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Nuclear Physics: Conventions v2.0, Jan 2023

The Natural System of Units is particularly popular in Nuclear and High-Energy Physics since as many
fundamental constants as possible have as simple a value as possible (see [MM]!).
Set the speed of light and Planck’s quantum to c = ~ = 1. This expresses velocities in units of c, and actions
and angular momenta in units of ~. Then, only one fundamental unit remains, namely either an energy- or
a length-scale. Time-scales have the same units as length-scales. We also set Boltzmann’s constant kB = 1,
so energy and temperature have the same units. Now one only memorises a handful of numbers. [Setting
Newton’s gravitational constant GN = 1 eliminates any dimension-ful unit – only String Theorists do that.]

Electrodynamic Units: The Rationalised Heaviside-Lorentz system will be used throughout. Form-
ally, it can be obtained from the SI system by setting the dielectric constant and permeability of the vacuum
to ε0 = 1

µ0c2
= 1. The system is uniquely determined by any two of the fundamental equations which contain

~E and a combination of ~E and ~B. More on systems, units and dimensions e.g. in [MM].

Charges Q = Ze are measured in units Z of the elementary charge e > 0; electron charge −e < 0.

Lagrangean: Lelmag = −1

4
FµνFµν =⇒ Maxwell’s equations: ∂µF

µν = jν

Lorentz force: ~FL = Ze[ ~E + ~β × ~B]; Coulomb’s law: Φ(r) =
Ze

4π r
“Restoring” SI units from “natural units”: Multiply by cα ~β kγB ε

δ
0 and determine the exponents such that

the proper SI unit remains, using [c]: [m s−1], [~]: [kg m2 s−1], [kB]: [m2 kg s−2 K−1] and [ε0]: [C V−1 m−1 =
[C2 s2 m−2 kg−1]. Example: E = m =⇒ E = mcα ~β kγB ε

δ
0, and you have to convert kg m2/s2 into kg,

i.e. add two powers of m/s, so that α = 2, β = γ = δ = 0.

Conventions Relativity: Einstein Σummation Convention; “East-coast” metric (+−−−):

A2 ≡ Aµ Aµ := (A0)2 − ~A2. Velocity β, Lorentz factor γ =
(
1− β2

)−1/2
.

Conventions QFT: “Bjørken/Drell”: [HM, PS] – close to [HH], but fermion norms different:

Quantised complex scalar: Φ(x) =

∫
d3k

(2π)3
1√
2Ek

[
a(~k) e−ik·x + b†(~k) e+ik·x

]
with Ek := k0 = +

√
~k2 +m2

Minimal substitution in QED: Dµ = ∂µ+iZeAµ; in non-Abelian gauge theories (QCD,. . . ): Dµ = ∂µ−ig Aµ.

γ5 = iγ0γ1γ2γ3 = γ5; 2mP+ :=
∑
s=±

us(p)ūs(p) = /p+m, −2mP− :=
∑
s=±

vs(p)v̄s(p) = /p−m =⇒ P++P− = 1

Elastic cross section (our convention) in cm:
dσ

dΩ
=

1

64π2s
|M|2; lab, m = 0:

dσ

dΩ
=

1

64π2M2

(
E′

E

)2

|M|2

Decay of particle with mass M (cm, our convention): Γ[A→ B(~p′) + C] =
|~p′|

8πM2

∫
dΩ |M|2

More cross section formulae & conventions in “Summary Electron Scattering Cross Sections” below.

Nuclear Physics: Some Oft-Overlooked Bare Essentials
Know these by heart! Physicists spend a lot of time solving complicated problems, so we want to always
start with an idea of the result. We have ideas when we are hiking, cycling, in the shower, etc., and usually
not on our desk. We discuss them with colleagues on the blackboard, and we cannot waste their and our
time with looking stuff up. Therefore, we need to be able to do calculations without computers, books or
calculators, i.e. in our head or with a piece of scrap paper and a dull pencil.
Here a list of numbers most commonly used for estimates, back-of-the-envelope calculations, etc. of the
Nuclear Physics tool-chest. You need them for that purpose but they are often overlooked. You should know
the following by heart when woken up at night. The list is not exhaustive, not meant to be relevant and may
not be useful. Your mileage may vary. It’s better to know too much than not enough. You should check
these values, how they come about, and their limitations. Trivialities are not included, like most ”Essentials’
from Mathematical Methods [MM] (dimensional estimates, guesstimates, Natural System of Units). If you
know more things worth remembering, let me know!
This is the list of often-overlooked numbers, not of the minimum necessary – the minimum is much
larger (including names, spins, charges, masses of all fundamental particles, etc.).

Please turn over.
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≈ : number rounded for easier memorising – it suffices to know the first significant figure.
=̂, ≈̂ : correspondences are correct only in the natural system of units.

