
Introduction to SESC Simulator

Jie Chen

jiec@gwu.edu

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 2

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 3

ECE 3515 Computer Organization

Why Do We Need a Microprocessor Simulator?

 When building a new REAL microprocessor, you need
• Large teams of experts and supported fund

• Architecting the functionality of the chip

• Front end logic design and implementation

• Back end synthesis, place and route

• Exhaustive verification and testing

• Expensive fabrication

 What can we do if we want to evaluate a new design?
• Researchers use microprocessor simulators

– They are written in software

– They can run applications

• like real processors, but slower

– Using them to evaluate new designs becomes much easier

• changing configurations

• adding new components

2/7/2013 4

ECE 3515 Computer Organization

What is SESC?

 SuperESCalar Simulator
• Developed primary by i-acoma group at UIUC

• Widely used in Academia

 Microprocessor architectural simulator
• MIPS instruction set

• Uniprocessors

• Chip Multi-processors (CMP)

 Implemented in software
• Open source, available at Sourceforge website

• Modularized source code structures

• Written in C++ and high optimized for speed

 Event-Driven Simulation
• Function simulation (done by emulation part)

• Timing simulation (done by the rest parts)

2/7/2013 5

ECE 3515 Computer Organization

Documentation

 High level explanation of SESC
• http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/

 README files in SESC source package
• sesc/docs

 SESC source code
• The best documentation

 Google “sesc simulator” online

2/7/2013 6

http://iacoma.cs.uiuc.edu/~paulsack/sescdoc/

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 7

ECE 3515 Computer Organization

OS settings

 SESC runs on Linux machines
• Linux machines with GCC installed

 If you have a SEAS account
• seas.shell.gwu.edu

• Redhat Linux 5

 If you don’t have a SEAS account
• Go and grab one in Tompkins 4th floor, front desk

 If you want to play with SESC on your own machine
• For Mac

– install Xcode developer tools package

• For PC

– install a virtualization software, e.g., Virtualbox, in your PC

– In virtualbox, install a Linux virtual machine

2/7/2013 8

ECE 3515 Computer Organization

Where to download SESC?

 Go to http://sourceforge.net/projects/sesc/
• Click CVS

2/7/2013 9

http://sourceforge.net/projects/sesc/

ECE 3515 Computer Organization

Download SESC to your Linux Machine

 In your Linux machine, activate a new Linux shell
• Copy and paste

• Simply press Enter key

• Copy and paste

• Replace modulename with sesc

2/7/2013 10

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 11

ECE 3515 Computer Organization

Building SESC executable

 Create new directory in sesc root directory
• Give it any name you like, e.g., run

 Build a SESC executable
• In the run directory, type ../configure and press ENTER key

• You find 4 files have been created

• Type make

• GCC will build the sesc executable: sesc.mem

2/7/2013 12

1

2

3

4

ECE 3515 Computer Organization

Troubleshooting

 For Mac OS users
• By default, Mac OS does not come with cvs software, you have two

options

– use apple’s own cvs, or

– download the software management tool fink, and use fink to install

a cvs tool

• When doing the make command, you may run into an error message

“… not support x86_64 instructions …”, to solve it

– edit /sesc/src/Makefile.defs.Darwin

• go to line 55

• replace “COPTS += -march=pentium-m -mtune=prescott”

• with “COPTS += -march=core2 -mtune=core2”

2/7/2013 13

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 14

ECE 3515 Computer Organization

Run Benchmark Apps with SESC

 Go to tests directory
• Copy mem.conf and share.conf from confs directory to tests directory

 Three precompiled benchmark Apps
• crafty, mcf, smatrix

 Running benchmark app with command lines
• ../run/sesc.mem –cmem.conf crafty < tt.in

• ../run/sesc.mem –cmem.conf mcf mcf.in

• ../run/sesc.mem –cmem.conf smatrix

 Every run will generate a report file
• E.g., sesc_crafty.gxYmlM [sesc_benchName.randomLetters]

2/7/2013 15

ECE 3515 Computer Organization

Read Report files

 Get report summary
• Use the convenient tool report.pl to interpret report file

• There are more options in using report.pl

• There are a lot of useful info in the report summary

– Execution time, # of instructions, # of CPU cycles, instruction mix

ratios, IPC, different cache miss rates, and etc.

