pN + O(|−→ρ |2)

Now, if we can split the Neptune perturbation term −→pN into radial and tangential components, we will
have two scalar differential equations of motion.

Time-Averaged Perturbation

The term representing the perturbation by Neptune is

−→pN =
( mN

mSun

) −→∆r∣∣−→∆r
∣∣3

where the vector difference (Pluto’s reference position minus Neptune’s) is

−→∆r =
[
(cos E − e)x̂ + b sin Eŷ

]− aN (sin
3M

2
x̂− cos

3M

2
ŷ)

The perturbation is small, but accumulates over many orbits. In fact, after every two orbits, ∆r repeats
its previous values. Therefore, let us replace the instantaneous perturbation by the perturbation averaged
together over two consecutive Plutonian orbits, the 1st orbit between times M = −π and π and the 2nd
between times M = π and 3π. Comparing the value at times M and 2π −M (or equivalently, at angles E
and 2π−E), it is readily seen that ∆r has the same x̂ component at those times, but a negated ŷ component.
Therefore, averaged over two orbits, the ŷ components will cancel. We write the time-averaged perturbation
term as:

〈−→pN

〉
=

1
2π

∫ π

−π

dM(−→pN · x̂)x̂

This integral is rather a handful. Since we know its direction, it may be sufficient to get a first approx-
imation to its magnitude. We shall compute the value of the time-averaged perturbation of Neptune on a
point mass in a circular orbit with Pluto’s reference orbit size and perihelion. To do this, let e → 0 (and
therefore E → M) in the vector difference above:

−→∆r → (cos Mx̂ + sin Mŷ)− aN (sin
3M

2
x̂− cos

3M

2
ŷ)

Time averaging:
〈−→pN

〉 ≈ 1
2π

( mN

mSun

)
x̂

∫ π

−π

dM
cos M − aN sin 3M

2(
1 + a2

N − 2aN sin M
2

)3/2

This is a complete elliptic integral and we evaluate it exactly in the appendix. However, it is easy to
compute an upper bound to its value, and this is all we need.
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In absolute value, the numerator is never greater than 1 + aN and the denominator is never less than
(1 + a2

N − 2aN )3/2; therefore ∣∣〈−→pN

〉∣∣ ≤ 1 + aN

(1− aN )3
( mN

mSun

)

= 132.69
( mN

mSun

)
≈ 0.007

More sharply, we may note that the largest contribution of the denominator occurs near the upper
integration limit M = π; here the numerator is approximately −(1 − aN ). The absolute magnitude is then
reduced to 17.826(mN/mSun).

In fact, the exact calculation in the appendix finds an even smaller magnitude of 1.35(mN/mSun),
but in any case, we have proven what was required–that the perturbation term has a small time-averaged
magnitude.

Let us abbreviate this for later use: 〈−→pN

〉 ≈ −αx̂− βŷ

where 0 < α, β ¿ 1.
Initially, β = 0, but it will not be if Pluto gets ahead or behind the resonance position.

Orbit Components in Terms of the True Anomaly
Now, we must introduce another physical variable of the orbit, one which will simplify the solution to this
equation of motion.

Let v be the true anomaly, the angle at the Sun between the current position vector −→r0 and its position
at the time of perihelion. In terms of v,

−→r0 = r0

(
cos vx̂ + sin vŷ

)

By equating this to the definition of −→r0 in terms of E, taking the inner product, and solving the resulting
quadratic equation, we have the length in terms of v:

r0 =
b2

1 + e cos v

Inverting:

1 + e cos v =
b2

r0

and differentiating:

−e sin vv̇ = −b2ṙ0

r2
0

= −b2e sin E

r3
0

Equating the ŷ components of −→r0 ,
r0 sin v = b sin E

so that
v̇ =

b

r2
0

This is a form of Kepler’s 2nd Law of Motion, that the rate of area swept out by the position vector is
constant (and is in fact a constant multiple of the angular momentum).

