Lecture 10:
Market Power and Monopoly

November 3, 2015
Overview

Course Administration

Ripped From Headlines

Sources of Market Power

Market Power and Marginal Revenue

Profit Maximization and Market Power

How a Firm With Market Power Reacts to Market Changes

Winners and Losers From Market Power

Governments and Market Power: Regulation, Antitrust and Innovation
Course Administration

1. Midterm answers posted, Problem Set 7 answers posted
2. Problem Set 9 is posted
3. Come see me about your papers!
4. New office hours
 - Wednesdays 10 to noon – but not tomorrow
 - This class builds on previous concepts, so please discuss midterm questions you didn’t follow with me or Monika
Ripped from the Headlines

Next Week Afternoon

Finder Presenter
David Meni Giana Mandel

Evening

Finder Presenter
Katie Deeter Donna Iken
Jessica Brady Haozheng Wang
Why Study Market Power?

- Most markets are imperfect to some degree
- Economists believe there is a role for government in easing market imperfections
- Today
 - How does limited competition impact consumption and production?
 - What is government’s role in improving competition?
What is Market Power?

• Market power \equiv when a firm has the ability to influence the market price
• Monopoly \equiv market served only by one firm
• Monopolist \equiv sole supplier and price setter of good on the market
Where Does Market Power Come From?

1. “Natural” monopolies
2. Switching costs
3. Product Differentiation
4. Absolute Cost Advantages
5. Government barriers to entry
1. Natural Monopolies

- An industry in which average total cost is always decreasing
 - Note that this also implies decreasing marginal cost
- This means that it is efficient for one firm to produce the entire industry output
1. Natural Monopolies

- An industry in which average total cost is always decreasing
 - Note that this also implies decreasing marginal cost
- This means that it is efficient for one firm to produce the entire industry output

More on this at the end of class.
2. Switching Costs and Market Power

- Switching costs \equiv cost to consumer in switching between products – examples?
- Network goods have particularly high switching costs
- Network good \equiv good for which value to consumer increases with number of other consumers of the product

Product differentiation

- Imperfect substitutability across varieties of a product
- Observable if you are willing to pay a little more for a particular variant

Product differentiation

- Imperfect substitutability across varieties of a product
- Observable if you are willing to pay a little more for a particular variant

Absolute Cost Advantage

- Firm owns something or has a technology that makes it have lower costs relative to competitors
- Examples?
5. Government Regulation as a Barrier to Entry

• We’ve already given examples that limit entry – reprise?
5. Government Regulation as a Barrier to Entry

- We’ve already given examples that limit entry – reprise?
- Remember, over the long run, high profits are a temptation to entry, perhaps in a slightly altered form
5. Government Regulation as a Barrier to Entry

- We’ve already given examples that limit entry – reprise?
- Remember, over the long run, high profits are a temptation to entry, perhaps in a slightly altered form
- Don’t conclude that barriers to entry are always bad. They have a cost; does the cost justify the benefit?
Neither Perfect Competition Nor a Monopoly

- We say a firm has market power if it faces a downward sloping demand curve
 - Recollect – what did a demand curve look like to a perfectly competitive firm?
Neither Perfect Competition Nor a Monopoly

• We say a firm has market power if it faces a downward sloping demand curve
 • Recollect – what did a demand curve look like to a perfectly competitive firm?
• Firms in these types of markets face downward-sloping demand curves
 • Oligopoly ≡ an industry with few firms – examples?
 • Monopolistic competition ≡ many firms selling differentiated products
 • Monopoly
Marginal Revenue: Perfect Competition and Not

Perfect Competition

- What is marginal revenue?
Marginal Revenue: Perfect Competition and Not

Perfect Competition

- What is marginal revenue?
- If the firm perceives the demand curve as constant, then \(MR = P \)
Marginal Revenue: Perfect Competition and Not

Perfect Competition

- What is marginal revenue?
- If the firm perceives the demand curve as constant, then \(MR = P \)

Market Power

- We assume that the firm has to charge the same price for all units of the good
- As before, marginal revenue is the additional revenue from an additional unit of output sold
- However, selling an additional unit of output now requires lowering the price on all units of output
Market Power and Marginal Revenue in Pictures

Demand as Perceived by the Firm
Market Power and Marginal Revenue in Pictures

Can Think of Firm Choosing Either P or Q
Market Power and Marginal Revenue in Pictures

What is Revenue?

