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Abstract—Multicore computing presents unique challenges for
performance and power optimizations due to the multiplicity of
cores and complex interactions between the hardware resources.
Understanding multicore power and its implications on appli-
cation behavior is critical to the future of multicore software
development. In this paper, we propose Watts-inside, a hardware-
software cooperative framework that uses hardware support
to efficiently gather the power profile of applications during
execution, and utilizes software support for more comprehensive
program-level, fine-grain analysis to effect power improvement.
We show the design of our framework, along with certain
optimizations that increase the ease of implementation. We
present a case study using two real applications, Ocean (Splash-2)
and Streamcluster (Parsec-1.0) where, with the help of feedback
from Watts-inside framework, we made simple code modifications
and realized up to 5% power savings on chip power consumption.

I. INTRODUCTION

With the limitations posed by Dennard scaling, power-
related issues grow significantly in future multicore chip de-
signs and ultimately limit the scalability of multicore comput-
ing [8]. There is also an increasing need to understand power
consumption at the application level such that programmers
and compilers can deploy static code optimizations without
having to rely on expensive runtime power saving strategies.

Conventional power saving strategies utilize dynamic,
hardware-based solutions such as Dynamic Voltage-Frequency
Scaling, Power and Clock Gating. Unfortunately, most of such
mechanisms can be cost-ineffective on applications that are
not statically tuned for power. On the other hand, software-
only power profiling tools are mostly disadvantaged by their
limited knowledge of the underlying hardware parameters and
inability to calibrate power of hardware functional units with
reasonable accuracy. Therefore, a more effective strategy is
to combine the hardware capability of providing an accurate
view of the program behavior with the software flexibility to
effect low-cost, program-level power optimizations.

In this paper, we explore Watts-inside, a novel hardware-
software cooperative solution framework for Multicore Power
Debugging1. Our goal is to provide feedback on the power
consumption of applications at a finer-grain level such that
the programmers and compilers can effect power-related op-
timizations on program code regions. We utilize hardware

1In literature, the term Performance Debugging is often used to denote
techniques that improve the scalability and reduce load imbalance of parallel
applications. In a similar spirit, we use the phrase Power Debugging to denote
techniques that detect opportunities for power optimization.

support to profile power for program code sequences2, and
include additional hardware to efficiently identify the func-
tional unit behind higher power consumption. We then use
software support and probability of causation principles [21]
to understand application power at a finer granularity, such
that we can attribute the cause for high power to a short
sequence of instructions. We note that such a framework
can play a vital role in the future of multicore software
development by assisting programmers and compilers with
useful suggestions on which code regions can take advantage
of power optimizations.

The contributions of our work are as follows:
• We motivate the need for power debugging, especially

for multicores, and explore a hardware-software cooperative
framework to analyze application power. To the best of
our knowledge, our framework is the first unified hardware-
software framework to identify fine-grain power-related bottle-
necks and attribute them to short sequences of program code.

• We design efficient hardware mechanisms that use filter-
ing (removing certain uninteresting code sequences from fur-
ther hardware-level analysis), and sampling (reduce the overall
number of code sequences under observation) to minimize the
impact on application execution.

• We apply probability of causation principles to estimate
the degree to which a particular finer-grain code block (say,
instructions within a basic block) could be the reason behind
higher power consumption measured in the code sequence.

• We propose and evaluate our designs, the resulting cost
and complexity using Splash-2 [32] and PARSEC-1.0 [2]
benchmarks.

• We present a case study in Section VI-E, where we show
how our framework can assist in identifying and improving
power in a couple of real-world applications.

II. MOTIVATION – UNDERSTANDING MULTICORE POWER

To understand the power consumption behavior of ap-
plications, we perform experiments that characterize their
power when executing on symmetric multicore processors.
We note that more complex multicore environments that have
asymmetric-ness or heterogeneity can present even further

2Since it is impossible to measure power at the level of basic blocks
containing a few instructions, we consider dynamic sequences of N basic
blocks for which we estimate average power using power proxy modules that
are already available in many modern processors [10], [26].
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Fig. 1. Dynamic Power traces for four-threaded applications measured during their execution

Application Parallel Section Num. of Dynamic % of Appln. Avg. Performance Avg. Dynamic
(File/Function) Instances Exec. Time Imbalance Power Imbalance

