
Titan

October 1st 2010
James Marshall

10/01/10 jcmarsh@gwmail.gwu.edu 2

Overview

Control
Program

Plant
Model

Control Sequencer

Deductive Controller

Plant

 State Estimates Configuration Goals

Observations Commands

RMPL Titan Model-based Executive

10/01/10 jcmarsh@gwmail.gwu.edu 3

Control Sequencer

● Not very interesting
● Interpreter for RPML code

10/01/10 jcmarsh@gwmail.gwu.edu 4

Deep Space 1

● Experimental NASA satellite
● Remote Agent Experiment (RAX)

● Precursor to Titan work

● Mostly successful:
● Correctly generated a plan (although unexpected)
● Handled simulated failures correctly

● Some problems

10/01/10 jcmarsh@gwmail.gwu.edu 5

Lessons Learned

● Model Validation needed
● Model – descriptions of hardware components
● Validation of the system itself would be nice

● Unpredictable in novel situations
● Search is complete but:

– Not always completed within constraints
– Can't test all possible scenarios

10/01/10 jcmarsh@gwmail.gwu.edu 6

What Titan Adds

● Probabilistic
● Automatic failure recovery
● Fast?
● Modularity?

10/01/10 jcmarsh@gwmail.gwu.edu 7

Probabilistic: Mode Estimation

Deductive Controller

Plant
Model

Plant

Mode Estimation
Mode

Reconfiguration

Config. GoalsState Estimates

Observations Commands

10/01/10 jcmarsh@gwmail.gwu.edu 8

Mode Estimation

● Input:
● Observations
● Plant Model (POMDP)

● Calculates probability of every state
● Based off Hidden Markov Model belief state update

● Has “history”: probabilities conditioned by
previous moves

● Output: Most likely current state

10/01/10 jcmarsh@gwmail.gwu.edu 9

Failure Recovery: Mode
Reconfiguration

● Input:
● Most likely current state (ME)
● Configuration goal (CS)
● Plant Model (POMDP)

● Generates Control Action -
● Moves system closer to Configuration Goal
● Maximizes reward
● Uses a nominal transition to new most likely state

10/01/10 jcmarsh@gwmail.gwu.edu 10

Plant Model: POMDP... again

● Represents:
● Hardware state
● Observable variables (probabilistic relation to state)
● Control variables
● Transitions between states (probabilistic), including

failures
● Reward values for states

10/01/10 jcmarsh@gwmail.gwu.edu 11

MR and POMDP

● That's how MR can select the “best” next
command
● Taking “future” into account

● Since nothing is certain, confirm and possibly
re-evaluated after each command

● Errors are thus dealt with, without “re-planning”
● Control Sequencer isn't needed to recover

10/01/10 jcmarsh@gwmail.gwu.edu 12

Speed

● Just like Remote Agent, too slow
● State space grows exponentially
● Can't even limit possible states by

observations:
● Each component could be failing in a novel way

10/01/10 jcmarsh@gwmail.gwu.edu 13

Implementation of POMDP

● Constraint Automata
● One for each component
● Operate synchronously
● Mode variable
● attribute variables with constraints (behavior)
● Transition functions (with probability distribution)
● Reward function

10/01/10 jcmarsh@gwmail.gwu.edu 14

Concurrent Constraint Automata

● CAs are not enough
● Interconnections between CAs
● Interconnections with environment
● This is the Plant Model

10/01/10 jcmarsh@gwmail.gwu.edu 15

Example: Valve

● Driver
● Mode

– On, Off, Resettable
● On: (constraints)

– cmd_in = cmd_out
● Off:

– cmd_out = none
● Attr:

– Control: cmd_in
– Dependent: cmd_out

● Valve
● Mode

– Open, Closed, Stuck
● Attr:

– Dependent: vcmd
– Observable: inflow,

outflow

● Interconnections
● cmd_out = vcmd

10/01/10 jcmarsh@gwmail.gwu.edu 16

Valve Transitions

● Nominal, Current: driver On
● cmd_in = off → Off
● cmd_in != off → On

● Nominal, Current: driver Resettable
● cmd_in = reset → On
● cmd_in != reset → Resettable

● Failure, Current: driver On
● True → Resettable

10/01/10 jcmarsh@gwmail.gwu.edu 17

Open Sesame (err... Valve)

● Configuration Goal: (Valve = Open)
● Command: cmd_in = on
● Observe (inflow = 0, outflow = 0)
● Is the Driver failing or is the Valve stuck?

10/01/10 jcmarsh@gwmail.gwu.edu 18

Belief Update

● How many belief states?
● New Observation!

● Enumerate transitions
● States that conflict: thrown out
● States that predict: favor

● How do we enumerate transitions?

10/01/10 jcmarsh@gwmail.gwu.edu 19

OpSat

● Well studied problem
● Control Variables, State constraints

10/01/10 jcmarsh@gwmail.gwu.edu 20

Still too much

● Incremental Truth Maintenance discovers
conflicts in candidates

● Conflicts used by conflict directed A* search to
prune

● Now we have a (hopefully small) set of possible
states

10/01/10 jcmarsh@gwmail.gwu.edu 21

Mode Reconfiguration... again

● Take the most likely state from ME
● Only allow “reversible” transitions

● Failures are the exception

● First, finds most desirable goal
● Same process as ME

● Constant time planner maps out commands
● Deferred to previous AI research

10/01/10 jcmarsh@gwmail.gwu.edu 22

The End.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

