PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear Studies
The George Washington University
Spring 2023

I. Tools

7. Scattering and Decay of Particles

Or: How Long to Count

References: [HH; HG 10.1-2, 5.7/12; PRSZR 4; HM 4.3, 2.10, 4.4; PDG 48, 48.5, 49]

Garbage-In – Garbage-Out

What An Experiment Really Is (Ideally)

Beam Cleanup: remove charged undesireds by \vec{B} **Collimators:** make sure *all* beam hits target eliminate "beam halo" (cotravelling undesireds) #1: define, #2: remove scatters, #3: make sure

Charged-Beam Dump: use Cu; after bend to reduce backscatter; measure charged-beam flux by Faraday cup; often most radioactive piece during run

If you are a beam, everything looks like a target:

Nature cannot separate between signal (good) and noise (bad):

contaminations: scatter from wrong reaction, atomic e⁻,

container, impurities/stabilising compounds (e.g. NaPO₃ for P),

collimators, beam dump; environment: concrete, cosmics,...

collimator often defines angle

Data Acquisition:

hardware/software filters, event recording,...

 \Longrightarrow student \Longrightarrow paper

(c) Scattering for Theorists

target has length d

typical target density for liquid/solid: $\frac{1 \text{ particle}}{\text{Ångstrom}} \approx 1 \times 10^{30} \text{m}^{-3}$

$$\text{for gas: } \frac{6\times 10^{23} \text{ particles}}{22 \, \text{litres} \, \widehat{=} \, 1 \text{mol}} \times \frac{\text{pressure}}{1 \text{bar}} \approx \frac{1}{4} \times 10^{26} \text{m}^{-3} \times \frac{\text{pressure}}{[\text{bar}]}$$

→ □ > → □ > → 토 > → 토 → 의

Summary: Electron Scattering Cross Section Handout (link here)

Department of Physics, The George Washington University H.W. Griesshammer 3 Summary Electron Scattering Cross Sections cf. [HM 8] Lowest-order Feynman graph elastic, unpolarised, cm-frame k' = k - q, spin s'ejectile to detector $\frac{d\sigma}{d\Omega}\Big|_{lab} = \frac{1}{64\pi^2 M^2} \left(\frac{E'}{E}\right)^2 |\overline{M}|^2$ elastic, unpolarised, lab-frame $|\overline{M}|^2 = (e^2)^2 L_{\mu\nu} \frac{1}{a^4} W^{\mu\nu}$ matrix element: avg. initial, sum final spins lepton tensor: scatter off virtual γ (1.7.1)(I.7.1C) e^{\pm} Coulomb scattering on infinitely heavy, composite spin-0 target: helicity forbids back-scattering; isotropic charge density $\rho(r)$ $J^{\mu} = -iZe F(q^2) (p^{\mu} + p'^{\mu})$ (most general for S = 0) (I.7.3C) (I.7.3W) Mott: no structure $e^{\pm}u^{\pm} \rightarrow e^{\pm}u^{\pm}$ scattering on massive spin- $\frac{1}{\pi}$ target without structure: (I.7.4)Massive $S = \frac{1}{\pi}$ hadr, tensor, no structure: e^{\pm} on composite, massive spin- $\frac{1}{2}$ target: form factors $F_1(q^2)$: Dirac; $F_2(q^2)$: Pauli $\left(\frac{\alpha}{2E\sin^2\theta}\right)^2\cos^2\frac{\theta}{2}\frac{E'}{E} \times \left[\left[F_1^2(q^2) + \tau F_2^2(q^2)\right] + 2\tau \left[F_1(q^2) + F_2(q^2)\right]^2 \tan^2\frac{\theta}{2}\right] \quad \tau := -\frac{q^2}{4M^2}$ Variant: Rosenbluth/Sachs formula uses Sachs form factors $G_E = F_1 - \tau F_2$, $G_M = F_1 + F_2$ (I.7.5) e^{\pm} inelastic, inclusive scattering: E' independent variable, p' not detected (1.7.6)inelasticity measure: Bjorken- $x := -\frac{q^2}{2n_{eff}} = \frac{Q^2}{2M\nu} \in [0; 1]$; elastic: x = 1, i.e. $F_{1,2}(q^2, x) \propto \delta(\nu + \frac{q^2}{2M})$ Most general elmag, hadronic ME (symmetric $\mu \leftrightarrow \nu$, charge conservation; any spin [sic!]) (I.7.6W) Structure functions F₁, F₂ are not the Dirac, Pauli FFs of Eq. (I.7.5):