Volrend adaptive.c/ray trace(...) 3 44.33% 0.001% 10.21%
(SPLASH-2)
Barnes load.C/maketree(...) 4 72.47% 0.90% 8.89%
(SPLASH-2)
Cholesky solve.C/Go(...) 1 28.09% 2.82% 31.74%
(SPLASH-2)
Bodytrack WorkerGroup.cpp/ 82 50.06% 0.47% 4.32%
(PARSEC-1.0) WorkerGroup::Run()

TABLE I
PERFORMANCE AND DYNAMIC POWER IMBALANCE IN SPLASH-2 AND PARSEC-1.0 BENCHMARKS WITH FOUR THREADS.

challenges. In our studies, we run four-threaded applications
on four core processors without placing any specific con-
straints on power consumption or voltage-frequency settings,
i.e., the settings are assumed to result in the best possible
execution time. We measure chipwide power during intervals
of 10,000 cycles by running our benchmarks on SESC [25],
a cycle-accurate architecture simulator with an integrated
dynamic power model that uses Wattch [4] and Cacti [18]
for power estimation3. 32 nm technology is assumed in all
of our experiments. Figure 1 shows dynamic power traces for
a representative subset of our benchmark applications when
executing on four-core processors. Our results indicate that
different multicore applications can exhibit different charac-
teristics during the various phases of their execution– (1)
monotonously increasing power, e.g., cholesky, (2) phases of
high and low power, e.g., ocean, (3) occasional peaks of
high power, e.g., volrend, and (4) almost uniform power, e.g.,
fluidanimate.

Even for applications that have been thoroughly debugged
for performance and load balanced, our studies show that the
parallel sections of multicore applications could still suffer
from uneven power consumption between multiple cores.
Table I shows parallel sections in some of the well-known
Splash-2 and Parsec-1.0 applications that are running on four
cores with four threads and shows the average imbalance4

in performance and power across several dynamic instances

3We note that recent proposals like McPAT [20] can perform more accurate
modeling based on technology projections from the ITRS roadmap [23],
but our simulation infrastructure does not currently support McPAT and are
working on upgrading our framework.

4Average power (or performance) imbalance in an application’s parallel
section is measured as the average difference between the threads having the
highest and lowest power (or execution time).

Power	  
Analyzer	  	  

Adap/ve	  
	  	  Filter	  

Power	  
Es/mator	  

	  

	  	  Code	  Sequence	  finishes	  
execu/on	  

Profile	  Log	  
SoAware	  	  
Profiler	  

	  

Hardware	  Support	  

SoAware	  Support	  

Feedback	  to	  users	  or	  
run/me	  op/mizers	  

Fig. 2. Design Overview of Watts-inside framework

of the parallel section. Despite almost perfect performance
balance that can be achieved through hardware optimizations
like out-of-order execution and prefetching, we see significant
power imbalance (up to 31.7% in cholesky) across the different
cores because power consumption by the functional units are
still determined by the amount of work to be done. These
results are consistent with a recent survey by Chen et al [6]
and show the necessity to understand the application’s power
characteristics in greater detail in order to accurately effect
changes that improve power consumption.

III. WATTS-INSIDE: A FRAMEWORK FOR DEBUGGING
MULTICORE POWER

A. Hardware support

To improve power, the user (programmer, compiler or the
hardware) should first understand which parts of the program
code suffer from power-related issues and what functional
units are responsible for this effect. We design hardware
support that estimates dynamic power for a string of N
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consecutively executing basic blocks (which we call as Code
Sequence), and log its power information in memory for
further analysis. A code sequence is chosen as a granularity in
our hardware design to capture meaningful power information
that is relatable back to program code, while minimizing
the hardware implementation complexity. In our experiments,
we assume N=5 because it offers a nice trade-off between
capturing power information at finer granularity and accuracy
of power measurement on overlapped instructions. Sometimes,
a code sequence can contain fewer than N basic blocks in cases
of a function call/return and exceptions; we terminate such
code sequences prematurely to prevent them from straddling
program function boundaries and exceptions.

