ECOLOGICAL UNCERTAINTY, ADAPTATION AND MITIGATION IN THE U.S. SKI RESORT INDUSTRY: MANAGING RESOURCE DEPENDENCE AND INSTITUTIONAL PRESSURES

PETE TASHMAN
Portland State University
School of Business Administration
631 SW Harrison Ave
Portland, OR 97205
Tel: (503) 725-8435
Fax: (503) 725-5850
e-mail: ptashman@pdx.edu

JORGE RIVERA
The George Washington University
School of Business
Funger 608
2201 G Street NW
Washington, DC 20052
Tel: (202) 994-0163
Fax: (202) 994-8113
e-mail: jrivera@gwu.edu

This is a submitted version, prior to acceptance, of the July 2016 article:

¹ We thank Melissa Appleyard, Tima Bansal, Magali Delmas, Ted Khoury, Andy King, Valentina Marano, Jennifer Oetzel, Desiree Pacheco, Anu Phene, Pamela Tierney, Jim Walsh, and Jorge Walter for the comments and suggestions to improve previous versions of this paper.

² This manuscript may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
ABSTRACT
We draw on resource dependence and institutional theories to study how firms manage uncertainty in nature (ecological uncertainty) in the U.S. ski resort industry. Through resource dependence theory, we develop the concept of ecological uncertainty and explain how it affects firms’ access to and management of natural resources. We then predict that firms adapt to ecological uncertainty with natural-resource-intensive practices, as well as practices that attempt to mitigate its underlying causes. Using institutional theory, we also predict that environmental expectations moderate these responses. Our results indicate that firms do manage ecological uncertainty with natural-resource-intensive practices, but not mitigation practices. They also show that stronger environmental expectations constrained firms’ from adopting natural-resource-intensive practices and promoted their adoption of mitigation practices in response to ecological uncertainty.

Keywords: resource dependence theory, institutional theory, uncertainty, adaptation, mitigation,

INTRODUCTION
Research on how economic, political, social, and organizational forces shape firms’ relationship with the natural environment is fairly well developed (e.g. Bansal and Roth, 2000; Jennings and Zandbergen, 1995; King and Lenox, 2001; Reid and Toffel, 2008; Sharma and Henriques, 2005). Still, very limited attention has been given to how the natural environment directly influences firm behavior (Winn, Kirchgeorg, Griffiths, Linnenluecke and Gunther, 2010). In this paper, we address this gap by studying how firms manage ecological uncertainty, which we define as
uncertainty caused by firms’ dependence on natural resources and changing natural environmental conditions that can disrupt firms’ access to those resources (Pindyck, 2000). Examples of ecological uncertainty include ski resorts with unreliable snowfall because of warming winters, agricultural firms with unreliable rainfall, and forestry firms’ uncertainty over timber harvests due to forest fires and pest that can damage standing timber (World Business Council for Sustainable Development (WBCSD), 2008).

We focus on two corporate responses to this form of uncertainty: natural-resource-intensive adaptation and ecological mitigation. We define natural-resource-intensive adaptation as the adoption of practices that draw on resources directly from nature in response to natural stimuli that affect access to those or other natural resources. The aim of these practices is to establish more reliable access to critical resources that are sensitive to natural stimuli, or to access other resources that can act as substitutes. Examples of natural-resource-intensive adaptation include ski resorts that use water-intensive snowmaking capabilities to compensate for unreliable snowfall, agricultural firms that use water-intensive irrigation capabilities to compensate for rainfall uncertainty, and forestry firms that accelerate their harvesting schedules to ensure that fire or pests do not destroy timber before it can be extracted (McCarthy, Canziani, Leary, Dokken and White, 2001). Ecological mitigation refers to practices that address the underlying causes of natural environmental change and ecological uncertainty (Shrivastava, 1995). Such practices are aimed at enhancing the health of natural systems to improve their capacity to continue generating renewable resources (Costanza and Daly, 1992). Examples of ecological mitigation include firm attempts to address climate-change-related uncertainty by

3 The term ecological uncertainty has been used in the field of environmental economics to refer to “uncertainty over the evolution of the relevant ecosystems” resulting from policies designed to protect them (Pyndick, 2000:235). We adapt the term to make it applicable to organizations and to account for the ecosystem dynamics that have ecological or social drivers.
reducing greenhouse gas emissions (GHG) or advocating for policies that constrain GHG reductions broadly across society (Hoffman, 2007).

To explain ecological uncertainty and how firms attempt to manage it, we draw on resource dependence and institutional theories. We rely on resource dependence theory because it focuses on firms’ dependence on external resources and the uncertainty they face in accessing those resources. More specifically, we use it to explain how natural-resource-intensive adaptation may help firms cope with uncertainty located in nature by establishing more reliable access to the resources in question. We also use it to explain how firms may attempt to mitigate sources of environmental change that cause ecological uncertainty to reduce the potential for such uncertainty over the long-term. We use institutional theory to explain how societal pressures shape firm responses to ecological uncertainty. In particular, we argue that environmental institutional pressures may constrain firms’ ability to adapt to ecological uncertainty with natural-resource-intensive practices because natural resource consumption is a sensitive environmental issue (Kassinis and Vafeas, 2006). We also argue that these pressures strengthen the relationship between ecological uncertainty and mitigation by enhancing managers’ perceptions of the effectiveness of mitigation practices.

We conducted our study in the U.S. ski resort industry, which contains a number of firms facing uncertainty associated with climate change and snowfall since the 1980s (Barnett, Adam and Lettenmaier, 2005; Burakowski and Magnusson, 2012; Koenig and Abegg, 1997; Pederson et al., 2011). Our sample consists of 83 western U.S. ski resorts and 861 resort-year observations during the 2003-2013 time period. Results indicate that ski resorts adapt to snowfall uncertainty by increasing their use of the natural-resource-intensive practices of snowmaking and terrain expansion. Contrary to expectations, results did not show that these resorts engaged in more
climate-change-mitigation practices. Finally, we found that environmental institutional pressures constrained ski resorts’ adoption of natural-resource-intensive practices and increased their mitigation efforts as a response to snowfall uncertainty.

This study contributes to research on resource dependence theory and on the relationship between firms and the natural environment. First, it extends resource dependence theory into the natural realm by showing how corporate responses to ecological uncertainty differ from responses to organizational interdependence. Prior research has shown how resource dependence on other organizations constrains firms’ consumption of natural resources (Frooman, 1999; Henriques and Sadorsky, 1999). Our study shows, however, how ecological uncertainty induces firms to increase their use of these resources. Further, the study answers calls to assess how institutional pressures shape how firms manage resource-dependence-related uncertainty (Hillman et al., 2009; Wry, Cobb and Aldrich, 2013). Finally, it adds to the limited attention given to nature’s influence on firm behavior (Hart and Dowell, 2011; Winn et al., 2010). Next, we detail our theory and hypotheses, study context, methods, results, and implications.

THEORY AND HYPOTHESES

The strategy discipline has generated a rich body of research on corporate environmental management, generating numerous insights and contributions to organizational theories, including the resource based and dynamic capabilities views (e.g. Hart & Dowell, 2011), neoinstitutional theory (e.g. Hoffman, 1999), stakeholder theory (e.g. Frooman, 1999) and transaction cost economics (e.g. King, 2007). Scholars primary topics of interest in this area include “win-win” strategies that generate economic and environmental benefits simultaneously, social and political pressures on organizations to limit negative environmental impacts, economic
incentives to create positive ones, and collective action problems facing firms and industries that are managing widespread environmental problems (Berchicci and King, 2007).