Rearranging the above differentiation, we have

ṙ0 =
e sin v

b
Equating the x̂ components of −→r0 :

r0 cos v = cos E − e

Therefore a direct connection between v and E is:

tan
v

2
=

sin v

1 + cos v

=
b

1− e
tan

E

2
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Perturbation Components Relative to the Reference Orbit (Concluded)

Split x̂ and ŷ in the average perturbation term just found into radial and tangential components:

〈−→pN

〉 ≈ − α

r0

(
cos v−→r0 − sin vẑ ×−→r0

)− β

r0

(
sin v−→r0 + cos vẑ ×−→r0

)

We can therefore write two differential equations of motion, in the scalar functions A(M) and B(M).
The radial one is:

d

dM
(r2

0Ȧ)− 2bḂ − 3
r0

A = αr0 cos v + βr0 sin v + O(|−→ρ |2)

And the tangential one is:

2bȦ +
d

dM
(r2

0Ḃ) = −αr0 sin v + βr0 cos v + O(|−→ρ |2)

From now on, we will drop the explicit error term from our equations.

Solution of the Equations of Motion

Since sin v = bṙ0/e, we can easily integrate the tangential equation once:

2bA + r2
0Ḃ = −αb

2e
r2
0 + βIx + C1

where

Ix
4
=

∫
dMr0 cos v =

1
2
[−3eE + (2e2 + 1 + r0) sin E]

and C1 is a constant of integration, the 1st of the 4 that we must find.
Using this solution, we can eliminate Ḃ from the radial equation. In the resulting equation, we give the

name D to the 2nd order differential operator on the left-hand side:

DA
4
=

d

dM
(r2

0Ȧ) +
(
− 3

r0
+

4b2

r2
0

)
A

= αr0 cos v − αb2

e
+

2βb

r2
0

Ix + βr0 sin v +
2b

r2
0

C1

= −αr0

e
+

2βb

r2
0

Ix + βr0 sin v +
2b

r2
0

C1

since r0 = b2/(1 + e cos v).
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Integration of Orbital Functions
In solving the differential equations of motion, we will have to integrate rn

0 with respect to the orbital
anomalies (i.e. angles); we outline a simple strategy for such integrations now rather than give details for
each such integration later.

• If the variable of integration is M , replace it by E − e sin E, and dM by r0dE.
• The integral

∫
dErn

0 for n > 0 is made elementary by replacing r0 by 1− e cosE.
• The integral

∫
dvr−n

0 for n > 0 is made elementary by replacing r0 by b2/(1 + e cos v).
• The integral

∫
dEr−n

0 for n > 0 should have a change of integration variable by dE = dv(r0/b), which
reduces it to a case above.

• The integral
∫

dvrn
0 for n > 0 should have a change of integration variable by dv = dE(b/r0), which

reduces it to a case above.
• A factor cos E in the integrand should be replaced by either (1 − r0)/e or e + r0 cos v, depending on

whether the integration variable is E or v.
• A factor sin E in the integrand should be replaced by either (1/e)(dr0/dE) or (r0/b) sin v, depending

on whether the integration variable is E or v.
• A factor cos v in the integrand should be replaced by either (cosE−e)/r0 or (b2−r0)/(er0), depending

on whether the integration variable is E or v.
• A factor sin v in the integrand should be replaced by either (b/r0) sin E or [b2/(er2

0)](dr0/dv), depending
on whether the integration variable is E or v.

• A factor sin2 v in the integrand should be replaced by 1− cos2 v, and then cos v should be replaced as
per the case above.

E.g. using these rules, we readily find that
∫

dvr0 cos v =
b

e
(bv − E)

Solution of the Equations of Motion (Concluded)
In terms of v, the differential operator is:

D =
b2

r2
0

[ d2

dv2
+

(
4− 3r0

b2

)]

which immediately yields this fruitful result:

D[exp(inv)] =
[ (4− n2)b2

r2
0

− 3
r0

]
exp(inv)

where exp(iv) = cos v + i sin v as usual.
Since D is linear (i.e. D(f + g) = Df +Dg), we may apply it to a sum of functions:

D
[exp(iv)b2

r0

]
= D

[
exp(iv)(1 + e cos v)

]
= D

[e

2
exp(i2v) + exp(iv) +

e

2

]

