PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear Studies
The George Washington University
Spring 2023

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY

I. Tools

7. Scattering and Decay of Particles

Or: How Long to Count

References: [HH; HG 10.1-2, 5.7/12; PRSZR 4; HM 4.3, 2.10, 4.4; PDG 48, 48.5, 49]

Garbage-In - Garbage-Out

What An Experiment Really Is (Ideally)

Beam Cleanup: remove charged undesireds by \vec{B} Charged-Beam Dump: use Cu ; after bend to

Collimators: make sure all beam hits target eliminate "beam halo" (cotravelling undesireds) \#1: define, \#2: remove scatters, \#3: make sure
reduce backscatter; measure charged-beam flux by Faraday cup; often most radioactive piece during run

Beam Dump

Target: typ. $1 \mathrm{~mol} \approx 6 \times 10^{23}$ particles to avoid multiple scattering; gas @STP: $6 \times 10^{23} \mathbf{d m}^{-3} \stackrel{\times 1000}{\Longleftrightarrow}$ liquid/solid: $6 \times 10^{23} \mathrm{~cm}^{-3}$; often cooled to K or mK (liquid $\mathrm{H},{ }^{4} \mathrm{He}, \ldots$) \& polarised

If you are a beam, everything looks like a target: Nature cannot separate between signal (good) and noise (bad): contaminations: scatter from wrong reaction, atomic e^{-}, container, impurities/stabilising compounds (e.g. NaPO_{3} for P), collimators, beam dump; environment: concrete, cosmics,...

DAQ
Detector
Detector:
collimator often defines angle
Data Acquisition: hardware/software filters, event recording,...

(c) Scattering for Theorists

target has length d
typical target density for liquid/solid: $\frac{1 \text { particle }}{\text { Angstrom }} \approx 1 \times 10^{30} \mathrm{~m}^{-3}$
for gas: $\frac{6 \times 10^{23} \text { particles }}{22 \text { litres } \widehat{=} 1 \mathrm{~mol}} \times \frac{\text { pressure }}{1 \mathrm{bar}} \approx \frac{1}{4} \times 10^{26} \mathrm{~m}^{-3} \times \frac{\text { pressure }}{[\mathrm{bar}]}$

Summary: Electron Scattering Cross Section Handout (link here)

Department of Physics, The George Washington University

(f) Resonances in Quantum Mechanics

Classical Mechanics: resonance frequencies reveal properties of materials.
Electrodynamics: Lorentz-Drude model, resonance fluorescence

Quantum Mechanics: interference \Longrightarrow resonance even when no bound states.

Figure 5.30: Scattering of a particle with energy E from a one-dimensional potential well. Classically, all incident particles will be transmitted. Quantum mechanically, at small energies, the transmission coefficient T is unity only at certain energies. The appearance of transmission resonances in the behavior of the transmission as a function of particle energy E is shown at the right.

Describe Resonance as Creation \& Decay of Unstable Particle

$\sigma(1+2 \rightarrow B C \ldots) \propto\left|\mathcal{M}\left(1+2 \rightarrow A^{*} \rightarrow B C \ldots\right)\right|^{2}$
IF[!!] Modelled as Nonrelativistic Breit-Wigner:
Collision with total cm-energy E_{cm}, relative momentum \vec{k}_{cm}, spins S_{1}, S_{2}.
\Longrightarrow Produces resonance at E_{0}, total decay width $\Gamma_{\text {total }}$, spin J.
$\Longrightarrow A^{*} \xrightarrow{\text { decays into }} B C \ldots$ (final state fully specified).

$\Gamma_{\text {total }}$: decay width into any final state: "Full Width at Half-Maximum" FWHM
$\Gamma_{A^{*} \rightarrow B C \ldots}=B_{\text {out }}^{B C \ldots} \times \Gamma_{\text {total }}:$ partial decay width into specific final state $B C \ldots$
$\Gamma_{\text {total }}=\sum_{\text {all finals }} \Gamma_{B C \ldots}, \sum_{\text {all finals }} B^{B C \ldots}=1$
Branching Ratios: $B_{\text {out }}^{B C \ldots}$: percentage of resonances decaying into specific final state $B C \ldots$

$$
B_{\text {in }}=B^{1+2} \text { by detailed balance: "probability" to produce } A^{*} \text { by colliding } 1+2 .
$$

Be Wary of Breit-Wigner Parametrisations in Hadron Physics!

Must account for energy constraints (thresholds) in decay! \Longrightarrow energy-dependent width $\Gamma_{\mathrm{BW}}(s)$

Relativistic Breit-Wigner parametrisation:
proposed by PDG, often used but not unique

$$
\mathcal{M}_{\mathrm{res}}=\frac{\sqrt{s} \Gamma_{\mathrm{BW}}^{\mathrm{elastic}}(s)}{s-M_{\mathrm{BW}}^{2}+\mathrm{i} \sqrt{s} \Gamma_{\mathrm{BW}}^{\mathrm{total}}(s)}
$$

BUT Breit-Wigner parametrisations work

 only for narrow, well-separated resonances!

Problems:

\rightarrow HW

- $\mathcal{M}=\mathcal{M}_{\text {res }}+\mathcal{M}_{\text {background }}$: split is arbitrary!

Where does background start/end?

- Resonances overlap \Longrightarrow interference!
\Longrightarrow Only positions s_{R} and residues $\Gamma_{\text {residue }}\left(s_{R}\right)$ of poles in scattering amplitude \mathcal{M} are unique!

$$
\sqrt{s_{R}} \neq M_{\mathrm{BW}}-\mathrm{i} \frac{\Gamma_{\mathrm{BW}}}{2}:
$$

Breit-Wigner mass is not pole position!
More in PHYS 6710: Nuclear \& Particle Physics II

Next: 8. Electron Scattering

Familiarise yourself with: [HM 4, 6.1/3-6/9/11/13, 8]