Quantity Value

speed of light in vacuum c := 2.997 924 58× 108 m s−1(def.!)≈ 3× 108 m s−1

energy electron gains when accelerated by 1 V 1 electron Volt (eV) ≈ 1.6× 10−19 Joule = 1
e

[C]
J

conversion factor 1 J ≈ 6× 1018 eV

typ. subatomic length-scale (proton/neutron size) 1 fermi (femtometre, fm) = 10−15 m

conversion factor energy – length ~c =̂ 1 = 197.327 . . . MeV fm ≈ 200 MeV fm

=⇒ conversion factor distance – time (nat. units) 1 fm = 1
fm

c
≈̂ 1

3
× 10−23 s

(time for light to travel a typ. distance-scale)
conversion factor elmag.: fine-structure constant

el. strength at atomic/nuclear/hadronic scales α =
e2

4π

∣∣∣∣
nat.+rat. HL

=
e2

4πε0~c

∣∣∣∣
SI
≈ 1

137
(no units!)

conversion factor energy – temperature: E = kBT 1 eV ≈̂ 11 600 Kelvin, 300 K ≈̂ 1

40
eV

“classical” electron radius re =
α

mec2
=

e2

4π me

∣∣∣∣
nat.+rat. HL

≈ 3 fm

Masses conversion factor: atomic unit 1u =
mass 12C atom

12
=

1

12
× 12 g

6.022× 1023
≈ 1

6
× 10−23 g

electron me ≈ 511 keV muon mµ ≈ 110 MeV ≈ 200 me

nucleon MN ≈ 940 MeV ≈ 1800 me ≈ 1 GeV ≈ 1 u

proton Mp ≈ 938 MeV= 6π5 me neutron Mn ≈ 940 MeV =⇒ p-n mass difference 1.3 MeV ≈ 3 me

pion mπ ≈ 140 MeV ≈ 1

7
MN kaon mK ≈ 500 MeV ρ, ω mesons mρ ≈ mω ≈ 800 MeV

Higgs boson MH ≈ 125 GeV W boson MW ≈ 80 GeV Z boson MZ ≈ 90 GeV

Scattering nuclear cross-section unit: 1 barn b = 100 fm2 = (10 fm)2 = 10−28 m2 ≈ 1

400 MeV2

“geometric” scattering: σgeometric = 4π a2.

Interpretation: (1) class. point particle on sphere, radius a, any energy; (2) QM zero-energy, scatt. length a.

Hierarchy of Scales typ. energy typ. momentum typ. size/distance

nuclear structure binding: 8MeV per nucleon 100 keV. . . 1MeV 10fm (∼235U size)

few-nucleon binding:
deuteron: 2.2246MeV
4He: 24MeV

mπ ≈ 140MeV
1

mπ
≈ 1.5fm (Yukawa)

hadronic MN,Mρ ≈ 1GeV 1GeV (relativistic)
1

MN
≈ 0.2fm

particle 100GeV Z,W masses 100GeV (relativistic)
1

100GeV
≈ 2× 10−3fm

Interaction Scales very rough – factors of 100 up or down are common

strong (NN int.) strong (qq int.) elmag weak (nuclear) weak (hadronic)

range
1

mπ
≈ 1.4 fm

1

1 GeV
≈ 0.2 fm ∞ 1

MW,Z
≈ 0.01 fm

life time τ 10−22 s 10−23 s 10−20 s 10−10 s 10−9 s

decay width Γ 200 MeV 1 MeV � eV

cross section σ barn (NN@1MeV: 70b) mb µb 10−12 b = 1 pb 100 pb

Miscellaneous neutron lifetime: τn ≈ 880 s hadron size R ≈ 0.7 fm hadronisation scale 1 GeV ≡̂ 0.2 fm

Weinberg mixing angle sin2 θW ≈ 0.22 ≈ 1−
M2

W

M2
Z

Fermi constant GF ≈
√

2 g2

8M2
W

≈ 1× 10−5 GeV−2

running coupling constants: α(1 MeV) =
1

137
; α(MZ) =

1

128
αs(2mb ≈ 10 GeV) ≈ 0.2; αs(MZ) ≈ 0.118
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Summary Electron Scattering Cross Sections cf. [HM 8]

Lowest-order Feynman graph

Mandelstam: s = (k + p)2; t = (k′ − k)2; u = (p′ − k)2

k = (E,~k), k′ = (E′,~k′), q2 = −Q2 < 0

Mν = p · q = M(E′ − E)lab

scatt. angle θ: ~k · ~k′ = |~k| · |~k′| cos θ

for elastic
in lab frame

E′

E
=

1

1 + E
M

(1− cos θ)

dσ

dΩ

∣∣∣∣
cm

=
1

64π2s

∣∣M∣∣2 elastic, unpolarised, cm-frame

dσ

dΩ

∣∣∣∣
lab

=
1

64π2M2

(
E′

E

)2 ∣∣M∣∣2 elastic, unpolarised, lab-frame

∣∣M∣∣2 = (e2)2 Lµν
1

q4
Wµν matrix element: avg. initial, sum final spins

e2 Lµν =
1

2s+ 1

∑
s,s′

jµs,s′(k, k
′)jν†s,s′(k, k

′) lepton tensor: scatter off virtual γ

jµs,s′(k, k
′) = 〈k′, s′|jµ|k, s〉 lepton current (electromagnetic)

