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Abstract

Cyber-physical systems (CPSs) have stringent
requirements for power, size, cost and reaction
time. Fault protection mechanisms negatively im-
pact these considerations. We introduce a software-
only framework that leverages the modular and
robust design of CPSs to allow more flexibility
in detecting and recovering from transient faults.
We demonstrate a %10 speedup of task perfor-
mance with maze navigation and pedestrian detec-
tion tasks by scaling redundancy, with no loss of
fault tolerance.

I. Introduction

Transient faults in cyber-physical systems (CPS) such as
satellites may be caused by electrical noise or radiation [1].
These single event upsets (SEUs) manifest as “bit-flips”
and may cause data corruption, computational errors, and
execution faults. A common protection mechanism is to
provide double and triple modular redundancy (DMR and
TMR) through redundant hardware [2], but this increases
power and volume requirements. Radiation hardened pro-
cessors are an alternative, but lag behind commodity hard-
ware in performance and cost.

Software solutions are able to provide near equivalent
protection by replicating computation temporally instead
of spatially. The additional computational load is offset
by using faster and cheaper commodity parts. Software
solutions allow the granularity of computational units to
be scaled. Coarser-grained units, such as a process, re-
duce the cost of reliability by lowering voting overheads
and allowing benign SEUs to be ignored [3]. We posit that
for CPSs, scaling the level of redundancy of certain units
can be achieved without sacrificing reliability because CPSs
comprise robust subsystems that are resilient to silent data
corruption (SDC), further reducing costs.

We present Scalable System Support for Reliable Em-
bedded Software (S3RES) to enable options in scaling re-
dundancy to reduce the cost of reliability. S3RES is a
software-only, user-space approach to SEU detection and
recovery that interposes between a control application and
a POSIX compliant real-time operating system for unipro-
cessor systems. Redundancy may be scaled from TMR,
DMR, to no redundancy on a per-component basis. Com-
ponents are a common abstraction defined by CPS middle-
wares such as NASA’s core Flight Executive (cFE) [4] and
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ROS [5]. Without protection, components are vulnerable
to SUEs, which are categorized by their effects as follows:

1. Benign: The SEU causes no observable change. A
register is altered prior to a write.

2. Control Flow Error: Causes a branch in process flow,
altering execution time. A change to the program
counter, a jump address, or a branch’s condition.

3. Execution Error: Causes the process to trip OS pro-
tection mechanisms. A memory address is altered to
an out of range value and then accessed.

4. Data Corruption: The functional output of a process
is changed. A register is altered prior to a read.

Because CPSs interact with the environment, their com-
ponents must adhere to strict bounded execution times.
S3RES is able to maintain real-time guarantees while be-
ing subjected to a fault injection campaign as demonstrated
in previous work [6].

This paper describes our preliminary results showing
that scaling redundancy can improve task performance and
explains our plan to explain the relationship between scaled
redundancy, fault protection, and task performance.

II. System Design

Our goal with S3RES is to explore the application of
scalable modular redundancy to CPSs at a component level.
To do this, we model the architecture of middleware frame-
works such as ROS and cFS, which construct systems for
CPSs as graphs of communicating nodes. Each node en-
capsulates some functionality, such as a path planner, and
communicates through message passing.

Figure 1a shows the components of an example robot
control system. The interface with our simulated hard-
ware, a two wheel robot navigating a 2d maze in Play-
er/Stage [7], is shown at the bottom. Directly above that
are the sensor and local navigator components, which de-
tect and avoid obstacles. The next two components—the
mapper and A* path planner—map the environment and
generate waypoints for the local navigator. These four com-
ponents constitute the core system.

The final two components are used to measure the sys-
tem: the logger component records the location and speed
of the robot to a file and the pedestrian component runs
an implementation of the Integral Channel Features pedes-
trian detection algorithm repeatedly on a test image. This
provides a realistic example for a computation intensive
task and allows us to measure the impact of redundancy on
throughput. The pedestrian component has memory leaks,
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(c) Task speedup compared to the baseline configura-
tion. Seconds per pedestrian detected in violet, maze
completion time in orange.Figure 1

so it is periodically restarted using a single replica with a
voter, refered to as single modular redundancy (SMR).

To create a protected component, the original compo-
nent is replaced with a voter and a scalable number of
replicas of the original component. Figure 1b shows an
example protected component with one incoming and one
outgoing channel. The voter interposes upon the commu-
nication channels: incoming messages are duplicated and
passed to each replica while outgoing messages are buffered
in the voter and then compared for consistency. The voter
detects control flow errors and execution faults by setting
a timeout for replica responses.

The level of replication dictates the capabilities of the
voter. With SMR, the voter is able to detect faults and
control flow errors. Recovery will lose component state,
as no running replica will be available, and SDCs will go
undetected. With DMR, faults and control flow errors can
be recovered from by replacing the failed replica with a copy
of the remaining healthy replica. SDCs can be detected by
comparing outputs, but the voter will not be able to tell
which replica the fault occurred in. It is only with TMR
that a SDC can be detected and fully recovered from.

III. Task Performance

To evaluate S3RES, we injected faults into three config-
urations of the system shown in Figure 1a while the robot
navigated through a maze using its global location and
sixteen distance sensors. The baseline configuration uses
TMR for all four core components, and Config1 reduces
the mapper and path planner to DMR. Config2 does as
well, and reduces the filter to SMR.

The system is able to perform well when faults are in-
jected into SMR protected components that maintain no
vital internal state, such as filter. We need to expand
S3RES to be able to evalute performance with SDC errors.
For components such as filter, SDC may not impact per-
formance if all dependent components are robust to noisy
inputs. For components such as the path planner, we need
to implement a recovery mechanism such as checkpointing,
for which DMR will provide fail-stop behavior.

Figure 1c shows speedup of Config1 and Config2 com-
pared to the baseline configuration. The groupings, from
left to right, show performance with no faults, execution
faults, and control faults. The speedup observed is for task
based performance: by freeing resources, the robot is able
to complete the maze faster while detecting more pedestri-
ans. With faults injected, the scaled configurations experi-
ence less of a degradation to performance while still being
as resilient to faults as the baseline configuration.

IV. Conclusions and Future Work

With S3RES established as a suitable platform to ex-
plore scaling redundancy, we intend to expand upon our
preliminary results regarding task performance. We intend
to further investigate trade-offs between task performance
and level of redundancy, as well as how to characterize com-
ponents to help determine the level of redundancy to use,
and whether or not complimentary forms of protection are
applicable.
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