Firms also face another environmental issue that has received little attention: direct pressure from the natural environment that can gradually or suddenly undermine a firm’s business model. Historically, nature has consistently generated physical challenges for firms from phenomena such as desertification, drought, extreme weather, flooding, the spread of invasive species and diseases, and collapsing ecosystems, all of which can impact firms’ access to critical natural resources (Hart, 1995). These pressures sometimes involve “profound uncertainties” (Winn et al., 2011: 158) due to the inherent complexity, size, and multi-level/multi-system configuration of the natural systems that generate them (Starik & Rands, 2005). More recently, evidence has been mounting that nature’s impacts on firms and society-at-large are becoming “severe, pervasive, and irreversible” (Howard-Grenville et al., 2014: 617).

For these reasons, we use this study as an opportunity to better understand how ecological uncertainty affects firms, and how firms manage it. We rely on resource dependence theory since this perspective focuses on external uncertainty and its effects on critical resources that are generally outside of the firm’s control (Pfeffer and Salancik, 1978). The extant theory focuses on the external resources controlled by other organizations in firms’ institutional and industry environments, and uncertainty due to firms’ interdependence with these organizations (Wry et al., 2013). Our application of resource dependence theory extends its boundaries into the natural environment, to explain uncertainty caused by firms’ direct dependence on nature (Starik and Rands, 1995, Winn et al., 2010). Below, we propose how ecological uncertainty could lead to natural-resource-intensive adaptation and ecological mitigation, and how institutional pressures shape these relationships. Figure 1 illustrates our model.
Ecological uncertainty and natural-resource-intensive adaptation

Pfeffer and Salancik (1978) argued that firms can cope with uncertainty by adapting to their interdependence with other organizations. The goal of such efforts is to maintain access to critical resources that are outside their own control (Hillman et al., 2009; Wry et al., 2013). In research on corporate environmental management, a number of papers have used resource dependence theory to study how interdependence with other organizations can influence firms’ environmental performance (e.g. Frooman et al. 1999; Henriques and Sadorsky, 1995; Kassinas and Vafeas, 2006; Sharma and Henriques, 2005). Generally, they examined how environmentally-concerned stakeholders create uncertainty for firms by threatening to withhold critical resources because of poor corporate environmental performance. In response, firms tended to improve their environmental performance by reducing their use of natural resources.

We contend that ecological uncertainty may have the opposite effect on firms’ consumption of natural resources. Specifically, we believe it may induce firms to engage in adaptation that increases, rather than decreases, their use of these resources for three reasons. First, natural-resource-intensive adaptation can help firms establish different sources of critical natural resources that are subject to less uncertainty. For example, farming operations facing uncertainty due to unreliable rainfall may be able to use more stable supplies of groundwater to irrigate their farmland (Wall and Smit, 2005). Second, because the direct firm – natural environment relationship does not involve organizational interdependence, firms may be less constrained by other organizations when they wish to use resources that come directly from
nature (Ostrom, 1999). Third, firms may be able to externalize costs of consuming resources that come directly from nature since the use of some of these resources is not regulated in a way that reflects their value to ecological and social systems (Costanza and Daly, 1992).

We consider three types of natural-resource-intensive adaptation that can help firms adjust to ecological uncertainty. First, firms may be able to buffer themselves from ecological uncertainty by increasing their inventories of the critical natural resources in question. These efforts can reduce firms’ sensitivity to near-term ecological uncertainty by ensuring that they have stocks of critical resources on hand. Buffering may be achieved when firms use new natural resources from an existing site, or develop new supply channels for those resources at different sites. For example, in response to bark beetle infestations in commercial forests, many forestry firms have hastened harvesting schedules on existing sites to extract as much timber as possible before it is damaged by the beetles (Spittlehouse and Stewart, 2003). Second, firms may be able to develop substitutes for uncertain natural resources by expanding capabilities that draw on different or more stable supplies of those resources. For example, as ocean fisheries have become increasingly scarce, the commercial fishing industry is shifting to the use of aquaculture, which is typically situated in coastal lowlands and mangroves and requires aquatic and biotic resources from those systems (Piedrahita, 2003). Third, firms may be able to diversify their revenue streams by using natural-resource-intensive practices to develop new lines of business that are less sensitive to ecological uncertainty. For example, many ski resorts have developed real estate businesses in their mountain environments as snowfall uncertainty has made skiing operations less valuable (Scott and McBoyle, 2007). For these reasons, we predict that:

Hypothesis 1: Ecological uncertainty is positively related to natural-resource-intensive adaptation.
Ecological uncertainty, natural-resource-intensive adaptation, and environmental institutional pressures

Firms’ ability to adapt to ecological uncertainty with natural-resource-intensive practices may depend on the strength of environmental institutional pressures, which refer to the regulatory, normative, and cultural pressures that shape how firms interpret and manage environmental issues (Bansal and Clelland, 2004). As environmental institutional pressures become stronger, firms may need to increase their commitment to protecting the natural environment to maintain their environmental legitimacy (Bansal, 2005; Hoffman, 1999). Environmental legitimacy refers to “the generalized perception or assumption that a firm’s corporate environmental performance is desirable, proper, or appropriate. Stakeholders - which include managers, customers, investors, and community members – assess the firm’s legitimacy according to their own distinct and diverse norms, ‘cognitive maps,’ and pragmatic preferences” (Bansal and Clelland, 2004: 94). We contend that stronger environmental institutional pressures may constrain natural-resource-intensive adaptation because they may create legitimacy challenges for firms with environmentally-concerned stakeholders (Kotler, 2011).

In particular, more stringent regulatory pressures can deter firms from responding to ecological uncertainty with natural-resource-intensive practices when they involve coercive monitoring and sanctioning mechanisms (Kassinas and Vafeas, 2006). Regulatory bodies charged with establishing environmental conservation policies with robust oversight and sanctioning mechanisms have shown themselves effective at deterring natural resource consumption (Darnall and Sides, 2008). In addition, normative expectations may pressure firms to resist managing ecological uncertainty with natural-resource-intensive practices, in order to avoid scrutiny from activist stakeholders who question the moral validity of such practices.
Activist stakeholders have successfully generated normative pressures that deter firms from adopting natural-resource-intensive practices by engaging in publicity campaigns that use moral arguments to appeal to other powerful stakeholders, such as customers and investors (Frooman, 1999; Reid and Toffel, 2009). Finally, cultural expectations can generate mimetic pressures on firms to limit their use of natural-resource-intensive practices as a response to ecological uncertainty. Firms tend to be geographically embedded in social communities that share ideologies, identities and traditions, and by implication, expectations around corporate environmental responsibility. Further, they often internalize and conform to these expectations in order to “appear legitimate to key stakeholders” (Marquis, Glynn and Davis, 2007: 932). Thus, we expect that cultural expectations for conserving natural resources to translate into reduced use of this natural-resource-intensive practices for firms embedded in those communities. Based on these considerations, we predict that:

Hypothesis 2: Environmental institutional pressures negatively moderate the relationship between ecological uncertainty and natural-resource-intensive adaptation.