=
e

2

[ (4− 22)b2

r2
0

]
exp(i2v) +

[ (4− 12)b2

r2
0

]
exp(iv) +

e

2

[ (4− 02)b2

r2
0

]
− 3

r0

[e

2
exp(i2v) + exp(iv) +

e

2

]

=
e

2
(0) exp(i2v) +

(3b2

r2
0

)
exp(iv) +

2b2e

r2
0

− 3
r0

[exp(iv)b2

r0

]

=
2b2e

r2
0

Give names to the real and imaginary parts of the differand here:

f + ig
4
=

b2

r0
(cos v + i sin v)
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Taking the imaginary part of each side above, Dg = 0, so g is a homogeneous solution. Similarly, f is an
inhomogeneous solution. Let us therefore guess a solution to the equation of motion in the form

A =
C1

be
f + gh

for h an unknown function. By formal substitution:

DA =
C1

be
(Df) + (Dg)h +

[ d

dM
(r2

0ḣ)
]
g + 2r2

0 ġḣ

=
2bC1

r2
0

+ (0)h +
1
g

d

dM
(r2

0g
2ḣ)

Equating to the right-hand side of the equation of motion, we find a differential equation for function h:

1
g

d

dM
(r2

0g
2ḣ) = −αr0

e
+

2βb

r2
0

Ix + βr0 sin v

Substituting the definition g = (b2/r0) sin v = (b3/er0)ṙ0 and integrating once:

b4 sin2 vḣ = −αb3

e2

∫
dr0 +

2βb4

e

∫
dr0

r3
0

Ix +
βb3

e

∫
dr0 sin v

The α term integrates immediately, but the β terms must be integrated by parts. That is,

b4 sin2 vḣ = −αb3

e2
(r0 + C2) +

2βb4

e

(
− 1

2r2
0

Ix +
∫

dM
1

2r2
0

dIx

dM

)
+

βb3

e

(
r0 sin v −

∫
dvr0 cos v

)

where C2 is the 2nd of the 4 constants of integration. (It absorbs the constants of integration from the β
terms.)

From its definition dIx/dM = r0 cos v and dM = (r2
0/b)dv, so the two indefinite integral terms cancel

out, leaving

b4 sin2 vḣ = −αb3

e2
(r0 + C2) +

βb3

e

(
− bIx

r2
0

+ r0 sin v
)

Integrate again and convert both M and v to E:

h = − α

b3e2

∫
dE

(r4
0 + C2r

3
0)

sin2 E
+

β

b2e

(
−

∫
dE

r0Ix

sin2 E
+

∫
dE

r3
0

sin E

)

Since dE/ sin2 E = d(− cot E), we may integrate by parts:

h = − α

b3e2

[
−(r4

0+C2r
3
0) cot E+

∫
dE cot E(4r3

0+3C2r
2
0)(e sin E)

]
+

β

b2e

[
cot E(r0Ix)−

∫
dE cot E(e sin E)Ix

−
∫

dE cot Er0(r2
0 cos v) +

∫
dE

r3
0

sin E

]

The last two indefinite integrals merge:

=
α

b3e2

[
(r4

0 +C2r
3
0) cot E−

∫
dE(4r3

0 +3C2r
2
0)(e cos E)

]
+

β

b2e

(
r0Ix cot E−

∫
dEeIx cos E +

∫
dEr2

0 sin E
)

It is convenient to define hα and hβ as the sums of all terms here which are multiplied by α and by β,
respectively.
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To compute hα, it is useful to define a nonce integral:

Jn
4
=(n + 1)

∫
dE(e cosE)rn

0

Re-expressing,
hα =

α

b3e2

[
(r4

0 + C2r
3
0) cot E − J3 − C2J2 + C3

]

where C3 is the 3rd of the 4 constants of integration, and absorbs the constants of integration from the β
terms.

