
Improving Interrupt Response Time in 
a Verifiable Protected Microkernel
Blackham, Bernard and Shi, Yao and Heiser, Gernot
EuroSys ‘12

James Marshall, GW-SSL Fall 2013



Resources
Blackham, Bernard, Yao Shi, and Gernot Heiser. "Improving interrupt response time in a 
verifiable protected microkernel." Proceedings of the 7th ACM european conference on 
Computer Systems. ACM, 2012.
Elphinstone, Kevin, and Gernot Heiser. "From L3 to seL4 What Have We Learnt in 20 Years of L4 
Microkernels?."
Mehnert, Frank, Michael Hohmuth, and Hermann Hartig. "Cost and benefit of separate address 
spaces in real-time operating systems." Real-Time Systems Symposium, 2002. RTSS 2002. 23rd 
IEEE. IEEE, 2002.
Blackham, Bernard, et al. "Timing analysis of a protected operating system kernel." Real-Time 
Systems Symposium (RTSS), 2011 IEEE 32nd. IEEE, 2011.
Blackham, Bernard, Vernon Tang, and Gernot Heiser. "To preempt or not to preempt, that is the 
question." Proceedings of the Asia-Pacific Workshop on Systems. ACM, 2012.
Klein, Gerwin, et al. "seL4: Formal verification of an OS kernel." Proceedings of the ACM 
SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.



Domain
Hard Real-Time

Worst Case Execution Time

Growing more complex
Mixed-criticality systems



Current Real-Time OSes
Focus on lowest 
possible WCET

Small, simple RT 
kernels

Mixed-criticality dealt 
with like RTLinux



History
80’s - L3 by Jochen Liedtke
90’s - L4: fast IPC, microkernels work
Many variants
00’s - commercial success



seL4
Redesigned L4 to be verified
WCET analysis
* Improvements for WCET of interrupts



Verification (How)



Verification (What)
Functional Correctness: The implementation 
the abstract specification of the kernel.
Implications:

No buffer overflows
Well-formed data structures
No non-termination
many more...

Assumptions: C-compiler, assembly, hardware, 
and kernel initialization.



Drawback
Concurrency is the Verification Killer
- Non-Preemptive kernel
- Event based kernel
Verification is very expensive
- Changes are hard to make



First WCET

Microseconds; too slow
approx. 800 Mhz system



Lazy Scheduling
Optimization for better average case execution
WCET is king now.



Open vs. Closed systems
What are the slow system calls?

Kernel object creation and deletion
Example: deleting an IPC port.

How do we speed them up?
Original solution: Don’t do it.



Data Structure 
Manipulation
Allow preemption points
Progress must be made between points



Preemption Point
Kernel checkpoints progress
Checks for interrupts
Resumes system call



WCET
Difficult to compute
Observations can not be trusted



WCET Problems
Cache policies
Loops
Execution paths



2nd WCET Results

Approx. 500 Mhz system
With better WCET analysis:

~300 microsecond computed WCET
Much closer to observed



Significance
Verified micro-kernel
Supports address spaces
Protected-mode kernel

Still manages sub-millisecond worst case 
interrupt execution time



Future Work
Re-verification
A few more optimizations

IPC send-receive
capability policy



That’s all folks!



L4RTL
Shows that RT Tasks can be run in user space 
along side of normal Linux applications 
(provides separate address spaces).
The performance hit is there, but not that bad.

RTLinux keeps the RT Tasks in the kernel 
space.



Stack Blocking
seL4 is even-based

means single stack (unlike thread based. a stack for 
every process, easy to preempt, just swap stacks). 

Can not preempt, because the stack is shared. Stack 
blocking occurs if a process1 holds an exclusive object, and 
process2 preempts it. Process2 takes the top of the stack, 
effectively blocking process1 from running.

There are solutions, but this would force a policy on 
seL4.