Ecological uncertainty and ecological mitigation

Above, we argue that natural-resource-intensive adaptation may help firms manage ecological uncertainty in the near-term; however, this form of uncertainty may intensify and persist over time, and ultimately overtake firms’ adaptive capacity (Winn et al., 2010). Thus, we believe that firms may also adopt ecological mitigation practices to address long-term threats from ecological uncertainty (Shrivastava, 1995). As mentioned above, such efforts aim to improve the health of natural systems generating ecological uncertainty, in order to help them to continue to reliably provide firms with renewable natural resources (Costanza and Daly, 1992). For example, some forestry firms are adopting sustainable harvesting practices to improve forest health and decrease
the sensitivity of timber to wildfires and bark beetles. In addition, some of these firms are working with non-governmental organizations (NGOs) such as the Forest Stewardship Council and Rainforest Alliance to establish standards that can be promoted to the industry-at-large (Bartley, 2007; Sharma and Henriques, 2005). More broadly, in industries that are concerned about the issue of climate change, many firms are reducing their GHG emissions and investing in GHG sinking projects to support broader policy efforts to stabilize the atmosphere and mitigate potential climate-change-related uncertainty (PricewaterhouseCoopers, 2010). Such efforts include improvements in energy efficiency, using renewable energy and GHG emissions offsets, promoting ecological mitigation behaviors among firms’ stakeholders, and advocating for regulations that reduce GHG emissions in public policy process (Hoffman, 2007).

If ecological uncertainty is localized, firms may be able to mitigate ecological uncertainty effectively on their own. For example, some commercial fishing operations have been able to manage uncertainty associated with collapsing fisheries by developing health-monitoring systems for affected fisheries and reducing catch volumes to help fisheries to recover when needed (Gulbrandsen, 2009). When the source of the uncertainty is located in geographically-dispersed natural systems, such as changes in the atmosphere that drive climate uncertainty, ecological uncertainty becomes a public issue, and individual organizations may be unable to mitigate ecological uncertainty in a substantive way on their own (Schendler and Toffel, 2013; Ostrom, 1990)). Thus, the best alternative may be to promote collective political and social mitigation action throughout the geographically-dispersed systems in question; the aim of such efforts would be to build support for institutional arrangements that mandate cooperation on mitigation throughout the areas experiencing ecological uncertainty (Ostrom, 1990).
Toward this end, firms can advocate for policies that mandate mitigation behaviors throughout the natural systems that are driving ecological uncertainty. They can also engage stakeholders at the grassroots level to promote bottom-up collective social action on mitigation, which may subsequently generate additional pressure on governments to adopt mitigation policies (Reid and Toffel, 2009). Finally, even though firms’ private efforts at mitigating this form of uncertainty may have no substantive effect on their own, firms may still make these efforts to demonstrate leadership on solving environmental issues, in order to make their own calls for collective mitigation action credible (Schendler and Toffel, 2013). For example, many U.S. ski resorts are calling attention to their GHG emissions reductions in their promotional efforts “to raise awareness of the potential impacts of climate change on our weather-dependent business and the winter recreation experience; reduce our own greenhouse gas emissions; and encourage others to take action as well.” A number have also joined industry lobbying efforts for instituting regulations in the U.S. that curb GHG emissions. For the reasons, we predict that:

Hypothesis 3: Ecological uncertainty is positively related to ecological mitigation.

Ecological uncertainty, ecological mitigation, and environmental institutional pressures

The strength of environmental institutional pressures may also affect the relationship between ecological uncertainty and mitigation. Above, we argued that such pressures may constrain firms from responding to ecological uncertainty with natural-resource-intensive practices because environmentally-concerned stakeholders may question the legitimacy of such practices. Here, we argue that robust environmental institutional pressures may help condition managers to more seriously consider the adoption of ecological mitigation practices in response to their firms’ ecological uncertainty (Reid and Toffel, 2009). In particular, we note that ecological uncertainty

is linked to issues important to environmentalists and policymakers such as climate change, collapsing ocean fisheries, and declining biodiversity (Winn and Pogutz, 2013). Thus, these pressures may be based in expectations, beliefs and policy concerns about the importance of mitigating ecological uncertainty across society (Pinkse and Kolk, 2009).

As institutional expectations associated with specific practices increase, managers become more likely to consider those practices as viable responses to related strategic issues (Dutton and Dukerich, 1991). In this case, stronger environmental expectations may lead managers to believe that their efforts to promote the importance of collective mitigation action will be influential with stakeholders in their institutional environments, both at political and grassroots levels. At the political level, existing or impending regulations supporting corporate ecological mitigation efforts complement firm attempts to advocate for such related policies (Marquis et al., 2007). Further, at the grassroots level, normative expectations, in the form of shared values and beliefs about the importance of ecological mitigation for society, can provide an institutional foundation for firms to promote similar values and beliefs to their stakeholders (Reid and Toffel, 2009). Finally, cultural expectations, which are based in shared cognitive structures, influence how stakeholders pre-consciously interpret and evaluate corporate actions addressing specific issues (Kostova and Roth, 2002). Thus, stronger cultural expectations for society-wide ecological mitigation should make stakeholders more cognitively pre-disposed to interpret firms’ promotional efforts on that issue as a call to action.

We contend that the positive effect of these pressures on stakeholders’ willingness to join firm efforts at ecological mitigation should help create a strategic rationale for firms to adopt mitigation practices. Conversely, if institutional support for collective action on ecological
mitigation is low, managers may be less likely to believe that such efforts will be influential or have strategic importance. More formally, we predict that:

Hypothesis 4: Environmental institutional pressures positively moderate the relationship between ecological uncertainty and ecological mitigation.

METHODODOLOGY

Data and Sample

The study combines data from multiple sources to build our sample of U.S. ski resorts. Our initial sample was drawn from the Ski Area Citizens Coalition (SACC) database. The SACC is an alliance of non-profit organizations that rates U.S. ski resorts on their environmental management practices. The SACC ratings have been used in previous studies examining ski resorts overall environmental performance on topics including the effects of membership in voluntary certification programs and green marketing efforts (Rivera and de Leon, 2004; Rivera et al., 2006). We use the SACC database to measure ski resorts’ use of natural-resource-intensive adaptation and ecological mitigation. The SACC data measure common natural-resource-intensive practices in the ski industry, including terrain expansion, snowmaking, and real estate development in their mountain environments (Scott and McBoyle, 2007). These data also measure resorts’ efforts at ecological mitigation, including their energy efficiency, use of renewable energy, promotion of these practices to their stakeholders, and efforts to advocate for public policy on constraining GHG emissions (Hoffman, 2007).

The SACC began rating resorts in 2001 with an initial sample of 57 firms; however, they only began comprehensively rating ecological mitigation practices in 2003. As a result, we began our sampling history in that year. Over time, the SACC expanded their coverage of resorts. In 2003, coverage was expanded to 70 firms; in 2005, to 76 firms; in 2006, to 77 firms; in 2009 to
83 firms; and, in 2011, coverage was expanded to 85 firms. Thus, our total possible sample from the SACC was an unbalanced panel of 85 resorts and 868 resort-year observations from 2003-2013 ((70 resorts × 2 years) + (76 resorts × 1 year) + (77 resorts × 3 years) + (83 resorts × 2 years) + (85 resorts × 3 years)).

The SACC develops its ratings from different sources and methods of data collection. Archival sources include U.S. Forest Service documentation, such as ski resort environmental impact statement (EIS) files, forest district master development plans and management plan revisions, and ski resort expansion proposals (Rivera et al., 2006). In addition, it reviews U.S. Fish and Wildlife Service fieldwork analysis, ski resort websites and corporate reports, media reports, business press, and trade journals. The SACC also administers an annual survey to resort managers to measure resorts’ efforts to reduce GHG emissions.\(^5\) Although the SACC collects different types of data and uses different data collection methods, we acknowledged the possibility of common-method bias, since we are developing more than one measure from one data source. To test for common methods bias, we relied on Harmon’s (1967) one-factor test and factor analyzed the SACC ratings used in the study. Two distinct factors with eigenvalues of greater-than-one emerged from the analysis, which accounted for 39 percent of the variance in the data. As a result, we concluded that the ratings we used did measure different constructs.