Integrate Jn by parts:

Jn = (n + 1)rn
0 (e sin E)− (n + 1)

∫
dE

(
nrn−1

0 e sinE
)
(e sin E)

Replace e2 sin2 E by e2 − (1− r0)e cos E:

Jn = (n + 1)rn
0 e sin E − (n + 1)ne2

∫
dErn−1

0 + (n + 1)Jn−1 − nJn

Rearranging,

Jn − Jn−1 = rn
0 e sin E − e2

∫
dEnrn−1

0

Sum this equation for values of n down to 0; the sums on the left telescope and J−1 = 0, hence

Jn = e sin E

n∑

j=0

rj
0 − e2

∫
dE

n∑

j=0

jrj−1
0

The geometric sums here can be simplified to closed forms, but the latter one is not readily integrable.
Instead, substitute r0 = 1− e cos E, and perform the latter integral directly.

J2 = (1 + r0 + r2
0 + 2e2)e sinE − 3e2E

J3 =
(
1 + r0 + r2

0 + r3
0 +

13e2 + 3e2r0

2

)
e sin E − e2

(12 + 3e2

2

)
E

This completes hα. To compute hβ , we integrate using the substitution sin E = (1/e)(dr0/dE), as
described in the previous section:

hβ =
β

b2e

{[
− 3

2
er0E cot E +

1
2
(2e2r0 + r0 + r2

0) cos E
]

+
3
2
e2(cos E + E sin E) +

1
2e

(r3
0 + e2r2

0 − 2e2r0 − r0)
}

=
β

2b2
(−3bE cot v + 3− 3r0 − r2

0)

Note to reviewers: I have double-checked the algebra thru here.
Therefore, combining all terms, including ghβ ,

A =
C1b

e

cos v

r0
+

α

2e3

[
e2r0 + b2e2 +

2b4

r0
− 2b6

r2
0

+ (2C2 + 5− b2)
{

e2 +
(5b2 − 6)

r0
− (2b2 − 3)b2

r2
0

+
3e3E sin E

r2
0

}]
+

αC3

be2

sin v

r0
+

β

2r0
[−3bE cos v + (3− 3r0 − r2

0) sin v]
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We can now integrate the solution to the tangential equation a 2nd, final, time:

B =
∫

dv
(C1

b
− 2A

)
− αb

2e
M + C4

where C4 is the last of our 4 constants of the motion.
As time passes, M , E and v all become indefinitely large, each increasing by 2π after every orbit. Terms

involving these angles outside of trigonometric functions will cause secular increase. In A, secular buildup is
caused by the E term; however, its coefficient will be 0 if

2C2 + 5− b2 = 0

which is the same as
C2

4
=− 2− 1

2
e2

Note to reviewers: Is this specification of a free constant permissible?
Replacing C2 with this value, A is simplified:

A =
C1b

e

cos v

r0
+

α

2e3

(
e2r0 + b2e2 +

2b4

r0
− 2b6

r2
0

)
+

αC3

be2

sin v

r0
+

β

2r0
[−3bE cos v + (3− 3r0 − r2

0) sin v]

Now the integration of A becomes:
∫

dv
(C1

b
− 2A

)
=

C1

be

∫
dv

(
e− 2b2 cos v

r0

)
− α

e3

∫
dv

(
e2r0 + b2e2 +

2b4

r0
− 2b6

r2
0

)
− 2αC3

be2

∫
dv

sin v

r0
+ Bβ

The computation splits naturally into evaluation of the three integrals shown, plus that of Bβ , which is done
afterward.

Substituting r0 = b2/(1 + e cos v), the 1st integral here becomes elementary.

C1

be

∫
dv

(
e− 2b2 cos v

r0

)
= −C1

be
(2 sin v + e cos v sin v)

Similarly, substitute for r0 in the 2nd integral, except in the 1st term, where we substitute dE = (r0/b)dv:

− α

e3

∫
dv

(
e2r0 + b2e2 +

2b4

r0
− 2b6

r2
0

)
= − α

e3

[
be2E − b2

(
1 +

b2

r0

)
e sin v

]

From above, dv = dr0b
2/(er2

0 sin v), so we easily perform the 3rd integral:

2αC3

be2

∫
dv

sin v

r0
= −αbC3

e3r2
0

Summing up,

B = −αb

2e
(2E + M) +

(αb2

e2
− C1

be

)(
1 +

b2

r0

)
sin v − αbC3

e3r2
0

+ Bβ + C4

Note to reviewers: Hmmm. The secular term isn’t 0. I must recheck my calculations.
The contribution of the β term to B is therefore:

Bβ
4
=

∫
dv

{
− 2

β

2r0
[−3bE cos v + (3− 3r0 − r2

0) sin v]
}

Substitute for r0 in the 1st term and sin v = (b2/er2
0)(dr0/dv) in the latter term:

=
3β

b

∫
Edv cos v(1 + e cos v) +

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)

11



Integrate the 1st term by parts, and then substitute for sin v in the resulting integral:

=
3β

b

{
E

[e

2
v + sin v

(
1 +

e

2
cos v

)]
−

∫
dE

[e

2
v + sin v

(
1 +

e

2
cos v

)]}
+

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)

=
3β

2b

[
E sin v

(
1 +

b2

r0

)
+ e

∫
dvE + b cos v − b

e
ln r0 +

b

e
ln b2

]
+

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)

The integral
∫

dvE is a hard nut to crack. It can be expressed as:
∫

dvE =
∫

dv
[
2 tan−1

( b

1 + e
tan

v

2

)]

Perhaps we can differentiate the integrand with respect to e, perform the integral with respect to v, and
then perform the integral with respect to e, so that

∫
dvE =

∫
de

∫
dv

d

de

[
2 tan−1

( b

1 + e
tan

v

2

)]

=
∫

de

∫
dv

− sin v

b(1 + cos v)

=
∫

de
ln(1 + cos v)

be

Note to reviewers: This is as far as I’ve come. Can you help me finish?

Appendix 1. Computation of a Complete Elliptic Integral
Define I as the integral we seek 〈−→pN

〉 ≈
( mN

mSun

)
Ix̂

where

I
4
=

1
2π

∫ π

−π

dM
cosM − aN sin 3M

2(
1 + a2

N − 2aN sin M
2

)3/2

To convert it closer to a standard form, substitute M = 4θ − π, so

I = − 2
π(1 + aN )3

∫ π
2

0

dθ
cos 4θ + aN cos 6θ

(1−m sin2 θ)3/2

The elliptic modulus m
4
=4aN/(1 + aN )2 has the value 0.98195 since aN has the value 0.76314.

A handy formula for the trigonometric function of a multiple angle argument is:

cos 2nθ =
n∑

l=0

(
n + l

2l

)
n

n + l
(−4 sin2 θ)l

which is obtained by expanding first deMoivre’s Formula and then cos2 θ = 1 − sin2 θ by the Binomial
Theorem, exchanging summations and performing the inner one.

In particular,
cos 4θ = 1− 8 sin2 θ + 8 sin4 θ

and
cos 6θ = 1− 18 sin2 θ + 48 sin4 θ − 32 sin6 θ

For nonce use, define a sequence of elliptic integrals:

In(m)
4
=

∫ π
2

0

dθZ
n
2

12



where
Z = 1−m sin2 θ

Make these trigonometric substitutions, replace sin2 θ everywhere by (1− Z)/m and integrate:

I = − 2
π(1 + aN )3

{
32aNI3(m) +

[
48aN (m− 2) + 8m

]
I1(m) +

[
6aN (3m2 − 16m + 16) + 8m(m− 2)

]
I−1(m)

+
[
aN (m3 − 18m2 + 48m− 32) + (m3 − 8m2 + 8m)

]
I−3(m)

}

Two standard elliptic integrals are E(m)
4
=I1(m) and K(m)

4
=I−1(m). To compute the others, we differ-

entiate an expression similar to the integrand of In(m):

d

dθ

[
sin θ cos θZ

n
2
]

=
(
cos2 θ − sin2 θ

)
Z

n
2 − nm

(
sin2 θ cos2 θ

)
Z

n−2
2

=
1
m

[
(n + 2)Z

n+2
2 − (n + 1)(2−m)Z

n
2 + n(1−m)Z

n−2
2

]

Integrating this between limits 0 and π/2 yields 0 on the left-hand side, so that we have proven a
recurrence relation among our nonce integrals:

0 = (n + 2)In+2(m)− (n + 1)(2−m)In(m) + n(1−m)In−2(m)

In particular, for n = 1 and −1:

I3(m) =
2
3
(2−m)I1(m)− 1

3
(1−m)I−1(m)

and
I−3(m) =

1
1−m

I1(m)

It is clear that, numerically, integral I−3(m) contributes the most to I, since 1−m in the denominator
is so small. In fact, it dominates the upper bound found in the main part of this paper.

