
Burns Standard Notation for real time scheduling

Robert I. Davis

University of York

rob.davis@york.ac.uk

1 Introduction

During the last 20 years, there has been a significant growth in the number of people

active in the real-time scheduling community and consequently a large increase in the

number of research publications. Today, more than ever it is important that we make our

latest research (whether it is a short workshop abstract like this one or a lengthy journal

paper) as easy as possible for others to understand and build upon.

As readers and reviewers of papers on real-time scheduling, we have all experienced

the difficulty and at times hair-pulling frustration involved in trying to decipher complex

analysis embodied in numerous equations using unfamiliar, arbitrary and sometimes

downright cryptic notation [1]. We have all also experienced the pleasure of reading

interesting, insightful, well-structured papers with clear step-by-step analysis, that uses

precise terminology, and a concise, consistent and well thought-out notation [13].

Through the volume and the quality of the research he has produced (450 pub-

lications and counting), the number of PhD students he has supervised and nurtured

into independent researchers, and the number of people reading his work (approaching

15,000 citations), Alan Burns continues to have a substantial and guiding influence on

the de-facto standard terminology and notation that has been adopted by many in the

real-time scheduling community. We do not claim that he invented this notation, but

that over the years he has been instrumental in extending and shaping it into a form

suitable for continued use.

In recognition of Alan′s 0x3C birthday1 and his enduring contribution to the field of

real-time scheduling, we hope that this notation, summarised below, will from hereon

be referred to as Burns Standard Notation. Our aim is for it to be used in future by

all attending the workshop or reading this abstract, and thus become so widespread and

standardised upon that in a few years it will be hard to find a new paper on real-time

scheduling that does not make use of it.

2 Guidelines

Burns Standard Notation describes the properties of a real-time system and in particular

the set (τ) of n tasks that execute on it, where each task τi is identified by a unique index

i from 1 to n. This notation evolved over a number of years according to a set of informal

1 Beyond a certain age one should think in hexadecimal and still claim to be thirty something.

At the time of writing, the author had recently turned thirty.



guidelines. These guidelines provide both a rationale for the choices made and enable

extension of the notation to new properties or parameters in a consistent way.

The guidelines used in creating and extending Burns Standard Notation are as fol-

lows:

(i) Subscripts refer to a task index, for example Di, with a second subscript (if required)

referring to the index of a specific invocation or job of that task, for example di, j.

(ii) Upper case letters are used for offline properties that are relative rather than abso-

lute, for example Di is the relative deadline of task τi.

(iii) Lower case letters are used for online properties that are absolute, for example di,k
is the absolute deadline of the kth job of task τi.

(iv) Functions are used for properties that vary with respect to some parameter (often

time or a time interval). For example ci(t) denotes the remaining execution time

of task τi at time t, and Ii(t) denotes the maximum interference from task τi in an

interval of length t.
(v) Superscripts are used to qualify different variants of a property, for example RLO

i
denotes the response time of task τi when the system is in a low criticality mode.

(vi) Sets of tasks are described as functions of the task index, for example l p(i) is the

set of tasks with priorities lower than that of task τi.

3 Burns Standard Notation

Burns Standard Notation is given in the table below, in alphabetical order. Our aim is

for this notation to become the accepted standard for real-time scheduling papers.

Notation Terminology Meaning
Bi Blocking The longest time for which task τi can be prevented from

executing by tasks of lower priority.

Ci Worst-case

execution

time

An upper bound on the longest possible execution time of

task τi.

ci(t) Worst-case remaining execution time of task τi at time t.
Di Relative

Deadline

The longest elapsed time that task τi is permitted to take from

being released until it completes execution.

E(t) Error recov-

ery overhead

The total time spent recovering from errors in a time interval

of length t.
Fi Final non-

pre-emptive

region

The maximum length of the final non-pre-emptive region of

task τi.

H Hyperperiod The Least Common Multiple of all task periods.

hp(i)
hep(i)

Set of higher

priority tasks

hp(i) is the set of tasks with higher priority than task τi,

whereas hep(i) is the set of tasks with higher or equal pri-

ority to task τi.



Notation Terminology Meaning
Ji Release Jitter The longest possible time from the notional arrival of a job

of task τi until it is released i.e. becomes ready to execute.

Jk Job k In the case of papers discussing systems of independent jobs,

then Jk is used to mean the job with index k.

Li Criticality

level

In a mixed criticality system, the criticality level of task τi.

l p(i)
lep(i)

Set of lower

priority tasks

l p(i) is the set of tasks with lower priority than task τi,

whereas lep(i) is the set of tasks with lower or equal priority

to task τi.

m Number of processors

n Number of tasks

Pi Priority The priority of task τi, used to determine which of a compet-

ing set of ready tasks should be executed. Where it is possible

to do so without loss of generality, the priority of a task is of-

ten assumed to equate to its index i.
Ri Worst-case

response time

The longest possible elapsed time from the release of any job

of task τi until the completion of that job.

Si Slack The maximum amount of additional interference that task τi
may be subject to without missing a deadline.

s Speed The speed of the processor.

Ti Period The minimum inter-arrival time between jobs of task τi.

Ui Utilisation The processor utilisation of task τi, Ui =Ci/Ti. (U is the util-

isation of the task set τ).

τi Task The task with index i.
τ Task set

Wi or wi Window or

busy period

The length of a priority level i busy period or scheduling win-

dow. Used in schedulability analysis equations where the re-

sponse time is not computed directly.

The symbols Ci, Ti, τi and U were used in the famous paper by Liu and Layland [10]

in 1973. Many of the other symbols, including Bi, Di, Ii, Ji, Ri, and hp(i) became es-

tablished following their use in one of Alan Burns seminal contributions to the analysis

of fixed priority scheduling [2]. Other symbols were introduced in subsequent papers in

the mid 1990s (Fi, Pi and superscripts [5], Si [6], E(t) [11] ), whereas Li [4] is a more

recent addition.

References

1. It would be unfair to pick out any one paper for criticism but I see you checked hoping it

wasn’t yours! A.

2. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new schedul-

ing theory to static priority pre-emptive scheduling. Software Engineering Journal, 8(5):284

–292, 1993.

3. Neil Audsley. On priority assignment in fixed priority scheduling. Information Processing
Letters, 79(1):39–44, 2001.



4. S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.

In proceedings Real-Time Systems Symposium, pages 34 –43, 29 2011-dec. 2 2011.

5. Alan Burns. Preemptive priority-based scheduling: An appropriate engineering approach. In

Advances in Real-Time Systems, chapter 10, pages 225–248. Prentice Hall, 1994.

6. R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed priority pre-emptive

systems. In proceedings Real-Time Systems Symposium, pages 222 –231, 1993.

7. T. Ebenlendr, M. Krcal, and J. Sgall. Graph balancing: A special case of scheduling unrelated

parallel machines. Algorithmica, pages 1–19, 2012. (Extended abstract published in the

SODA 2008 Proceedings).

8. Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-oriented design of

embedded hardware and software systems. Journal of Circuits, Systems, and Computers, 2,

2003.

9. J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling

problems. Annals of Discrete Mathematics, 1:343–362, 1977.

10. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, January 1973.

11. K. Tindell, A. Burns, and A. Wellings. Calculating controller area network (can) message

response times. Control Engineering Practice, 3:1163–1169, 1995.

12. José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated

machines. In ESA, pages 530–542, 2011.

13. It would be unfair to pick out any one paper for praise but I see you checked this time hoping

it was yours! Z.