Our final sample was determined when we merged data from the SACC database with our ecological uncertainty data, which we generated using the United States Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS) (Markstrom, Niswonger, Regan, Prufic and Barlow, 2008). The PRMS is a deterministic, distributed-parameter, physical process-based modeling system developed by the USGS to simulate climatic data, because of the limited amount of physical instrumentation available for collecting this type of data (Leavesley, Lichty, 2008).

Troutman and Saindon, 1983). It has been widely used by climatologists, geographers, ecologists and hydrologists for this reason (e.g. Hay et al., 2006; Jeton, Dettinger and Smith, 1996; McCabe, Jr. and Hay, 1995; Wilby, Hay and Leavesly, 1999). Appendix A contains a detailed description of how the PRMS was used in the current study. We were able simulate ecological uncertainty data for 83 of the 85 resorts in the initial sample drawn from the SACC database, which left us with a final sample consisting of an unbalanced panel of 83 resorts and 861 resort-year observations from 2003-2013.

Measures

Natural-resource-intensive adaptation: Buffering, substitution, and diversification

We develop three individual measures of natural-resource-intensive adaptation with SACC ratings. We measure the extent to which resorts used buffering adaptation practices with a rating of how much new terrain ski resorts developed over the previous year. Terrain expansion can buffer ski resorts from snowfall uncertainty by providing access to potentially snowier terrain with more favorable aspects, elevations, and/or ground cover conditions (Hoffmann, Sprengel, Ziegler, Kolb and Abegg, 2009; Scott and McBoyle, 2007). We measure the extent to which resorts used substitution adaptation practices with a rating of how much new snowmaking ski resorts adopted over the previous year. Snowmaking, where feasible, is a substitute for snowfall that often relies on groundwater. We measure the extent to which resorts used diversification adaptation practices with a rating of resorts’ new real estate development on undisturbed land from the previous year. On-mountain real estate development is used by many resorts to generate alternative revenue streams for skiing operations that may be less vulnerable to ecological uncertainty (Scott and McBoyle, 2007). The raw versions of these SACC ratings actually measure how well ski resorts avoided these three practices. For this reason we reverse-coded the
ratings so that our measures captured the extent to which resorts adopted these practices. We also converted each rating to a ratio score of between 0 -1 (points awarded by the SACC ÷ total possible points) since the maximum scores for the ratings sometimes changed from year to year.

Ecological mitigation

We measure ecological mitigation as a summative index of four SACC ratings of how well ski resorts adopted practices involving reducing and promoting reductions in GHG emissions: (i) using wind and solar power; (ii) promoting commuter buses, shuttle buses and trains for guests and employees; (iii) using low emission machinery and/or alternative fuel vehicles within resort; and, (iv) advocating for climate change policy. We consider this set of practices consistent with substantive attempts by ski resorts to mitigate climate-change-related uncertainty because they capture efforts to promote collective climate change mitigation action, as well as resort-specific GHG emissions reductions to make their calls for action on the issue credible (Schendler & Toffel, 2013). Before summing the ratings into the index, we converted each rating to a ratio score of between 0 -1 (points awarded by the SACC ÷ total possible points). We rescaled the ratings as ratios because the maximum SACC scores were different for each rating and we wanted to ensure that no one practice received more emphasis than another in the index. In addition, the maximum scores for some ratings changed from time to time across the years.

6 We considered ecological mitigation as formative construct and developed the measure as a summative index, in order to capture a resort’s total efforts at adopting practices related to ecological mitigation. Formative constructs differ from reflective constructs in that they are caused by a set of observed indicators, whereas reflective constructs are latent variables that are theorized to cause a set of observed indicators. Formative constructs also have different rules of validation than reflective constructs. Unlike reflective construct indicators, formative construct indicators need not be interchangeable, covary strongly, or have the same antecedents and consequences. Rather, they should capture a broad scope of phenomena related to the construct, avoid strong collinearity to limit the redundant influence of any one indicator in the measure, and have face and external validity (Diamontopoulos and Winklhofer, 2001; Podsakoff, Shen and Podsakoff, 2006). To meet these conditions, we followed the method used by Strike, Gao and Bansal (2006) to measure a firm’s “corporate social responsibility practices” using Kinder, Lydenberg, Domini ratings. First, to address validity and scope requirements, we selected SACC ratings when there was a theoretical basis for doing so in prior research. Second, we calculated variance inflation factors among the indicators, which yielded scores well below the rule-of-thumb of 10. We also assessed multicollinearity at the construct level with a condition index, which was acceptably low at 3.80 (Belsley, Kuh and Welsch, 1980). Table 1 presents these tests.
Ecological uncertainty

We measure ecological uncertainty as the coefficient of variation (standard deviation divided by the mean) of the average winter snowpack depth in feet at each resort-year over the previous 10 years. The average winter snowpack depths for each year were calculated using monthly mean winter snowpack depth data from November to April, which were simulated with the PRMS tool.\(^7\) We rely on the coefficient of variation, which normalized snowpack depth heterogeneity by average snowpack depth, because ski resorts with deeper snowpacks, on the average, are less sensitive to year-over-year variability. Our use of snowpack depth data follows previous research that identifies it as a critical resource for resorts, because it determines both the quality and quantity of skiing terrain that can be opened (Hamilton, Brown and Keim, 2007; Koening and Abegg, 1997; Mote, Hamlet, Clark and Lettenmaier, 2005; Scott and McBoyle, 2007). As Lazar and Williams (2010: 1) explain: “Research on the potential climate change impacts at ski areas is necessarily concerned with snowpack characteristics during the snow accumulation and early melt seasons, and needs to be able to evaluate issues important to managing ski areas, such as snow coverage and depth. Ski area managers are interested in knowing how early they might be able to open, how deep will the snowpack be in the fall and during critical holiday periods, and when snowmelt might force premature area closings. To answer these questions, an approach to modeling snowpack properties during the operational season (November through early April) is required.” We lagged the measure by one-year, because ski resorts may be more likely to

\(^7\) We spot-checked monthly PRMS estimates with average monthly snowpack depths measured by nearby National Weather Service weather gauges, where available, to ensure that the estimates were reasonable.
respond to past trends. As an example, in 2003, ecological uncertainty is measured as the coefficient of variation of average winter snowpack depth from 1993-2002.

Environmental institutional pressures

We measured environmental institutional pressures using data from the League of Conservation Voters (LCV) that captures congressional support for environmental policies at the U.S. state level. The LCV is a non-profit organization that measures the percentage frequency of each state’s congressional delegation legislative votes in favor of issues on the ‘environmental agenda’ in each year (Delmas, Russo and Montes-Santo, 2007). We use a state-level measure, because states are largely responsible for developing and implementing environmental policy in the U.S., and their policy stances on environmental issues tend to be consistent with locally prevailing norms and attitudes (Mazur and Welch, 1999; Kassinis and Vafeas, 2002). Following previous studies, we measure these pressures by averaging the LCV scores for each state’s House of Representatives and Senate congressional delegation in each year (e.g. Delmas et al., 2007; Kassinis and Vafeas, 2002; Kim, 2013). We lagged the measure by one-year since institutional pressures may not immediately influence firm behavior.