jµs,s′ = −ie l̄s′(k
′) γµ ls(k) for electron

Lµν = 2[kµk′ν +k′µkν−gµν k ·k′] for electron (m = 0, s = 1
2
); cf. (I.7.4W)

e2Wµν =
1

2S + 1

∑
S,S′

JµS,S′(p, p
′)Jν†S,S′(p, p

′) hadron tensor: scatter off virt. γ

JµS,S′(p, p
′) = 〈p′, S′|Jµ|p, S〉 hadron current (electromagnetic)

qµj
µ = 0 = qµJ

µ =⇒ qµL
µν = 0 = qµW

µν elmag. current conservation

Relativistic Rutherford: Coulomb of massless, spin-0 on infinitely heavy, spin-0 point-target (s = 0;M =∞, S = 0)

dσ

dΩ

∣∣∣∣
lab

=

(
Zα

2E sin2 θ
2

)2

Jµ = −iZeδµ0, i.e. point charge at rest
(I.7.1)

(I.7.1C)

e± Coulomb scattering on infinitely heavy, composite spin-0 target: (s = 1
2
;M =∞, S = 0)

(
Zα

2E sin2 θ
2

)2

cos2
θ

2

E′

E
×
∣∣F (~q2)

∣∣2
helicity forbids back-scattering; isotropic charge density ρ(r)

Fourier
=⇒ form factor F (~q2) :=

4π

Ze

∞∫
0

dr
r

q
sin(qr) ρ(r)

normalisation: F (0) = 1; charge radius: 〈r2〉 = −6
dF (~q2)

d~q2

∣∣∣∣
~q2=0

(I.7.2)

e± full electromagnetic scattering on massive composite spin-0 target: (s = 1
2
;M finite, S = 0)(

Zα

2E sin2 θ
2

)2

cos2
θ

2

E′

E︸ ︷︷ ︸
Mott: no structure

×
∣∣F (q2)

∣∣2 adds target recoil; ~q2 → q2: 4-momentum transfer

Jµ = −iZe F (q2) (pµ + p′µ) (most general for S = 0)

=⇒ Wµν = Z2(p+ p′)µ (p+ p′)ν
∣∣F (q2)

∣∣2
(I.7.3)

(I.7.3C)

(I.7.3W)

e±µ± → e±µ± scattering on massive spin- 1
2

target without structure: (s = 1
2
;M,S = 1

2
)(

Zα

2E sin2 θ
2

)2

cos2
θ

2

E′

E
×
[
1− q2

2M2
tan2 θ

2

]
back-scattering by helicity transfer
(spin-spin/mag. moment interaction)

(I.7.4)

Massive S = 1
2

hadr. tensor, no structure: Wµν = 2Z2
[
pµp′ν + p′µpν − gµν(p · p′ −M2)

]
(I.7.4W)

e± on composite, massive spin- 1
2

target: form factors F1(q2): Dirac; F2(q2): Pauli (s = 1
2
;M,S = 1

2
)(

α

2E sin2 θ
2

)2

cos2
θ

2

E′

E
×
[[
F 2
1 (q2) + τF 2

2 (q2)
]

+ 2τ
[
F1(q2) + F2(q2)

]2
tan2 θ

2

]
τ := − q2

4M2
(I.7.5)

Variant: Rosenbluth/Sachs formula uses Sachs form factors GE = F1 − τF2, GM = F1 + F2

= [. . . ] ×
[
G2
E(q2) + τ G2

M (q2)

1 + τ
+ 2τ G2

M (q2) tan2 θ

2

]
(I.7.5)

Jµ = −i e F1(q2) ū(p′)γµu(p)︸ ︷︷ ︸
modify point form
F1(0) = Z = GE(0)

+
e

2M
F2(q2) qν ū(p′)iσµνu(p)︸ ︷︷ ︸

anomalous mag. term, F2(0) = κ = GM (0)− Z;
κ anomalous mag. moment, µ = Z + κ mag. moment

(most general for S = 1
2
) (I.7.5C)

e± inelastic, inclusive scattering: E′ independent variable, p′ not detected (s = 1
2
;M,S = any [sic!])

dσ

dΩ dE′

∣∣∣∣
lab

=

(
2α

q2

)2

E′2 cos2
θ

2
×
[
F2(q2, x)

ν
+

2 F1(q2, x)

M
tan2 θ

2

]
(I.7.6)

inelasticity measure: Bjorken-x := − q2

2p · q =
Q2

2Mν
∈ [0; 1]; elastic: x = 1, i.e. F1,2(q2, x) ∝ δ(ν +

q2

2M
)

Most general elmag. hadronic ME (symmetric µ↔ ν, charge conservation; any spin [sic!]):

Wµν =
F1(q2, x)

M

[
qµqν

q2
− gµν

]
+

F2(q2, x)

M2ν

[
pµ − p · q

q2
qµ
] [
pν − p · q

q2
qν
]

(I.7.6W)

Structure functions F1, F2 are not the Dirac, Pauli FFs of Eq. (I.7.5)!