Figure 2 depicts an overview of our hardware-software de-
sign for Watts-inside framework. Conceptually, we divide the
hardware support for Watts-inside into three stages, namely,

1) Power Estimator: This module is responsible for com-
puting (or estimating) the power consumption of code se-
quences. The processor chip is embedded with activity sense
points inside various functional units which are monitored
by a power estimator unit. In our design, this module is
conceptually similar to the IBM Power7’s power proxy module
that has specifically architected and programmably weighted
counter-based architecture to keep track of activities and form
an aggregate value denoting power [10].

2) Adaptive Filter: This module is responsible for filtering
code sequences that are essentially ‘uninteresting’ with respect
to power and do not warrant a second hardware-level analysis
for functional unit-specific power information. Note that, when
needed, the software profiler has the capability to analyze all
code sequences regardless of filtering.

The adaptive filter has two active parameters– (1) maximum
power so far (observed from the start of the application
execution), and (2) capture ratio (C), a user-defined parameter
that specifies the threshold for code sequences whose average
power fall within the top C% of highest power (e.g., if the
capture ratio is 10% and the highest power for any code
sequence so far is 50 W, then the filter forwards all of the
code sequences whose power consumption is at least 45 W.).
In the remaining sections of this paper, we refer to high power
code sequences as ones within the capture ratio, and the
remaining code sequences as low power (or NOT high power)
for simplicity.

To detect the high power sequences, the filter checks
whether the code sequence (Q’s) power falls within or exceeds
the high power range. If true, then the filter forwards Q to
the Power Analyzer for further processing. Whenever Q’s
power exceeds the maximum power observed thus far in the
application, maximum power and threshold are updated. We
note that after the maximum power reaches a stable value (i.e.,
after the highest power consuming sequence has executed),
updates are no longer necessary.

3) Power Analyzer: This module is responsible for esti-
mating the contribution of individual microarchitectural (or
functional) units for high power code sequences, and then
determining the functional unit that was responsible for the
highest amount of power. We forward the output of this stage
to a log that can be further analyzed by software profilers.

Code Sequence ID Power FU ID 
Core  
  ID 

Execution 
    Time 

64 bits 7 bits 4 bits 5 bits 9 bits 

  FU 
Power 

7 bits 

Fig. 3. Code Sequence Power Profile Vector (CSPPV)

For design efficiency, we adopt common activity based
component power estimation that can estimate power for a
large number of functional units using just a few generic
performance counters [22]. We identify fourteen functional
units (Instruction and Data Translation Lookaside Buffers, In-
struction and Data Level-1 caches, Branch Predictor, Rename
logic, Reorder Buffer, Register File, Scheduler, Integer ALU,
Float ALU, Level-2 cache, Level-3 cache and Load Store
Queue) to study the power breakdown by individual units . We
chose these fourteen units based on our analysis of functional
unit-level power consumption across our benchmark suites.

Figure 3 shows the output of the the Watts-inside hardware.
For each code sequence, we construct a 96-bit long Code
Sequence Power Profile Vector (CSPPV) that includes:

• Code Sequence ID: The power estimator generates a
unique 64-bit identifier for every code sequence by folding the
32-bit address of the first basic block, and then concatenating
lower order bits of other constituent basic blocks within the
code sequence.

• Code Sequence Power: The power estimator uses 7 bits
to store the code sequence power.

• Core ID: 5 bits are used for the core ID where the code
sequence executed, filled by power estimator.

• Execution time: The power estimator uses 9 bits to store
the execution time of the code sequence. This can be later used
for: (1) computing energy, and (2) ranking code sequences to
prioritize longer running blocks.

• FU ID: The power analyzer uses 4 bits to uniquely
identify the one of the fourteen functional units that consumes
the most power.

• FU Power: The power analyzer uses 7 bits to show power
consumed by the the highest power consuming functional unit.

The power analyzer module records the CSPPV into a
memory log that can later be utilized by software profilers.

B. Software Support

1) Causation probability: To help programmers and com-
pilers apply targeted power-related optimizations to program
code, feedback must be given at the level of fine-grain code
blocks (say, a few instructions within a basic block). Toward
this goal, we develop a causation probability model to deter-
mine whether an individual basic block within a code sequence
could cause higher power.