Control variables

We include several control variables that were lagged one-year. We controlled for whether ski resorts were members of the NSAA Sustainable Slopes Program (SSP) with a dummy variable. Rivera and colleagues (2004; 2006) found that ski resorts participating in the SSP were more likely to adopt both natural-resource-intensive and energy conservation practices. We obtained data from the NSAA website to determine whether or not a resort was a member of the SSP in a given year.\(^8\) We controlled for a ski resort’s size in thousands of acres of operating terrain. Size

can affect ski resort’s propensity to adopt natural-resource-intensive practices, such as snowmaking and real estate development (Clifford, 2003). We measured this variable in 2013 by recording the number of acres of skiing terrain reported on each ski resort’s website, and then in previous years by subtracting expansions occurring in those years as reported in news media and U.S. Forest Service EIS (16USC§497c, 1986). We controlled for whether ski resorts operated on public land with a dummy variable. Firms operating on public land might be subject to stricter environmental oversight from government agencies responsible for those lands (Briggs, 2000; Clifford, 2003). We controlled for public ownership with a dummy variable, since publically-traded firms can have greater access to financial capital for adaptation and mitigation efforts (Darnall and Edwards, 2006; Hoffmann et al., 2009). Finally, we controlled for whether resorts were subunits of horizontally-integrated ski resort management companies with the dummy variable group. Horizontally-integrated firms might have more resources to deal effectively with the ecological uncertainty of any one subunit (Scott and McBoyle, 2007). We measured these final three variables with data from resort websites and websites from resort parent companies.

Analysis

We tested our hypotheses using regression analysis with fixed effects at the resort level. Fixed-effects regression is commonly used with time-series cross-sectional data because it controls for unobserved time-invariant cross-sectional effects. As a result, our use of the procedure estimates only within-resort changes (Hsaio, 1986). We chose fixed effects over random effects regression because significant Hausman tests indicated that random-effects estimates were inconsistent. For the moderation tests in Hypotheses 2 and 4, we followed the recommendations of Aiken and West (1991) and mean-centered variables used in interaction terms.

RESULTS
Tables 2 and 3 report descriptive statistics and correlations, respectively. On average, ski resorts in the sample achieved 30 percent (1.19/4.00) of the possible score for adopting ecological mitigation practices. The means of buffering, substitution, and diversification imply that ski resorts achieved 61 percent, 73 percent, and 71 percent of the possible scores, respectively, for natural-resource-intensive practices. Finally, the mean of ecological uncertainty indicates that ski resorts had an average snowpack depth coefficient of variation over the previous 10 winters of 0.48. Table 3 indicates that ecological uncertainty has correlations of -0.15 with ecological mitigation, 0.02 with buffering, -0.10 with substitution, and 0.13 with diversification.

Hypothesis 1 predicted that ecological uncertainty is positively related to natural-resource-intensive adaptation involving buffering-, substitution-, and diversification practices. Models 1, 3, and 5 in Table 4 report these results. Since we measure ecological uncertainty as coefficient of variation of a resort’s snowpack depth over the previous 10 winters, we hold constant the denominator of the coefficient of variation (the mean snowpack depth over the previous 10 winters) at 1 foot, in order to facilitate a meaningful interpretation of the effect sizes of ecological uncertainty in terms of feet of variability. Model 1, which assesses the relationship between ecological uncertainty and buffering, provides marginal support for Hypothesis 1 (coefficient on ecological uncertainty: \(b = 0.13, p<.10 \)). This result suggests that a 1 foot increase in the variability of the resort’s snowpack depth over the previous 10 winters (holding the mean snowpack depth constant at 1 foot) leads to a 13% increase in resorts’ adoption of terrain expansion practices. Model 3, which assesses the relationship between ecological uncertainty
and substitution, supports Hypothesis 1 (coefficient on ecological uncertainty: $b = 0.14$, $p<.05$). This result suggests that a 1 foot increase in the variability of a resort’s snowpack depth over the previous 10 winters (holding the mean snowpack depth at 1 foot) leads to a 14% increase in resorts’ adoption of snowmaking practices. Finally, model 5, which assesses the relationship between ecological uncertainty and diversification, does not support the hypothesis (coefficient on ecological uncertainty: $b = 0.04$, n.s.). In sum, we conclude that our results support Hypothesis 1 when natural-resource-intensive adaptation takes the forms of buffering and substitution, but not when it takes the form of diversification.

Hypothesis 2 predicted that environmental institutional pressures negatively moderate the relationship between ecological uncertainty and adaptation. Models 2, 4, and 6 in Table 4 tested the hypothesis with natural-resource-intensive adaptation in the forms of buffering, substitution, and diversification, respectively. In model 2, the coefficient of the interaction effect of environmental institutional pressures and ecological uncertainty is negative and marginally significant ($b = -0.37$, $p<.10$), providing marginal support for Hypothesis 2. Figure 2 illustrates this relationship at high and low levels of environmental institutional pressures (one standard deviation above and below the mean of environmental institutional pressures), and shows that resorts’ adoption of buffering practices in response to ecological uncertainty declines as those pressures increase. In model 4, the coefficient of the interaction effect of environmental institutional pressures and ecological uncertainty is negative and significant ($b = -0.52$, $p<.05$), providing support for Hypothesis 2. Figure 3 illustrates this relationship at high and low levels of
environmental institutional pressures, and shows that resorts’ adoption of substitution practices in response to ecological uncertainty declines. Finally, in model 6, the coefficient on the interaction effect of environmental institutional pressures and ecological uncertainty is negative and significant again (b = -0.37, p<.05), indicating that environmental institutional pressures also weakened the relationship between ecological uncertainty and diversification. Figure 4 illustrates this relationship at high and low levels of environmental institutional pressures, and shows that resorts’ adoption of diversification practices in response to ecological uncertainty declines. Overall, our results consistently support Hypothesis 2.

Hypothesis 3 predicted that ecological uncertainty and ecological mitigation are positively related. Model 7 in Table 4 reports the results for tests of this hypothesis, which is not supported (coefficient on ecological uncertainty: b = -0.32, n.s.). Interestingly, it appears that environmental institutional pressures drive resort’s adoption of mitigation practices instead (coefficient on ecological uncertainty: b = 0.48, p<.01). Finally, Hypotheses 4 predicted that environmental institutional pressures positively moderate the relationship between ecological uncertainty and mitigation. In model 8, the coefficient on the interaction effect of environmental institutional pressures and ecological uncertainty (b = 2.16, p<.001) provides support for Hypothesis 4. Figure 5 illustrates this relationship at high and low levels of environmental institutional pressures, which suggests that resorts become more likely to adopt mitigation practices in response to ecological uncertainty as those pressures become higher. Interestingly, the figure shows that ecological uncertainty does not seem to affect the adoption of mitigation
practices when environmental institutional pressures are high (b = 0.15, n.s.). However, when those pressures are low, it causes them to decrease their use of mitigation practices (b = -1.01, p<.001). Thus, strong environmental expectations may be necessary to pressure resorts to maintain their use of mitigation practices as they manage increased ecological uncertainty.

Robustness checks

First, we re-estimated each model with the inclusion of a variable that measures resorts’ 10-year moving average winter snowpack depths (lagged one year), in order to control for a resort’s sensitivity to ecological uncertainty. It is possible that managers of resorts with shallower snowpacks, on the average, consider snowpack depth variability across the years a more urgent issue to manage than resorts with deeper snowpacks. Although our measure of ecological uncertainty normalizes snowpack depth variability by average snowpack depth, and fixed effects in the analyses control for omitted time-invariant factors, average winter snowpack depths over set time periods in the past can change from year to year. Models including this control corroborate the primary results, and are available from the authors upon request. Second, we re-estimated each of our models using a Heckman correction on the Sustainable Slopes Program (SSP) variable. This correction is commonly used for addressing endogeneity concerns with independent dummy variables related to self-selection bias (Heckman, 1978, 1979; Greene, 2011).

To implement the Heckman correction, we first estimated a panel logit regression of SSP participation on the remaining set of controls, a new instrumental variable (Population Living within a 75 Mile Radius), and year fixed-effects, in order to calculate the probability of participation in the SSP. Second, we substituted the estimated probabilities of SSP participation for the SSP dummy, and re-estimated each of our fixed effects models.

