3882. Originally proposed by Mehmet Sahin; corrected version by Arkady Alt.

Let ABC be a right angle triangle with $\angle CAB = 90^{\circ}$ and hypotenuse a. Let [AD] be an altitude and let I_1 and I_2 be the incenters of the triangles ABD and ADC, respectively. Let ρ be the radius of the circle through the points B, I_1 and I_2 and let r be the inradius of the triangle ABC. Prove that

$$\rho = \sqrt{\frac{a^2 + 2ar + 2r^2}{2}}$$

and min $\frac{\rho}{r} = \sqrt{3} + \sqrt{6}$.

3883. Proposed by Max A. Alekseyev.

Let a, b, c, d be positive integers such that a+b and ad+bc are odd. Prove that if $2^a-3^b>1$, then 2^a-3^b does not divide 2^c+3^d .

3884. Proposed by Mihai Bogdan.

Let a, b, c and d be positive real numbers such that a + b + c + d = k, where $k \in (0, 8)$. Prove that:

$$\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{d^2+1}+\frac{d}{a^2+1}\geq \frac{k(8-k)}{8}.$$

When does the equality hold?

3885. Proposed by Oai Thanh Dao.

Let ABC be a triangle and let F be a point that lies on a circumcircle of ABC. Further, let H_a , H_b and H_c denote projections of the orthocenter H onto sides BC, AC and AB, respectively. The three circles AH_aF , BH_bF and CH_cF meet the three sides BC, AC and AB at points A_1 , B_1 and C_1 , respectively. Prove that the points A_1 , B_1 and C_1 are collinear.

3886. Proposed by Michel Bataille.

Let $H_n = \sum_{k=1}^n \frac{1}{k}$ be the *n*th harmonic number and let $H_0 = 0$. Prove that for $n \ge 1$, we have

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} 2^k H_k = 2H_n - H_{\lfloor n/2 \rfloor}.$$

3887. Proposed by Dao Hoang Viet.

Let a, b and c be positive real numbers. Prove that

$$\frac{a^2}{bc(a^2+ab+b^2)} + \frac{b^2}{ac(b^2+bc+c^2)} + \frac{c^2}{ab(a^2+ac+c^2)} \geq \frac{9}{(a+b+c)^2}$$

Crux Mathematicorum, Vol. 39(9), November 2013