Watts-inside quantifies the impact of a certain basic block B
on the power of the code sequence Q using three probability
metrics:

• Probability of Sufficiency (PS): If B is present, then
Q consumes high power. A higher range of PS values
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indicate that the presence of B is a sufficient cause for
Q’s high power consumption.

• Probability of Necessity (PN): Among Qs that consume
high power, if B were not present, then Q would have
not consumed high power. A higher range of PN values
indicate that the absence of B would have caused Q to
lower its power.

• Probability of Necessity and Sufficiency (PNS): B’s pres-
ence is both sufficient and necessary to infer that Q
consumes high power. Higher values of PNS prove that
B’s likeliness to be the reason behind Q’s higher power.

To compute the boundaries of PS, PN and PNS, we define
the following additional probability terms:

Let b be the event that a basic block B occurs in a code
sequence, and h be the event that the code sequence consumes
high power. P (hb) denotes counterfactual relationship between
b and h, i.e., the probability that if b had occurred, h would
have been true.

P (h) = (#HighPowerSeq)/(#Seq) (1)

P (b, h) = (#HighPowerSeqWithB)/(#Seq) (2)

P (b
′
, h
′
) = (#LowPowerSeqWithoutB)/(#Seq) (3)

P (hb) = (#HighPowerSeqWithB)/(#SeqWithB) (4)

P (h
b
′ ) = (#HighPowerSeqWithoutB)/(#SeqWithoutB) (5)

P (h
′

b
′ ) = (#LowPowerSeqWithoutB)/(#SeqWithoutB) (6)

The boundary values for PS, PN and PNS are defined
below:

max

{
0,

P (hb) − P (h)

P (b′ , h′ )

}
≤ PS ≤ min

{
1,

P (hb) − P (b, h)

P (b′ , h′ )

}
(7)

max

{
0,

P (h) − P (h
b
′ )

P (b, h)

}
≤ PN ≤ min

1,
P (h

′
b
′ ) − P (b

′
, h
′
)

P (b, h)

 (8)

PNS ≥ max

{
0, P (hb) − P (h

b
′ ),

P (h) − P (h
b
′ ), P (hb) − P (h)

}
(9)

PNS ≤ min

{
P (hb), P (h

′
b
′ ), P (b, h) + P (b

′
, h
′
),

P (hb) − P (h
b
′ ) + P (b, h

′
) + P (b

′
, h)

}
(10)

By using the boundary equations 7- 10, we present a few
test cases below to verify our causation model:

• If a basic block B appears frequently in high power
code sequences and sparsely in low power sequences, both
PS and PN boundary values are very high (closer to 1.0).
Consequently, PNS values are also very high. Such blocks are
certainly candidates for power optimization. For example, if
there are 1000 code sequences, of which 200 are classified
as high power (via capture ratio C). Let us assume that B1

appears in 100 of the high power code sequences, and does
not appear in any low power sequences. Using the boundary
equations, we find that 1 ≤ PS ≤ 1 and 0.9 ≤ PN ≤ 1.
These high PS and PN values show that B1 is a certainly a
candidate for power optimizations.

• If a basic block B appears sparsely in high power code
sequences, both PS boundary values are closer to 0.0, and the
PN boundary values are either a widely varying range or are
closer to 0.0. Such blocks cannot be good candidates for power
improvement considerations. Using the same example above,
let us assume that the block B2 appears in 5 of the 200 high

power code sequences and B2 appears in 95 of the 800 low
power (NOT high power) code sequences. Using the boundary
equations, we find that 0 ≤ PS ≤ 0.06 and 0 ≤ PN ≤
1. Low PS values combined with practically unbounded PN
values indicate that B2 cannot be a good candidate for power
improvement.

• If a basic block B appears L% of the time in high
power code sequences and M% of the time in low power
sequences (where L and M are non-trivial), PNS boundary
values determine the degree to which B’s likeliness in causing
higher power in the corresponding program code sequences.
Therefore, higher ranges of PNS values for B indicates higher
benefit in applying power-related optimizations to B. Using
the example described above, let us consider two blocks B3

and B4– (1) B3 appears in 40 of the 200 high power code
sequences and in 200 of the 800 low power code sequences,
where 0 ≤ PNS ≤ 0.167 (2) B4 appears in 35 of the 200
high power sequences and 20 of the 800 low power sequences,
where 0.462 ≤ PNS ≤ 0.636. Even though B3 appears more
frequently in high power code sequences than B4, there is
higher benefit to optimizing B4 because of its larger high
power causation probability.