Using these relations:

I = − 2
π(1 + aN )3

{ 1
3(1−m)

[
aN (3m3 − 134m2 + 384m− 256) + 3m(m2 − 16m + 16)

]
E(m)

+
[2
3
aN (27m2 − 128m + 128)− 8m(2−m)

]
K(m)

}

Since m is very close to 1, let us re-express I in terms of the small quantity m1
4
=1−m ≈ 0.01805:

I = − 2
π(1−m1)3(1 + aN )3

{
− 1

3m1

[
aN (3+125m1 +125m2

1 +3m3
1)− 3(1−m1)(1+14m1 +m2

1)
]
E(1−m1)

+
[2
3
aN (27 + 74m1 + 27m2

1)− 8(1−m2
1)

]
K(1−m1)

}

Substituting numerical values for aN and m1:

I ≈ −0.75314E(0.98195) + 0.74605K(0.98195)

For values of the elliptic modulus approaching 1 [Abramowitz & Stegun, Handbook of Mathematical
Functions, Washington DC 1964, p. 591]

K(1−m1) ≈ ln
4√
m1

E(1−m1) ≈ π

2

(
1− m1

4

)

so I ≈ 1.3542 and 〈−→pN

〉 ≈ −1.3542
( mN

mSun

)

As expected, the exact computation of integral I gives a value well inside the upper bounds estimated
in the main part of this paper.
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Appendix 2. Alternate Solution When Perturbation has a Y-Component

Let us abbreviate this for later use: 〈−→pN

〉 ≈ −αx̂− βŷ

where 0 < α, β ¿ 1.
We can therefore write two differential equations of motion, in the scalar functions A(M) and B(M).

The radial one is:
d

dM
(r2

0Ȧ)− 2bḂ − 3
r0

A = αr0 cos v + βr0 sin v

And the tangential one is:

2bȦ +
d

dM
(r2

0Ḃ) = −αr0 sin v + βr0 cos v

Since sin v = bṙ0/e, we can easily integrate the tangential equation once:

2bA + r2
0Ḃ = −αb

2e
r2
0 + βIx + C1

where
Ix
4
=

∫
dMr0 cos v =

1
2
[−3eE + (2e2 + 1 + r0) sin E]

and C1 is a constant of integration, the 1st of the 4 that we must find.
Using this solution, we can eliminate Ḃ from the radial equation. In the resulting equation, we give the

name D to the 2nd order differential operator on the left-hand side:

DA
4
=

d

dM
(r2

0Ȧ) +
(
− 3

r0
+

4b2

r2
0

)
A

= αr0 cos v − αb2

e
+

2βb

r2
0

Ix + βr0 sin v +
2b

r2
0

C1

= −αr0

e
+

2βb

r2
0

Ix + βr0 sin v +
2b

r2
0

C1

since r0 = b2/(1 + e cos v).
Equating to the right-hand side of the equation of motion, we find a differential equation for function h:

1
g

d

dM
(r2

0g
2ḣ) = −αr0

e
+

2βb

r2
0

Ix + βr0 sin v

Substituting the definition g = (b2/r0) sin v = (b3/er0)ṙ0 and integrating once:

b4 sin2 vḣ = −αb3

e2

∫
dr0 +

2βb4

e

∫
dr0

r3
0

Ix +
βb3

e

∫
dr0 sin v

The α term integrates immediately, but the β terms must be
integrated by parts. Hence

b4 sin2 vḣ = −αb3

e2
(r0 + C2) +

2βb4

e

(
− 1

2r2
0

Ix +
∫

dM
1

2r2
0

dIx

dM

)
+

βb3

e

(
r0 sin v −

∫
dvr0 cos v

)

where C2 is the 2nd of the 4 constants of integration. (It absorbs the constants of integration from the β
terms.)
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From its definition dIx/dM = r0 cos v and dM = (r2
0/b)dv, so the two indefinite integral terms cancel

out, leaving

b4 sin2 vḣ = −αb3

e2
(r0 + C2) +

βb3

e

(
− bIx

r2
0

+ r0 sin v
)

