GW ECE 3515 Lab Sheet

1 Branch Predictor

What is Static predictor?

What is Hybrid predictor?

What is OGEHL (Optimized Geometric History Length) predictor?

Table 1. Execution time (in msecs)

Predictor Type Smatrix Crafty Mcf
Static

Hybrid
OGEHL

Table 2. Branch Accuracy

Predictor Type Smatrix Crafty Mcf
Static
Hybrid
OGEHL

2 In-Order vs. Out-Order Execution
What is the difference between In-Order and Out-Order execution?

Table 3. Execution time (in msecs)

Execution Mode Smatrix Crafty Mcf
In-Order
Out-of-Order

3 Superscalar Processor
Why superscalar processor has performance advantage over uniscalar processor?

Table 4. Execution time (in msecs)

Width Smatrix Crafty Mcf

(N




LAB Instructions

Before starting your experiments, please make sure that you have SESC installed on
your Linux shell server. Please refer to
http://home.gwu.edu/~jiec/docs/sesc/sesc intro.pdf for detailed information about
how to install SESC and run benchmarks. Make sure you follow all the steps as listed in
the sesc_intro.pdf.

In this lab, we will need to get the execution time of benchmarks and branch
predictor accuracies. To get those numbers, please use the report.pl tool which is
located in /sesc/scripts/report.pl (use report.pl —help for more usage). For example, if
you have run the benchmark smatrix and got a report file sesc_smatrix.T4zjwn, you can
type ../script/report.pl sesc_smatrix.T4zjwn in your tests directory, like this:

-bash-3.25 ../scripts/report.pl sesc smatrix.T4zjwn Quote this number as
# Bench : ../run/sesc.mem -cmem.conf smatrix .
# File : sesc_smatrix.T4zjwn : Thu Apr 4 11:22:51 2013 benchmark execution
Exe Speed Exe MHz Exe Time Sim Time (5000 time.
1169.0%4 KIPS 0.8737 MHz 1.910 secs 0.334 ms
Proc Avg.Time BPType Total RAS BPred BTB BTAC
0 37.212 hybrid 77.27% (100.00% of 0.14%) 77.24% ( 75.58% of 75.55%) 0.00%

ninst BJ Load Store INT FP : LD ward , Replay : Worst Unit (clk)

0 2232970 5.05% 24.94% 1.34% 44.38% 24.29% D 17582 inst/repl : 0.00
Proc IPC Cycles Busy LDQ STQ IWin ROB FRegs Ports T axBr MisBr BrdClk Other
0 1.34 1668714 16.7 0.0 0.0 0.1 35.5 0.0 0.0 0.6 44.9 0.1 2.1

FHEFFFFFFFFHFFFFFHFFFFFHFFF R R R R R R R EF IR FRF R I AR FF AT AA R FF SIS
Proc Cache Occ MissRate (RD, WR) %DMemAcc MB/S @ ...
0 DL1 0.0 4.62% ( 4.4%, 0.2%) 99.64% 5.18GB/s : Bus 5375.73 MB/s : L2 0.

MemBus 270.196 MB/s :
S i i i i Lo
Proc Cache Occ MissRate (RD, WR) %DMemAcc MB/s : ... branch prediction

0 IL1 0.0 0.13% ( 0.1%, 0.0%) 41.71% 0.06GB/s : L2 0.0 5.16% ( 5.2%, 0.
/s :

Quote this number as

accuracy

Attention: After every benchmark run, SESC will generate a new report file that has
the format as “sesc_benchmarkname.randomletters”. Therefore, make sure that you
know which file is newly generated such you that can correctly fill tables in the lab sheet.

Attention: Run benchmarks with SESC in the tests directory!

1 Branch Predictor

Step 1: In the tests directory, edit shared.conf. Go to line 340 and insert one line:
BTACDelay =0#noBTAC

[[BPredTaken]

type = "Static"

BTACDelay = 0 # no BTAC
bthsize =1

btbBsize =1

btbAssoc =1
btbReplPolicy = 'LRU'
rasSize =1



http://home.gwu.edu/~jiec/docs/sesc/sesc_intro.pdf

Step 2: To use different branch predictors, static, hybrid, and ogehl, you need to edit
the line 257 of the shared.conf one at a time, like this:

1. bpred = 'BPredlIssueX' #this is to tell sesc to use hybrid branch predictor
2. bpred ="' BPredTaken' #this is to tell sesc to use static branch predictor
3. bpred ="' BestBPred' #this is to tell sesc to use OGEHL branch predictor

Attention: When you do the experiment, first use the default bpred configuration
(BPredlssueX) and run the benchmarks one by one. After that, you change bpred’s value
to BPredTaken and run the benchmarks again, and do so for BestPred.

2 In-Order vs. Out-Order Execution
Step 1: edit shared.conf in line 235, like this:

1. inorder = false # configure the processor to have in-order execution
2. inorder = true # configure the processor to have out-of-order execution

3 Superscalar Processor
Step 1: edit mem.confin line 2, like this:

1. issue =1 # uniscalar processor

2. issue = 2 # 2-issue superscalar processor
3. issue =4 # 4-issue superscalar processor
4. issue = 8 # 8-issue superscalar processor