To implement the Heckman correction, we first estimated a panel logit regression of SSP participation on the remaining set of controls, a new instrumental variable (Population Living within a 75 Mile Radius), and year fixed-effects, in order to calculate the probability of participation in the SSP. Second, we substituted the estimated probabilities of SSP participation for the SSP dummy, and re-estimated each of our fixed effects models.
prior use of natural-resource-intensive and ecological mitigation practices.10 Models using this correction also corroborate the primary results, and are available from the authors upon request.

DISCUSSION AND CONCLUSIONS

We studied how firms adapt to uncertainty in their natural environments, as well as how they may attempt to mitigate this form of uncertainty. We found that ecological uncertainty leads to natural-resource-intensive adaptation, which involves expanding firms’ use of natural-intensive-practices (Hypothesis 1). Further, we found that this relationship becomes weaker as environmental institutional pressures become stronger (Hypothesis 2). We did not find a significant positive relationship between ecological uncertainty and mitigation (Hypothesis 3). Still, we found that stronger environmental institutional pressures do positively moderate the ecological uncertainty and mitigation relationship (Hypothesis 4). In particular, our results suggest that strong environmental institutional expectations pressure resorts to maintain their use of mitigation practices as ecological uncertainty increases, while weak pressures allow firms to decrease their use of those practices in response to ecological uncertainty.

Research Implications

Our study makes contributions to research on corporate environmental management and to resource dependence theory. In the former area, it adds to the nascent efforts to study how firms respond to direct pressures from the natural environment. Very little research has operationalized independent variables capturing the direct influence of nature on business, even as many firms are beginning to confront challenges associated with phenomena such as climate change, extreme weather, declining biodiversity, and collapsing ecosystems (Hart, 1995; Hart and Dowell, 2011; Winn et al., 2010). Our results provide early evidence that firms manage resource-dependence challenges created by ecological uncertainty by engaging in more natural-resource-

10 We thank an anonymous reviewer for bringing this to our attention.
intensive adaptation. They also suggest that institutional pressures related to the social desirability of natural-resource-intensive adaptation and ecological mitigation shape the magnitude of these responses. Finally, our results complement the natural-resource-based view of the firm (NRBV). This perspective suggests that ultimately “businesses {markets} will be constrained by and dependent upon ecosystems (nature)”, and that these constraints will become “a physical (not a legal or regulatory) requirement” (Hart, 1995: 991). Empirical studies of the NRBV show that dynamic capabilities can allow firms to decrease their consumption of natural resources while creating positive spillover effects on the effectiveness of other organizational capabilities (Hart and Dowell, 2011). Our work suggests, however, that firms may now face physical constraints from nature, and that they manage these constraints by increasing their use of natural resources unless environmental institutional pressures are robust.

In addition, our study and findings have implications for resource dependence theory. To date, resource dependence theory has focused on explaining how firms manage uncertainty caused by other organizations’ control of critical resources (Carroll, 1993; Davis and Cobb, 2009; Hillman et al., 2009; Pfeffer and Salancik, 1978). The current study extends the theory by accounting for the possibility that firms can depend directly on nature for resources, and face uncertainty associated with firms’ access to those resources. Our results provide evidence that firms’ adaptation to ecological uncertainty may differ from how they manage uncertainty caused when other organizations control critical resources. Most studies on adaptation to uncertainty caused by resource dependence have shown that firms tend to pursue tactics that reduce inter-organizational power imbalances and their effects on firm access to critical resources, or secure access to new resources (Hillman et al., 2009; Wry et al., 2013). These tactics include acquiescing to the demands of other organizations, exercising countervailing power against
them, growth via mergers and acquisitions, and organizational cooptation via board interlocks (Pfeffer and Salancik, 1978). Our findings suggest that firms adapt to ecological uncertainty, instead, by changing how they manage with nature.

Prior research on how resource dependence and related uncertainty shapes the firm–natural environment relationship has shown how organizational interdependence can pressure firms into conserving natural resources. In particular, a number of studies have shown that firms reduce consumption of natural resources when environmentally-concerned stakeholders create uncertainty by threatening to withhold critical resources (Frooman, 1999; Kassinis and Vafaes, 2002; Kassinis and Vafaes, 2006; Sharma and Henriques, 2005). As noted, our findings suggest that firms respond to ecological uncertainty by increasing their use natural-resources-intensive practices. We maintain that this occurs, in part, for three reasons: first, firms may be able to adapt to ecological uncertainty by establishing more stable sources of natural resources; second, nature cannot willfully countervail itself against firms that use its resources; and, using resources directly from nature is potentially cost-effective because firms may be able to externalize some of the costs of those resources. In sum, while prior research has demonstrated how resource-dependence on socioeconomic systems induces constrains firms’ consumption of natural resources, our research suggests that the opposite may occur when firms depend on nature.

Third, our results suggest that firms’ mitigation efforts depend on whether uncertainty is a function of relationships with other organizations or with nature. Prior research suggests that firms may attempt to mitigate uncertainty by working to shape the institutional arrangements that stabilize existing distributions of power among organizations (Wry et al., 2013). In particular, research on this topic has found that new market entrants promoted new market logics via strategic alliances through the exercise of “soft” power (e.g. Santos and Eisenhardt, 2009), and
incumbents pursued political strategies aimed at reshaping the rules of competition (e.g. Mizruchi, 1989). However, our results do not suggest that firms will act as agents of institutional change when uncertainty is caused by nature and involves natural resources. In fact, they indicate that firms decrease their use of mitigation practices as ecological uncertainty increases, unless institutional expectations pressure them into maintaining those practices. We believe that this result may be attributable to concerns over the effectiveness of their climate change mitigation efforts. Indeed, there is no guarantee that one firm’s efforts to promote collective action on climate change mitigation will be effective (Schüßler, Rüling and Wittneben, 2013). Stakeholders may not be receptive to firms’ messaging, or climate change mitigation policy may not generate its intended benefits, even if it is instituted. Collective action on climate change has been difficult to institute because of political disagreements and contested views on the causes and effects of climate change. Further, climate change mitigation research acknowledges that the climate may take generations to stabilize with widespread reductions in GHG emissions. As a result, U.S. ski resorts may instead focus on adapting to climate-change uncertainty because it has more immediate and certain benefits than mitigation. Further, they may even divert resources from mitigation efforts as climate-change-uncertainty becomes more acute, unless institutional pressures persuade them otherwise.

Finally, our study is one of the few that empirically demonstrates how institutional pressures shape firms’ management of resource-dependence-related uncertainty. Oliver (1991) theorized that firms may be able to respond strategically to institutional pressures with prescriptions from resource dependence theory, and that these responses may depend on the strength and cohesion of those institutional pressures and the urgency of firms’ uncertainty. An implication of this work is that institutional pressures may influence firm efforts at managing
resource-dependence-related uncertainty. Some work has subsequently studied this subject by examining how different national institutional environments affect firms’ approach to managing resource-dependence-related uncertainty (see Wry et al., 2013: 462 for a review). However, we are not aware of studies that explicitly test how institutional pressures specific to a set of practices can influence firms’ adoption of those practices for managing uncertainty. Our results suggest that environmental institutional pressures deter firms’ from using of natural-resource-intensive practices and promote mitigation practices in response to ecological uncertainty.