We find that this approach mathematically helps us to
quantify the degree to which a specific set of instructions result
in higher power consumption.

2) Code Sequences with varying power consumption be-
tween cores: Our software support can improve the quality of
feedback information via two mechanisms – (1) Use clustering
algorithms (e.g., k-means) to cluster sequences based on the
degree of power variation, i.e., code sequences that show
higher power variation are clustered separately from the ones
that have lower power variation. This can aid runtime systems
to do better scheduling of threads and map them on to cores
that satisfy their power needs. (2) Identify the cause for
power variation using the CSPPVs. Since the vector contains
information on functional unit consuming the highest power,
it can facilitate targeted optimizations including code changes
and dynamic recompilation.

3) Predicting potential for Thermal Hotspots: By moni-
toring a contiguous stream of code sequences executing on
the same core where a functional unit repeatedly contributes
to the highest portion of power, we could predict parts of
the chip where thermal hotspots could develop. Also, by
having information on the physical chip floorplan, we can
even detect local thermal hotspots resulting out of continuously
high activity in adjacent functional units. Such analysis can
effectively help temperature-aware software development of
multicore applications.

IV. IMPLEMENTATION

In this section, we show how our framework can be inte-
grated with a modern multicore architecture.

A. Hardware Support

Figure 4 shows the hardware modifications needed to imple-
ment Watts-inside framework. We include the power estimator
(already present in modern processors like Intel Sandybridge,
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Fig. 4. Hardware Modifications needed for Watts-inside framework

IBM Power7) and adaptive filter logic locally in every core.
After power estimation, our adaptive filter determines whether
this block warrants further processing. To do this, there are two
special registers- a programmable register to store the user-
desired capture ratio, and an internal register to hold maximum
power observed so far.

We implement the power analyzer module as a centralized
resource that is shared by all cores within a multicore chip.
We note that the adaptive filters in the cores already reduce
the traffic of code sequences reaching the power analyzer (See
Section VI for filtering results).

To reduce the performance impact of hardware profiling, we
consider two additional optimizations–(1) hardware buffer to
accumulate the CSPPVs and update memory when the bus is
idle, (2) sampling of code sequences to minimize the impact
on multicore performance.

Additionally, we implement an online hardware causation
probability module and a watch register (that can be pro-
grammed by the user with a specific basic block address). This
is conceptually similar to setting watchpoints in program de-
buggers. The adaptive filter forwards all of the code sequences
that contains the basic block address under watch to the
hardware causation probability module, that in turn computes
the PS, PN and PNS values. We believe that such a feature
shall aid runtime systems, such as dynamic recompilation or
adaptive schedulers, to apply optimizations to specific code
regions during program execution.

B. Software Support

We run the software profiler as a separate privileged process
in the kernel mode. The profiler supports APIs for functions
such as (1) querying which basic blocks have high power
causation probability (note: this offline software implemen-
tation is more comprehensive and separate from the online
hardware causation probability module in Section IV-A), (2)
automatically mining the CSPPVs for basic blocks that cause
higher power. This software profiler gets its input from the
CSPPV log created by the power analyzer. The memory pages
belonging to CSPPV log are managed by the Operating System
and are allocated on demand. If the OS senses that memory
demands of CSPPV log interferes with the performance of
regular applications, the OS pre-emptively deallocates certain
memory pages and/or alter the sampling rate of code sequences
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Fig. 5. Ideal Filter rate for capture ratios of 0.25, 0.1 and 0.05. The right
axis shows the number of code sequences that are executed across all four
threads.
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Fig. 6. Adaptive Filter rate for capture ratios of 0.25, 0.1 and 0.05. The
right axis shows the number of code sequences that are executed across all
four threads.

to minimize memory demands for CSPPV log. Also, we
use Lempel-Ziv coding to compress and decompress CSPPV
logs [35], that helps us to reduce memory footprint sizes.