![Graph showing market power and marginal revenue in pictures]
Market Power and Marginal Revenue in Pictures

Revenue

P

\(p^* \)

Q

\(q^* \)

D
Market Power and Marginal Revenue in Pictures

Choose a Different Q
Market Power and Marginal Revenue in Pictures

Yields a Different P
Market Power and Marginal Revenue in Pictures

Different Revenue

\[D \]

\[Q^* \]

\[P^* \]

\[P \]

\[Q \]
Market Power and Marginal Revenue in Pictures

Compare Gains and Losses From Change in Production

The graph illustrates the relationship between price (P) and quantity (Q) in a market with different levels of production (Q1 and Q2). The areas labeled A, B, and C represent changes in revenue due to changes in market conditions. Areas A and B show gains, while area C shows losses. The diagonal line indicates the marginal revenue curve, which helps in comparing the gains and losses from changes in production.
Market Power and Marginal Revenue in Algebra

Define

\[MR = P + \frac{\Delta P}{\Delta Q} Q = \left(\frac{\partial TR}{\partial Q} \right) \]

- We know that \(\frac{\Delta P}{\Delta Q} \) is the slope of the demand curve, and that’s negative
- Thus, \(MR \) decreases as \(Q \) increases
Market Power and Marginal Revenue in Algebra

For a linear demand curve,

- Consider an inverse demand curve of form \(P = a + bQ \) (note similarity to \(y = b + mx \))
- We can rewrite \(MR \) as

\[
MR = P + \frac{\Delta P}{\Delta Q} Q \\
= (a + bQ) + bQ \\
= a + 2bQ
\]
Market Power and Marginal Revenue in Algebra

For a linear demand curve,

- Consider an inverse demand curve of form \(P = a + bQ \) (note similarity to \(y = b + mx \))
- We can rewrite \(MR \) as

\[
MR = P + \frac{\Delta P}{\Delta Q}Q \\
= (a + bQ) + bQ \\
= a + 2bQ
\]

- Note that the intercept is the same as the inverse demand curve, but the slope is twice as steep
- This is another formula you should memorize

Note: This is slightly different notation with signs than in the textbook; I find it clearer. Remember that \(b \) is negative, so the \(MR \) slope will always be negative.
Profit Maximization

What does a competitive firm set equal for profit maximization?

\[\text{MR} = \text{MC}, \quad \text{and we know that} \quad \text{MR} = P \]

What does a firm with market power set equal for profit maximization?

\[\text{MR} = \text{MC} \]

But \(\text{MR} \neq P \) (in general)
What does a competitive firm set equal for profit maximization?

- \(MR = MC \), and we know that \(MR = P \)
Profit Maximization

What does a competitive firm set equal for profit maximization?

- \(MR = MC \), and we know that \(MR = P \)

What does a firm with market power set equal for profit maximization?

- \(MR = MC \)
Profit Maximization

What does a competitive firm set equal for profit maximization?

- \(MR = MC \), and we know that \(MR = P \)

What does a firm with market power set equal for profit maximization?

- \(MR = MC \)
- But \(MR \) is more complicated
- And \(MR \neq P \) (in general)
Maximizing π with Market Power: Constant MC

Where is MR?
Maximizing π with Market Power: Constant MC

What is Profit Maximizing Q?
Maximizing π with Market Power: Constant MC

What is Profit Maximizing P?
Maximizing π with Market Power: Constant MC

Can See Revenues, but Not Costs
Maximizing π with Market Power: Increasing MC

Where is Profit Maximizing Q?
Maximizing π with Market Power: Increasing MC

What is Profit Maximizing P?
Maximizing π with Market Power: Increasing MC

What is Total Revenue?

\[P \quad D \quad Q \quad MR \quad Q^* \quad P^* \quad MC \quad ATC \]
Maximizing \(\pi \) with Market Power: Increasing \(MC \)

What are Total Costs?
Maximizing π with Market Power: Increasing MC

What is Profit?
Maximizing π with Market Power: Increasing MC

Market Power Yields Profits!
Profit Maximization with Market Power in Math

Profits are maximized at Q^* such that $MR = MC$. What are Q^* and P^*?
Use these three steps:

1. Find MR
 - If you have a linear demand curve, you can find $MR = a + 2bQ$
 - where b is the slope of the inverse demand curve
 - a is the y-intercept
 - Remember that the inverse demand curve is $P = f(Q)$

2. Set $MR = MC$

3. Find price from inverse demand curve
Profit Maximization with Market Power in Math

Profits are maximized at Q^* such that $MR = MC$. What are Q^* and P^*?

Use these three steps:

1. Find MR
 - If you have a linear demand curve, you can find $MR = a + 2bQ$
 - where b is the slope of the inverse demand curve
 - a is the y-intercept
 - Remember that the inverse demand curve is $P = f(Q)$

2. Set $MR = MC$

3. Find price from inverse demand curve

Return to picture for three steps.

Do not confuse MC curve with true supply curve, which is independent of demand.
Three Changes

1. Change in marginal cost
2. Outward shift in demand
3. Rotation of demand curve
Competitive Market and an Increase in MC

What happens to the equilibrium price and quantity?
Competitive Market and an Increase in MC

What happens to the equilibrium price and quantity?

- Supply curve shifts inward
- If supply is elastic, curve just shifts up
- Price increases
- Equilibrium Q declines
Competitive Market and an Increase in MC

What happens to the equilibrium price and quantity?

- Supply curve shifts inward
- If supply is elastic, curve just shifts up
- Price increases
- Equilibrium Q declines
- In the long run, cost increases fully passed along to consumers
Market Power and an Increase in MC

Review: Where is profit maximizing Q?
Market Power and an Increase in MC

Review: What is Profit Maximizing P?
Market Power and an Increase in MC

Draw an Increase in MC?
Market Power and an Increase in MC

What are New Profit Maximizing P and Q?

