Titan

October 1st 2010 James Marshall

Overview

RMPL

Titan Model-based Executive

Control Sequencer

- Not very interesting
- Interpreter for RPML code

Deep Space 1

- Experimental NASA satellite
- Remote Agent Experiment (RAX)
 - Precursor to Titan work
- Mostly successful:
 - Correctly generated a plan (although unexpected)
 - Handled simulated failures correctly
- Some problems

Lessons Learned

- Model Validation needed
 - Model descriptions of hardware components
 - Validation of the system itself would be nice
- Unpredictable in novel situations
 - Search is complete but:
 - Not always completed within constraints
 - Can't test all possible scenarios

What Titan Adds

- Probabilistic
- Automatic failure recovery
- Fast?
- Modularity?

Probabilistic: Mode Estimation

Mode Estimation

- Input:
 - Observations
 - Plant Model (POMDP)
- Calculates probability of every state
 - Based off Hidden Markov Model belief state update
- Has "history": probabilities conditioned by previous moves
- Output: Most likely current state

Failure Recovery: Mode Reconfiguration

- Input:
 - Most likely current state (ME)
 - Configuration goal (CS)
 - Plant Model (POMDP)
- Generates Control Action -
 - Moves system closer to Configuration Goal
 - Maximizes reward
 - Uses a nominal transition to new most likely state

Plant Model: POMDP... again

• Represents:

- Hardware state
- Observable variables (probabilistic relation to state)
- Control variables
- Transitions between states (probabilistic), including failures
- Reward values for states

MR and POMDP

- That's how MR can select the "best" next command
 - Taking "future" into account
- Since nothing is certain, confirm and possibly re-evaluated after each command
- Errors are thus dealt with, without "re-planning"
 - Control Sequencer isn't needed to recover

Speed

- Just like Remote Agent, too slow
- State space grows exponentially
- Can't even limit possible states by observations:
 - Each component could be failing in a novel way

Implementation of POMDP

- Constraint Automata
 - One for each component
 - Operate synchronously
 - Mode variable
 - attribute variables with constraints (behavior)
 - Transition functions (with probability distribution)
 - Reward function

Concurrent Constraint Automata

- CAs are not enough
- Interconnections between CAs
- Interconnections with environment
- This is the Plant Model

Example: Valve

- Driver
 - Mode
 - On, Off, Resettable
 - On: (constraints)
 - cmd_in = cmd_out
 - Off:
 - cmd_out = none
 - Attr:
 - Control: cmd_in
 - Dependent: cmd_out

Valve

- Mode
 - Open, Closed, Stuck

• Attr:

- Dependent: vcmd
- Observable: inflow, outflow
- Interconnections
 - cmd_out = vcmd

Valve Transitions

- Nominal, Current: driver On
 - cmd_in = off \rightarrow Off
 - cmd_in != off \rightarrow On
- Nominal, Current: driver Resettable
 - cmd_in = reset → On
 - cmd_in != reset \rightarrow Resettable
- Failure, Current: driver On
 - True \rightarrow Resettable

Open Sesame (err... Valve)

- Configuration Goal: (Valve = Open)
- Command: cmd_in = on
- Observe (inflow = 0, outflow = 0)
- Is the Driver failing or is the Valve stuck?

Belief Update

- How many belief states?
- New Observation!
 - Enumerate transitions
 - States that conflict: thrown out
 - States that predict: favor
- How do we enumerate transitions?

OpSat

- Well studied problem
- Control Variables, State constraints

Still too much

- Incremental Truth Maintenance discovers conflicts in candidates
- Conflicts used by conflict directed A* search to prune
- Now we have a (hopefully small) set of possible states

Mode Reconfiguration... again

- Take the most likely state from ME
- Only allow "reversible" transitions
 - Failures are the exception
- First, finds most desirable goal
 - Same process as ME
- Constant time planner maps out commands
 - Deferred to previous AI research