Integrate again and convert both M and v to E:

h = − α

b3e2

∫
dE

(r4
0 + C2r

3
0)

sin2 E
+

β

b2e

(
−

∫
dE

r0Ix

sin2 E
+

∫
dE

r3
0

sin E

)

Since dE/ sin2 E = d(− cot E), we may integrate by parts:

h = − α

b3e2

[
−(r4

0+C2r
3
0) cot E+

∫
dE cot E(4r3

0+3C2r
2
0)(e sin E)

]
+

β

b2e

[
cot E(r0Ix)−

∫
dE cot E(e sin E)Ix

−
∫

dE cot Er0(r2
0 cos v) +

∫
dE

r3
0

sin E

]

The last two indefinite integrals combine:

= − α

b3e2

[
−(r4

0 +C2r
3
0) cot E+

∫
dE(4r3

0 +3C2r
2
0)e cosE

]
+

β

b2e

(
r0Ix cot E−

∫
dEeIx cos E+

∫
dEr2

0 sin E
)

The integrals in the β term are readily done using sin E = (1/e)(dr0/dE), so the β term in h is:

hβ
4
=

β

b2e

{[
− 3

2
er0E cot E +

1
2
(2e2r0 + r0 + r2

0) cos E
]

+
3
2
e2(cos E + E sin E) +

1
2e

(r3
0 + e2r2

0 − 2e2r0 − r0)
}

=
β

2b2
(−3bE cot v + 3− 3r0 − r2

0)

I have double-checked the algebra thru here.
Therefore, combining all terms, including ghβ ,

A =
C1b

e

cos v

r0
+

α

2e3

[
e2r0 + b2e2 +

2b4

r0
− 2b6

r2
0

+ (2C2 + 5− b2)
{

e2 +
(5b2 − 6)

r0
− (2b2 − 3)b2

r2
0

+
3e3E sin E

r2
0

}]
+

αC3

be2

sin v

r0
+

β

2r0
[−3bE cos v + (3− 3r0 − r2

0) sin v]

We can now integrate the solution to the tangential equation a 2nd, final, time:

B =
∫

dv
(C1

b
− 2A

)
− αb

2e
M + C4

where C4 is the last of our 4 constants of the motion.
The contribution of the β term to B is therefore:

Bβ
4
=

∫
dv

{
− 2

β

2r0
[−3bE cos v + (3− 3r0 − r2

0) sin v]
}

Substitute for r0 in the 1st term and sin v = (b2/er2
0)(dr0/dv) in the latter term:

=
3β

b

∫
Edv cos v(1 + e cos v) +

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)
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Integrate the 1st term by parts, and then substitute for sin v in the resulting integral:

=
3β

b

{
E

[e

2
v + sin v

(
1 +

e

2
cos v

)]
−

∫
dE

[e

2
v + sin v

(
1 +

e

2
cos v

)]}
+

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)

=
3β

2b

[
E sin v

(
1 +

b2

r0

)
+ e

∫
dvE + b cos v − b

e
ln r0 +

b

e
ln b2

]
+

βb2

2e

( 3
r2
0

− 6
r0

+ 2 ln r0

)

The integral
∫

dvE is a hard nut to crack. It can be expressed as:

∫
dvE =

∫
dv

[
2 tan−1

( b

1 + e
tan

v

2

)]

Perhaps we can differentiate the integrand with respect to e, perform the integral with respect to v, and
then perform the integral with respect to e, so that

∫
dvE =

∫
de

∫
dv

d

de

[
2 tan−1

( b

1 + e
tan

v

2

)]

=
∫

de

∫
dv

− sin v

b(1 + cos v)

=
∫

de
ln(1 + cos v)

be
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