![Graph showing the relationship between price (P), quantity (Q), and marginal cost (MC). The graph illustrates the new profit-maximizing point (P_1^* and Q_1^*) after an increase in marginal cost from MC_1 to MC_2. The demand curve (D) intersects the marginal revenue (MR) to find the new equilibrium.]
Market Power and an Increase in MC

Prices Increase, Quantity Falls
P and Q and Outward Shift in Demand

What Does an Increase in Demand Look Like?
\(P \) and \(Q \) and Outward Shift in Demand

Where is the New \(MR \)?
P and Q and Outward Shift in Demand

Where is the New Q?

Diagram showing the relationship between price (P), quantity (Q), demand (D_1, D_2), marginal revenue (MR_1, MR_2), and marginal cost (MC). The new equilibrium is at P_1^* and Q_1^*.
P and Q and Outward Shift in Demand

Where is the New P?
P and Q and Outward Shift in Demand

Q increases, P decreases
Rotation of the Demand Curve: Perfect Competition

With P Constant, Rotate Demand Curve
Rotation of the Demand Curve: Perfect Competition

No Response in P or Q
Rotation of the Demand Curve: Market Power

Rotate Demand Curve

\[P \]
\[P^* \]
\[Q^* \]
\[Q \]
\[D \]
\[MC \]
\[MR \]
Rotation of the Demand Curve: Market Power

Where is New MR?
Rotation of the Demand Curve: Market Power

Where is the New Q?
Rotation of the Demand Curve: Market Power

Where is the New P?
Rotation of the Demand Curve: Market Power

\(Q \) increases, \(P \) decreases

\[D \]

\[D' \]

\[MC \]

\[MR \]

\[MR' \]

\[Q^* \]

\[Q^{*'} \]

\[P^* \]

\[P^{*'} \]
Try it Yourself: Roofer Market Power

Suppose the local roofing company has market power and faces the demand curve \(Q = 200 - \frac{P}{10} \), where \(Q \) is the number of roof jobs, and \(P \) is in dollars. The marginal cost for the firm is \(MC = 200 + 16Q \).

1. What is marginal revenue?
2. What is the profit maximizing output?
3. Price?
4. If the firm’s demand changes to \(Q = \frac{3500}{3} - \frac{P}{12} \), what is the new marginal revenue?
5. Profit maximizing output?
6. Price?
Producer and Consumer Surplus in Perfect Competition

Where are Consumer and Producer Surplus?
Producer and Consumer Surplus in Perfect Competition

It Stinks for Producers, and Is Good for Consumers

\[PS = 0 \]
Producer and Consumer Surplus with Market Power

Where is the Profit Maximizing P and Q?
Producer and Consumer Surplus with Market Power

Where are the Trades that Don’t Take Place?
Producer and Consumer Surplus with Market Power

Where is PS?
Producer and Consumer Surplus with Market Power

Where is CS?
Producer and Consumer Surplus with Market Power

Consumers Worse Off, Producers Better Off
Economists believe that there may be a role for government to improve efficiency if the market is not perfectly competitive.

- Direct price regulation
- Antitrust
- Granting monopolies: patents and copyright
Direct Price Regulation for Natural Monopolies

- Recall that whether a firm is a natural monopoly depends on its cost structure
- ATC are always decreasing
- When technology changes, cost structure may change
Direct Price Regulation for Natural Monopolies

• Recall that whether a firm is a natural monopoly depends on its cost structure
• \(ATC \) are always decreasing
• When technology changes, cost structure may change

At different points in time, these industries are or have been natural monopolies:

• telephone service
• public transit
• electricity distribution
• water and sewer services
Direct Price Regulation for Natural Monopolies

- Recall that whether a firm is a natural monopoly depends on its cost structure
- ATC are always decreasing
- When technology changes, cost structure may change

At different points in time, these industries are or have been natural monopolies:
- telephone service
- public transit
- electricity distribution
- water and sewer services
How to Set the Regulated Price?

• With a true natural monopoly, it’s most efficient to have only one firm in the market
• But might charge monopoly price
• → government price regulation
• Government cannot set a price below ATC, even if this is the perfectly competitive price. Why?
How to Set the Regulated Price?

• With a true natural monopoly, it’s most efficient to have only one firm in the market
• But might charge monopoly price
• → government price regulation
• Government cannot set a price below ATC, even if this is the perfectly competitive price. Why?
• Because the firm would go out of business!
How to Set the Regulated Price?

- With a true natural monopoly, it’s most efficient to have only one firm in the market
- But might charge monopoly price
- → government price regulation
- Government cannot set a price below ATC, even if this is the perfectly competitive price. Why?
- Because the firm would go out of business!
Recap of Today

- Market power
- Market power and marginal revenue
- Market power and profit maximization
- Reaction to market changes
- Welfare
- The role of government
Next Class

- Turn in Problem Set 9
- Public Goods: GLS, Chapter 16 and two podcasts, linked on webpage
- Reading packet needed for week after next