Practical Implications

Our findings have several managerial implications. First, while natural-resource-intensive adaptation may help firms insulate themselves from natural environmental uncertainty in the near-term, the use of natural-resource-intensive practices over the long-term may eventually affect the legitimacy of the firm (Bansal, 2005). In the short-term, natural-resource-intensive adaptation may not generate negative environmental impacts; however, over the long-term these practices may create visible impacts that could stir the ire of environmentally concerned-stakeholders. To mitigate this potential issue, managers might consider more holistic approaches to natural-resource-intensive adaptation that attempt to incorporate sustainable consumption of those resources. As an example, some forestry firms are eschewing clear-cutting practices in favor of selective logging, which can protect forest health by thinning stands and creating species and age-class diversity. Further, enhanced forest diversity may help reduce a forest’s sensitivity to bark-beetles, which are tree-species specific and thrive in forests with high concentrations of those species (Spittlehouse and Stewart, 2003).

Second, we believe that firms facing higher levels of ecological uncertainty may need to reconsider the importance of mitigation efforts since adaptation may only be a near-term
solution. Phenomena driving ecological uncertainty, including climate change, collapsing ecosystems, declining biodiversity, and the spread of invasive species and diseases, may continue to intensify in the future, implying that ecological uncertainty may intensify for vulnerable firms moving forward (Winn et al., 2010). Further, natural resources are finite, implying that firms may only be able to adapt to ecological uncertainty with natural-resource-intensive practices for so long before those resources are depleted (Ostrom, 1999). Thus, there may be limits to how well this form of adaptation can help firms maintain their fit with the natural environment over the long-term. As explained by Auden Schendler, vice president of sustainability for Aspen Skiing Company, adaptation plans in the ski resort industry may not be effective over the long-term: "'If making snow is your response to climate change, then you've got a problem’" (Schendler: in Michelson, 2013: 126). Ecological mitigation, instead, focuses on long-term implications of ecological uncertainty.

Our results may also suggest that managers can recognize the limitations of their firms’ individual ecological mitigation efforts, which may be why we did not find a significant positive relationship between ecological uncertainty and mitigation. Instead, our findings suggest that state-level environmental pressures played a significant role in resorts’ decisions to adopt mitigation practices. As a result, those decisions may best be seen as a means of helping firms satisfy societal expectations for corporate engagement in collective mitigation action, as opposed to substantive efforts to mitigate ecological uncertainty. By implication, institutional pressure may be necessary to persuade many firms to adopt these practices. We believe, therefore, that industry leaders and associations that have substantive concerns about geographically-dispersed ecological uncertainty could consider more aggressive corporate political strategies for instituting mitigation behaviors through policy. Further, firms and associations from different
industries that are affected by the same forms of ecological uncertainty (e.g. climate change) may consider partnering on advocacy efforts for such policies. We also believe that industries lobbying for these policies might also consider more aggressively promoting ecological mitigation practices among their members, in order to legitimize their advocacy for such policies. Passing ecological mitigation regulation may be very challenging, because past efforts have been contested by powerful constituencies who would face negative financial impacts from such policies. For example, opponents of GHG emissions regulations, including firms in a number of GHG-intensive industries, have successfully fought off national legislation to constrain GHGs by highlighting potentially disruptive effects of such legislation to their industries and casting doubt on climate-change science (Schüßler et al., 2013). Thus, advocates for these policies may need to lead by example if they wish to maximize their influence in the policy process. To do so, industry leaders and associations could promote widespread participation among their members, perhaps via industry self-regulation involving third-party certification programs with robust enforcement mechanisms (King and Lenox, 2000).

Limitations and future research
This study has several notable limitations. First, our measures of natural-resource-intensive adaptation capture the extent to which resorts adopted business practices that promote these outcomes, rather than the actual amounts of adaptation that occurred. More specifically, our measures of new terrain expansion, snowmaking, and real estate development are point-scaled ratings developed by the SACC, as opposed the actual amounts of new terrain, snowmaking and real estate development undertaken by each resort in a given year. Second, our study focuses on an industry that experiences a global and complex form of ecological uncertainty (climate change), which transcends geopolitical boundaries, and has ambiguous causes and uncertain
solutions. Other industries, such as commercial fishing and forestry, may experience more proximal forms of ecological uncertainty with less geopolitical and ecological complexity, which may condition firm responses. In particular, firms may be able to effectively mitigate more proximal/less complex forms of ecological uncertainty without collective action, which could make them more likely to adopt unilateral mitigation practices. As a result, we believe it is important for future research on ecological uncertainty to consider the dimension of complexity.

Third, while our study analyzed how firms manage variability in the availability of critical natural resources, it did not capture how real natural resource scarcity impacts firm behavior. In particular, resource scarcity may be a more urgent issue for managers than resource uncertainty, and may cause them to take more immediate action. Fourth, our study did not account for adaptation to ecological uncertainty involving the adoption of eco-efficient practices and technologies. Eco-efficiency can help firms manage ecological uncertainty by reducing their dependence on the natural resources in question. For example, high-efficiency irrigation systems can help agricultural firms manage uncertainty associated with natural rainfall. Future research could explore how firms respond to ecological uncertainty with eco-efficient practices, and whether environmental institutional pressures enable this response, as opposed to acting as a constraint as it does with natural-resource-intensive adaptation.

Fourth, the study did not account for several important moderating factors in firms’ social environment. While U.S. ski resorts are governed under a common federal-policy regime and may be subject to state-level environmental institutional pressures, community actions can also affect the ability of firms to deploy strategies that create negative environmental impacts (Gunningham, Kagan and Thornton, 2004). Indeed, community opposition has slowed many ski area development plans (Clifford, 2003). Future work could study the influence of community
preferences on the firm’s ability to pursue natural-resource-intensive adaptation or its propensity
to engage in ecological mitigation. In addition, if community stakeholders and firms jointly
depend on scarce ecological resources, contests over the property rights to those resources could
impede the firm’s ability to adapt to ecological uncertainty. For example, local communities
have prevented ski resorts from using snowmaking in regions with water shortages (Clifford,
2003). Future research could study how firm and non-market stakeholder interdependence affects
competition for common environmental goods in response to ecological uncertainty.

Finally, the current study focuses on one industry and analyzes a form of uncertainty that
may only affect firms that directly depend on natural resources as critical inputs. Further, the
study may not generalize to extractive industries, because non-renewable natural resources are
frequently insensitive to ecological dynamics and uncertainty (Costanza and Daly, 1992). Still,
firms in other sectors could experience ecological uncertainty indirectly through organizational
interdependence. Since raw materials derived from renewable natural resources are critical in
most value-chains, indirect corporate exposure to ecological uncertainty could be widespread
(WBCSD, 2008). Future research could study how ecological uncertainty creates indirect effects
on organizations farther downstream in a variety of industry value-chains and ecosystems.

REFERENCES

Thousand Oaks.
private regulation of labor and environmental conditions. *American Journal of Sociology* **113**: 297-351.

TABLES

Table 1. Formative construct collinearity tests of the ecological mitigation indicators

<table>
<thead>
<tr>
<th>Condition index</th>
<th>SACC Rating</th>
<th>Mean</th>
<th>S.D</th>
<th>Range</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Using wind and solar power</td>
<td>0.13</td>
<td>0.27</td>
<td>0-1</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>2. Promoting commuter buses, shuttle buses and trains</td>
<td>0.46</td>
<td>0.38</td>
<td>0-1</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>3. Using low emission machinery and/or alternative fuels in the resort</td>
<td>0.14</td>
<td>0.28</td>
<td>0-1</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>4. Advocating for climate change policy</td>
<td>0.46</td>
<td>0.49</td>
<td>0-1</td>
<td>1.10</td>
<td></td>
</tr>
</tbody>
</table>

See footnote 4 for a discussion of this table.