V. EXPERIMENTAL SETUP

We use SESC, a cycle accurate architectural multicore
simulator [25] that has an integrated power model. We model
a four-core Intel Core i7-like processor [14] running at 3
GHz, 4-way, out-of-order core, each with a private 32 KB,
8-way associative Level 1 cache and a private 256 KB, 8-way
associative Level 2 cache. All cores share a 16 MB, 16-way
set-associative Level 3 cache. The Level 2 caches are kept
coherent using the MESI protocol. The block size is assumed
to be 64 Bytes in all caches. We use parallel applications from
Splash-2 [32] and PARSEC-1.0 [2] that were compiled with
-O3 flag, and run four-threaded version on four cores.

VI. EVALUATION

A. Adaptive Filter vs. Ideal Filter

In this experiment, we compare the effectiveness of our
adaptive filter (that adjusts its threshold dynamically to filter
code sequences based on the maximum power seen thus far
and the capture ratio) against an ideal filter (that does not
need to adjust the threshold dynamically because it has prior
knowledge of the maximum power consumed by any code
sequence in the multicore application and the capture ratio).
Figures 5 and 6 show the results of our experiments. For each
benchmark, we show the percentage of code sequences that
are filtered for three separate capture ratios namely 0.25 (or
code sequences within top 25% of maximum power), 0.10 and
0.05 respectively. On the right axis, we show the total number
of code sequences that are executed by each application. As an
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example, cholesky benchmark executes a total of 32.13 million
code sequences; at a capture ratio of 0.25, 96.9% of the code
sequences are filtered by ideal filter and 95.5% of the code
sequences are filtered by adaptive filter.

Based on our experiments, we notice that in a majority of
benchmarks, except fft, cholesky and lu, our adaptive filter
successfully filters above 99% of the code sequences (for all
three capture ratios) and sends only ≤1% code sequences
to the power analyzer module for further analysis. These
filter rates are nearly same as that of the ideal filter. In
fluidanimate that has a large number of code sequences, our
adaptive filter performs nearly equal to the the ideal filter
in minimizing the number of sequences that are sent to the
Power Analyzer. In certain benchmarks like lu, our adaptive
design filters upto 3.8% less than an ideal filter, especially for
capture ratio of 0.25. However, lu has fewer than 12 million
code sequences and the absolute numbers of code sequences
that reach power analysis stage are still far fewer than the
benchmarks with hundreds of millions of code sequences.
Therefore, we conclude that our adaptive filter design proves
effective and is able to perform very close to an ideal filter.

B. Sampling

To minimize the traffic of code sequences that reach the
power analyzer module from various cores, we perform pe-
riodic sampling, i.e, one out of every N code sequences is
chosen by Watts-inside framework for power estimation and
analysis. Figure 7 shows the results of our experiments when
we sample code sequences at the rates of 50%, 25% and 1%,
and compare the observed mean and standard deviation of
code sequence power with the baseline execution where we do
not have sampling. At 50%, we note that periodic sampling
introduces fairly low relative error of about 1.4% on mean
code sequence power and approximately 0.10% on standard
deviation; at lower sampling rates, these relative errors are
slightly worse. One caveat with aggressive sampling (such as
1%) is that we might only see fewer CSPPV samples, that
may result in inability to accurately assess PNS, PS and PN
probability values for certain basic blocks that are omitted due
to sampling.

C. Scalability of CSPPV Memory Log

We study the average and worst-case CSPPV memory
footprint sizes for different numbers of cores after applying
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ratio=0.25 for different numbers of cores.

Power Power Causation Buffer
Estimators Analyzer Prob. module (4 KB)

Area(mm2) 0.184 0.113 0.09 0.03
Power(mW) 9.08 8.72 4.53 49.7
Latency† 24 38‡ 26‡ NA∗

(CPU cycles)

†Based on instruction latencies on Intel Core i7 [14]
‡Not significant at runtime due to efficient filtering of code sequences
∗Accessed when memory bus is free

TABLE II
AREA, POWER AND LATENCY ESTIMATES OF WATTS-INSIDE HARDWARE

Lempel-Ziv compression, i.e., if all of the CSPPV informa-
tion from start to end of application execution is stored in
memory. In our experiments, LZ compression offers up to
70% reduction in log size. Also, as described in Section IV,
we note that the OS does not need to store the entire log,
and could minimize the log size by periodically deallocating
the memory pages that have already been processed by the
software profiler. In these experiments, we assume that 96 bits
(12 Bytes) are needed to store information about high power
code sequences, whereas, for low power sequences, 74 bits
(10 Bytes) are sufficient just to store the code sequence ID,
code sequence power and core ID. Figure 8 shows that the
average case memory requirements remain between 100 MB
and 125 MB because of effective LZ compression and lack of
input scaling in many of our benchmarks. In the worst-case
(fluidanimate), we see that the memory requirements grow
from 250 MB to 400 MB (approx.), although the per-core
memory requirements decrease with the increasing number of
cores.