 Get the full report
• Simply vim or vi the report file and jump to the entry you want to read

• E.g. the data cache miss and hit counts

2/7/2013 16

ECE 3515 Computer Organization

Outline

 Introduction to Simulator

 Environmental Settings

 Building SESC executable

 Running benchmark apps

 SESC code structure

2/7/2013 17

ECE 3515 Computer Organization

Source Code Tree

 Modularized source code structure
• libapp - application interface with SESC

• libcore – processor core and its components,

e.g., branch predictors, reservation stations,

pipelines, etc.

• libemul – MIPS instruction emulation

• libll – interface between the timing and

function simulation parts

• libmem – non-shared caches

• libpower – power and energy

• libsescspot – thermal simulaiton

• libsmp – shared memory associated

structures (cache coherence)

• libsuc – profiling classes, and some other

special useful classes

2/7/2013 18

ECE 3515 Computer Organization

Important SESC Classes

 libcore/Processor.h (Processor.cpp)
• Processor::advanceClock()

– increments the CPU clock of the simulated processor

– coordinates interactions between different pipeline stages

– and does the following important work

– fetch()

• fetch instructions into the instruction queue

– issue()

• issue instructions from the instruction queue into a scheduling

window (Reservation Station)

– retire()

• retire already executed instructions from the reorder buffer (ROB)

2/7/2013 19

ECE 3515 Computer Organization

Important SESC Classes

 libmem/Cache.h (Cache.cpp)
• Cache::access(MemRequest *mreq)

– The common interface for accessing caches

– When called, SESC will figure out the type of the access

• If read request, call

– Cache::read(MemRequest *mreq)

• If write request, call

– Cache::write(MemRequest *mreq)

• If a cache writeback request, call

– Cache::pushLine(MemRequest *mreq)

• Cache::sendMiss(MemRequest *mreq)

– This function gets called when cache access turns out to be a miss

– This is also a virtual function

• The detailed implementation depends on the type of cache

– WBCache, WTCache, NICECache (inherited classes)

 2/7/2013 20

ECE 3515 Computer Organization

Other Classes to Look At

 libmem/mtst1.cpp
• The main function entry point

 libcore/GMemorySystem.cpp
• Building all cache-like structures, such as, DL1$, IL1$, L2$, TLBs …

 libcore/OSSim.cpp
• Acting like an OS, booting and stopping the simulation

libcore/RunningProcs.cpp
• AdvanceClock () gets called here

 libcore/MemRequest.cpp
• Implements signals that traverse through the memory hierarchy

 libcore/Gprocessor.cpp
• The basic processor components are defined in this class

2/7/2013 21

ECE 3515 Computer Organization

CallBack Functions

 SESC is an execution-driven simulator
• Functions are called to simulate parts of the processor every cycle

• There are other functions called at a later time

– E.g., the event that missed data is brought back to the cache from

the lower level memory

 CallBack class and its subclasses
• Libsuc/callback.h

– let the programmer schedule the invocation of a function at a given

time in the future

2/7/2013 22

ECE 3515 Computer Organization

How Does CallBack Work?

 Define the function you want to call in the future
• E.g., Cache::doRead(MemRequest * mreq) { … }

 Define the callback class that wraps the function
• E.g., typedef CallbackMember1<Cache, MemRequest *,

&Cache::doRead> doReadCB

 Schedule a time to execute the callback function
• doReadCB::scheduleAbs(nextSlot(), this, mreq)

– doRead is called at the nextSlot() time

• Or, doReadCB::schedule(5, this, mreq)

– doRead is called after 5 clock cycles

2/7/2013 23

ECE 3515 Computer Organization

Suggestions

 Get some background knowledge on C++ if you need
• The concept of class, inheritance, virtual function, etc.

 Get familiar with Linux shell commands
• cd, pwd, ls, grep, etc.

 Read header file first
• .h file defines the attributes and functions of a class

 Start early

2/7/2013 24