Table 2. Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>s.d.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ecological mitigation</td>
<td>1.19</td>
<td>0.95</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>2. Buffering</td>
<td>-0.61</td>
<td>0.36</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3. Substitution</td>
<td>-0.73</td>
<td>0.31</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4. Diversification</td>
<td>-0.71</td>
<td>0.32</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5. Ecological uncertainty</td>
<td>0.48</td>
<td>0.21</td>
<td>0.13</td>
<td>2.05</td>
</tr>
<tr>
<td>6. Environmental institutional pressures</td>
<td>0.51</td>
<td>0.28</td>
<td>0.00</td>
<td>0.98</td>
</tr>
<tr>
<td>7. SSP</td>
<td>0.87</td>
<td>0.33</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>8. Size (thousands of acres)</td>
<td>1.70</td>
<td>1.11</td>
<td>0.20</td>
<td>5.29</td>
</tr>
<tr>
<td>9. Public land</td>
<td>0.78</td>
<td>0.42</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10. Public company</td>
<td>0.16</td>
<td>0.36</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>11. Group</td>
<td>0.46</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

n=861 resort-year observations for 83 resorts.

Table 3. Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ecological mitigation</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2. Buffering</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Substitution</td>
<td>0.12</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Diversification</td>
<td>0.02</td>
<td>0.40</td>
<td>0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ecological uncertainty</td>
<td>-0.15</td>
<td>0.02</td>
<td>-0.10</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Environmental institutional pressures</td>
<td>0.06</td>
<td>-0.15</td>
<td>-0.18</td>
<td>-0.16</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. SSP</td>
<td>0.26</td>
<td>0.11</td>
<td>0.12</td>
<td>-0.01</td>
<td>-0.21</td>
<td>-0.02</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Size (thousands of acres)</td>
<td>0.28</td>
<td>0.20</td>
<td>0.30</td>
<td>0.27</td>
<td>-0.13</td>
<td>-0.12</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Public land</td>
<td>0.01</td>
<td>-0.15</td>
<td>0.10</td>
<td>-0.25</td>
<td>0.00</td>
<td>0.16</td>
<td>0.15</td>
<td>-0.12</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Public company</td>
<td>0.16</td>
<td>0.30</td>
<td>0.24</td>
<td>0.14</td>
<td>0.00</td>
<td>0.05</td>
<td>0.16</td>
<td>0.37</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>11. Group</td>
<td>0.24</td>
<td>0.11</td>
<td>0.19</td>
<td>0.10</td>
<td>-0.05</td>
<td>0.12</td>
<td>0.08</td>
<td>0.34</td>
<td>0.01</td>
<td>0.40</td>
<td>1.00</td>
</tr>
</tbody>
</table>

n=861 resort-year observations for 83 resorts. Correlations greater than 0.09 are significant to the 95% level or greater.
Table 4. Fixed effects regression results on natural-resource-intensive adaptation and ecological mitigation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Buffering</th>
<th>Substitution</th>
<th>Diversification</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Ecological uncertainty</td>
<td>0.13 *</td>
<td>0.15 *</td>
<td>0.14 *</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Environmental institutional pressures</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.21 ***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Environmental institutional pressures X ecological uncertainty</td>
<td>-0.37 *</td>
<td>-0.52 ***</td>
<td>-0.37 *</td>
<td>2.16 ***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.18)</td>
<td>(0.16)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>SSP</td>
<td>0.05</td>
<td>0.06</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Size (thousands of acres)</td>
<td>-0.02</td>
<td>0.01</td>
<td>-0.25 ***</td>
<td>-0.27 ***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Public land</td>
<td>-0.05</td>
<td>-0.06</td>
<td>0.12 *</td>
<td>-0.09 *</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Public company</td>
<td>0.09 *</td>
<td>0.09 *</td>
<td>-0.05</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Group</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.08 *</td>
<td>-0.08 *</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.66 ***</td>
<td>-0.65 ***</td>
<td>-0.36 **</td>
<td>-0.35 ***</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.10)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.13</td>
<td>0.13</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>F</td>
<td>1.81 *</td>
<td>2.00 *</td>
<td>7.99 ***</td>
<td>8.17 ***</td>
</tr>
</tbody>
</table>

n=861 resort-year observations for 83 resorts; standard errors in parentheses; * p < .10, ** p < .05, *** p < .01, **** p < .001
FIGURES

Figure 1. Conceptual model

![Conceptual model diagram]

Figure 2. The effect of ecological uncertainty on buffering at high and low levels of environmental institutional pressures

![Predicted levels of ecological buffering chart]

Chart is based on Model 2 from Table 4. High and low environmental institutional pressures are one standard deviation above and below its mean, respectively.
Figure 3. The effect of ecological uncertainty on substitution at high and low levels of environmental institutional pressures

Chart is based on Model 4 from Table 4. High and low environmental institutional pressures are one standard deviation above and below its mean, respectively.

Figure 4. The effect of ecological uncertainty on diversification at high and low levels of environmental institutional pressures

Chart is based on Model 6 from Table 4. High and low environmental institutional pressures are one standard deviation above and below its mean, respectively.
Figure 5. The effect of ecological uncertainty on ecological mitigation at high and low levels of environmental institutional pressures

![Chart](chart.png)

Chart is based on Model 8 from Table 4. High and low environmental institutional pressures are one standard deviation above and below its mean, respectively.

APPENDIX A: Precipitation-Runoff Modeling System (PRMS) Procedure

The PRMS consists of a system of sub-models called the *water budget module*, which simulate values for different potential variables of interest (Markstrom et al., 2008). Each model in the water budget module contains a subsystem of calibrated parameters that yield estimates for their respective variables at specific locations and times. The model specifies snowpack depth as a two-layer system based on water content and thermodynamics. Snowpack initiation and accumulation depend on estimates of precipitation form (rain/snow), amount, accumulative snow density and rate of snowmelt. These variables are endogenous to temperature, precipitation, elevation, aspect and land cover characteristics, such as soil type and vegetation, which affect the timing and amount of accumulating or melting snow.

The latter variables were measured by physical instrumentation, and are archived in publically-available databases. We obtained climatic data (temperature and precipitation) specific to each ski resort’s location and time series from the National Weather Service (NWS)
COOP dataset using the USGS Climate Data Downsizer (Ward-Garrison et al., 2009)). This application uses an algorithm to select the spatially appropriate climate gauges based on proximity and elevation. We obtained topographic and land cover data from three federal government data sources, using the geographical information systems (GIS) application ArcGIS. Following the procedure outlined in Hay et al. (2006), we used the GIS application to measure the ski resort’s elevation and average aspect by matching their locations with USGS 30 meter digital elevation models (DEMs). We obtained predominant soil and vegetation characteristics at each resort’s location by matching their locations with state soils geographic (STATSGO) 1-km gridded soils data (U.S. Department of Agriculture, 1994) and the U.S. Forest Service 1-km gridded vegetation type and density data (U.S. Department of Agriculture, 1992).

After data collection and entry, we calibrated the PRMS snowpack module parameters following the methods outlined by Hay et al. (2006). The calibration procedure works by inputting starting values for each parameter, assessing model fit, and then updating parameter values until no further increases in model-fit accuracy are seen. The PRMS models were calibrated using the USGS tool LUCA, which performs shuffled-complex evolution on user-defined parameters to optimize the module’s objective function. Monthly fit was assessed via the Nash-Sutcliffe efficiency statistic with a threshold of 0.6 set for model performance (Hay et al., 2006). Once model-fit was deemed sufficient, we used the fully-calibrated models to estimate average monthly snowpack depths for each resort-year. Sufficient model-fit was achieved in simulations for 83 of the 85 ski resorts that were rated by the SACC.