D. Area, Power and Latency of Watts-inside hardware

To obtain the area, power and latency of Watts-inside
hardware, we created a Verilog-based RTL model of the power
estimator, power analyzer, and hardware causation probabil-
ity modules. We used Synopsys Design Compiler (ver G-
2012.06) [30] and FreePDK 45nm standard cell library [28]
to synthesize each module. Table II shows the results of our
experiments. We note that the area requirements for Watts-
inside are modest and are about 0.2% of total onchip area
of 4-core Intel Core i7 processor (263mm2) [14]. Power
requirements are less than 0.06% of 130 W peak power.
Since our hardware is designed to be off the critical path
of the processor pipeline, we did not observe any significant
performance impact in applications.
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//Ocean(Splash−2):main.cpp:337
...
for (i=numlev−2;i>=0;i−−) {

imx[i] = ((imx[i+1] − 2) / 2) + 2;
jmx[i] = ((jmx[i+1] − 2) / 2) + 2;
lev res[i] = lev res[i+1] ∗ 2;

}
...
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//Streamcluster(Parsec−1.0):streamcluster.cpp: 657
...
accumweight= (float∗)malloc(sizeof(float)∗points−>num);
accumweight[0] = points−>p[0].weight;
totalweight=0;
for( int i = 1; i < points−>num; i++ ) {

accumweight[i] = accumweight[i−1]+points−>p[i].weight;
}
...

Fig. 9. Code snippets from Ocean and Streamcluster benchmarks where
store-to-load dependencies result in high power.

E. Case study– Improving Load/Store Queue power consump-
tion

In this subsection, we show how our Watts-inside framework
offers a hardware-software cooperative solution in identifying
and analyzing program code and eventually improving the
power consumption of the processor. In this case study,
we pick two benchmark applications that suffer from high
load/store queue power.

We modified SESC simulator to implement our frame-
work by modeling a four-core processor. We analyzed two
benchmarks, namely ocean and streamcluster, where using our
framework, we identified the portion of program code (shown
in Figure 9) that consumed high power. In ocean, the four core
chip-level power was measured at 73 W, and its instructions
within the loop had 0.972 ≤ PS ≤ 1.0, 0.70 ≤ PNS ≤ 0.72.
In streamcluster, the four core chip-wide power was measured
at 58 W, and its loop instructions had 0.968 ≤ PS ≤ 1.0,
0.76 ≤ PNS ≤ 0.78. In other words, for both benchmarks,
Watts-inside indicated that the instructions within the loops
had very high probabilities of sufficiency for high power in
their corresponding code sequences.

In both of the code sections, we observed a store-to-load
dependency that results in a forwarding operation in load/store
queue between the array elements across two iterations of the
loop, i.e, the element that is stored in the previous iteration
of the loop is loaded in the next iteration again. To reduce
this unnecessary forwarding between the two iterations, we
modified the code to include temporary variables that store the
value from previous iteration and supply this value to the next
iteration [1]. The code modifications are shown in Figure 10.

As a result of this code optimization, we found an im-
provement in chip-wide power consumption in both bench-
marks. An interesting side-effect of our code modification
was the reduction in the number of memory load instructions
in each loop iteration due to replacement of memory load
with operations on temporary registers, that consequently
showed reduction in scheduler power. Figure 11 shows the
results of our experiments. In streamcluster, we observe an
average savings of 2.72% for chip power (and up to 21%

