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Control Sequencer

● Not very interesting
● Interpreter for RPML code 



10/01/10 jcmarsh@gwmail.gwu.edu 4

Deep Space 1

● Experimental NASA satellite 
● Remote Agent Experiment (RAX)

● Precursor to Titan work

● Mostly successful:
● Correctly generated a plan (although unexpected)
● Handled simulated failures correctly

● Some problems
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Lessons Learned

● Model Validation needed
● Model – descriptions of hardware components
● Validation of the system itself would be nice

● Unpredictable in novel situations
● Search is complete but:

– Not always completed within constraints
– Can't test all possible scenarios



10/01/10 jcmarsh@gwmail.gwu.edu 6

What Titan Adds

● Probabilistic
● Automatic failure recovery
● Fast?
● Modularity?
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Probabilistic: Mode Estimation
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Mode Estimation

● Input:
● Observations 
● Plant Model (POMDP)

● Calculates probability of every state
● Based off Hidden Markov Model belief state update

● Has “history”: probabilities conditioned by 
previous moves

● Output: Most likely current state
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Failure Recovery: Mode 
Reconfiguration

● Input:
● Most likely current state (ME)
● Configuration goal (CS)
● Plant Model (POMDP)

● Generates Control Action - 
● Moves system closer to Configuration Goal
● Maximizes reward
● Uses a nominal transition to new most likely state
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Plant Model: POMDP... again

● Represents:
● Hardware state
● Observable variables (probabilistic relation to state)
● Control variables
● Transitions between states (probabilistic), including 

failures
● Reward values for states



10/01/10 jcmarsh@gwmail.gwu.edu 11

MR and POMDP

● That's how MR can select the “best” next 
command
● Taking “future” into account

● Since nothing is certain, confirm and possibly 
re-evaluated after each command

● Errors are thus dealt with, without “re-planning”
● Control Sequencer isn't needed to recover
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Speed

● Just like Remote Agent, too slow
● State space grows exponentially
● Can't even limit possible states by 

observations:
● Each component could be failing in a novel way
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Implementation of POMDP

● Constraint Automata
● One for each component
● Operate synchronously
● Mode variable
● attribute variables with constraints (behavior)
● Transition functions (with probability distribution)
● Reward function
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Concurrent Constraint Automata

● CAs  are not enough
● Interconnections between CAs
● Interconnections with environment
● This is the Plant Model
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Example: Valve

● Driver 
● Mode

– On, Off, Resettable
● On: (constraints)

– cmd_in = cmd_out
● Off: 

– cmd_out = none
● Attr:

– Control: cmd_in
– Dependent: cmd_out

● Valve
● Mode

– Open, Closed, Stuck
● Attr:

– Dependent: vcmd
– Observable: inflow, 

outflow

● Interconnections
● cmd_out = vcmd
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Valve Transitions

● Nominal, Current: driver On
● cmd_in = off → Off
● cmd_in != off → On

● Nominal, Current: driver Resettable
● cmd_in = reset → On
● cmd_in != reset → Resettable

● Failure, Current: driver On
● True → Resettable
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Open Sesame (err... Valve) 

● Configuration Goal: (Valve = Open)
● Command: cmd_in = on
● Observe (inflow = 0, outflow = 0)
● Is the Driver failing or is the Valve stuck?
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Belief Update

● How many belief states?
● New Observation!

● Enumerate transitions
● States that conflict: thrown out
● States that predict: favor

● How do we enumerate transitions?
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OpSat

● Well studied problem
● Control Variables, State constraints
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Still too much

● Incremental Truth Maintenance discovers 
conflicts in candidates

● Conflicts used by conflict directed A* search to 
prune

● Now we have a (hopefully small) set of possible 
states
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Mode Reconfiguration... again

● Take the most likely state from ME
● Only allow “reversible” transitions

● Failures are the exception

● First, finds most desirable goal
● Same process as ME

● Constant time planner maps out commands
● Deferred to previous AI research  
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The End.
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