(f) Resonances in Quantum Mechanics

Classical Mechanics: resonance frequencies reveal properties of materials.

Electrodynamics: Lorentz-Drude model, resonance fluorescence

Quantum Mechanics: interference \Longrightarrow resonance even when no bound states.

Describe Resonance as Creation & Decay of Unstable Particle

$$\sigma(1+2 \to BC...) \propto |\mathcal{M}(1+2 \to A^* \to BC...)|^2$$

IF[!!] Modelled as Nonrelativistic Breit-Wigner:

Collision with total cm-energy $E_{\rm cm}$, relative momentum $\vec{k}_{\rm cm}$, spins S_1 , S_2 .

 \Longrightarrow Produces **resonance** at E_0 , total decay width Γ_{total} , spin J.

 \Longrightarrow $A^* \xrightarrow{\text{decays into}} BC \dots$ (final state fully specified).

$$\sigma(1+2\to A^*\to BC\dots) = \underbrace{\frac{2J+1}{(2S_1+1)(2S_2+1)}}_{\text{flux factor for in-multiplicities}} \underbrace{\frac{4\pi}{|\vec{k}_{\text{cm}}|^2}}_{\substack{B_{\text{in}}^{1+2\to A^*}B_{\text{out}}^{BC}\dots\Gamma_{\text{total}}^2/4\\ (E_{\text{cm}}-E_0)^2+\Gamma_{\text{total}}^2/4}}_{\text{Lorentzian/Breit-Wigner}}$$

 Γ_{total} : decay width into *any* final state: "Full Width at Half-Maximum" FWHM

 $\Gamma_{A^* \to BC...} = B_{\text{out}}^{BC...} \times \Gamma_{\text{total}}$: partial decay width into specific final state BC...

$$\Gamma_{
m total} = \sum_{
m all \ finals} \Gamma_{BC...}, \sum_{
m all \ finals} B^{BC...} = 1$$

Branching Ratios: $B_{\text{out}}^{BC...}$: percentage of resonances decaying into specific final state BC... $B_{\text{in}} = B^{1+2}$ by detailed balance: "probability" to produce A^* by colliding 1+2.

Be Wary of Breit-Wigner Parametrisations in Hadron Physics!

Must account for energy constraints (thresholds) in decay! \implies energy-dependent width $\Gamma_{\rm BW}(s)$

Relativistic Breit-Wigner *parametrisation*: proposed by PDG, often used but not unique

$$\mathcal{M}_{\text{res}} = \frac{\sqrt{s} \, \Gamma_{\text{BW}}^{\text{elastic}}(s)}{s - M_{\text{BW}}^2 + i \, \sqrt{s} \, \Gamma_{\text{BW}}^{\text{total}}(s)}$$

BUT Breit-Wigner parametrisations work only for narrow, well-separated resonances!

Problems:

 \rightarrow HW

 $-\mathcal{M} = \mathcal{M}_{res} + \mathcal{M}_{background}$: split is arbitrary!

Where does background start/end?

− Resonances overlap ⇒ interference!

 \Longrightarrow Only positions s_R and residues $\Gamma_{\mathrm{residue}}(s_R)$ of poles in scattering amplitude ${\mathcal M}$ are unique!

$$\sqrt{s_R} \neq M_{\rm BW} - i \frac{\Gamma_{\rm BW}}{2}$$
:

Breit-Wigner mass is *not* pole position!

More in PHYS 6710: Nuclear & Particle Physics II