//Ocean(Splash−2):main.cpp: 337
//∗∗No more Store−to−Load Dependencies∗∗
...
t1 = imx[numlev−1];
t2 = jmx[numlev−1];
t3 = lev res[numlev−1];
for (i=numlev−2;i>=0;i−−) {

imx[i] = ((t1 − 2) / 2) + 2;
jmx[i] = ((t2 − 2) / 2) + 2;
lev res[i] = t3 ∗ 2;
//Storing array elements in temp
t1 = imx[i];
t2 = jmx[i];
t3 = lev res[i];

}
...
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//Streamcluster(Parsec−1.0):streamcluster.cpp: 657
//∗∗No more Store−to−Load Dependencies∗∗
...
accumweight= (float∗)malloc(sizeof(float)∗points−>num);
accumweight[0] = points−>p[0].weight;
totalweight=0;
t = accumweight[0];
for( int i = 1; i < points−>num; i++ ) {

accumweight[i] = t+points−>p[i].weight;
//Storing array elements in temp
t = accumweight[i];

}
...

Fig. 10. Modified code snippets from Ocean and Streamcluster benchmarks
that no longer have store-to-load dependencies.
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Fig. 11. Power reduction at the Chip-level, Scheduler and Load/Store Queue
after removing store-to-load dependencies.

reduction in load/store queue and 7% savings in scheduler
power consumption) with a slight 0.25% speedup in execution
time; In ocean, we measured an average savings of 4.96%
in chip power (and up to 43% reduction in load/store queue
power and 28% savings in scheduler power consumption) with
a slight 0.19% speedup in execution time.

From this case study, we observe the usefulness of under-
standing application power and how the feedback information
can be utilized in meaningful ways to improve power behavior
of multicore applications. We note that, in this particular case
study of removing store-to-load dependencies, many compilers
typically are unable to optimize code in a way that avoids
store-to-load-dependency [1]. In some cases, the language
definition prohibits the compiler from using code transforma-
tions that might remove store-to-load dependency. Therefore, a
framework like Watts-inside, that offers a hardware-software
cooperative solution to understanding and improving multi-
core power, can be an invaluable tool for multicore software
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developers.

VII. RELATED WORK

Prior works that reduce power consumption of processor
components through hardware optimizations include partition-
ing last-level cache [29], dynamically adjusting issue or load/-
store queue sizes to avoid wasteful wake-up/select checks [11],
designing entire pipelines for low power [7], [27], and so on.
Recent works have considered mapping program computation
structures onto hardware accelerators [12], [13].

DVFS-based optimizations for power take advantage of
slack time available for threads [19], [24], employing
compiler-assisted profiling techniques [33], [34], or using
application phase information to decide DVFS settings for
parallel sections [15]. Our Watts-inside framework can syn-
ergetically work with the above prior techniques to improve
power based on the observed application behavior.

Isci et al. [16] have proposed runtime power monitoring
techniques for core and functional units by using hardware
performance counters. Bircher et al. [3] further extend the use
of performance counter for modeling the entire system power.
CAMP [22] and early stage power modeling [17] show how
to use limited number of hardware statistics for power model.
Our Watts-inside hardware can leverage the contributions of
these prior works that develop accurate power models at
different granularities.

Tiwari et al. [31] developed an instruction-level power
model which attributes an energy number to every program
instruction. Other profiling tools utilize hardware program
counters to provide procedure-level feedback [9], [5]. Such
methods are generally difficult to use in multicore processors
that have complex interactions between functional units. Also,
the performance overheads of such software-only tools and
simulators can be high, that render them difficult to use in
production environment. In contrast, our Watts-inside proposes
a hardware-software cooperative solution, where hardware
provides reliable information of program execution and the
software offers flexible platform to analyze program power.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we showed the necessity to gather fine-
grain information about program code to better characterize
application power and effect improvements. We proposed
Watts-inside, a hardware-software cooperative framework that
relies on efficiency of hardware support to accurately gather
application power profiles, and utilizes software support and
causation principles for a more comprehensive understanding
of application power. We presented a case study using two
real applications, namely ocean (Splash-2) and streamcluster
(Parsec-1.0) where, with the help of feedback from Watts-
inside, we performed relatively straightforward code changes
and realized up to 5% reduction in chip power and slight
improvement (≤ 0.25%) in execution time.

As future work, we will study ways to extend our framework
for Simultaneous Multithreaded processors, and techniques to
detect local thermal hotspots with the information provided by
our Watts-inside framework.
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