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2. Hadronic Form Factors
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References: [HM 8.2 (th); HG 6.5/6; Tho 7.5; Ann. Rev. Nucl. Part. Sci. 54 (2004) 217]

and optional additional details in script.
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(a) Recap: Currents & Form Factors of Spin-1
2 Target

Most general current for spin-1
2 target:

Jµ

S,S′ =− ie F1(q2) ūS′(p
′)γµuS(p)︸ ︷︷ ︸

Dirac: modify point-form

(I.7.5C)

+
e

2M
F2(q2) qν ūS′(p

′)iσ µνuS(p)︸ ︷︷ ︸
Pauli: anomalous mag. term

F1(0) = Z charge; F2(0) = κ anom. mag. mom.

Sachs FFs:

GE = F1− τF2, GM = F1 +F2; τ =− q2

4M2

Rosenbluth formula/Sachs cross section:(
dσ

dΩ

)/(
dσ

dΩ

)
Mott= e on
point spin-0

∣∣∣∣
lab

(I.7.5)

spin-flip

=

G2
E + τ G2

M
1+ τ

+ 2τ G2
M

︷ ︸︸ ︷
tan2 θ

2


[HG 6.11]
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(b) FF Interpretation in the Breit/Brick-Wall Frame

“Electric” and “magnetic” are frame-dependent decompositions. =⇒ Careful!

One Can Show: The Sachs Form Factors GE(q2) and GM(q2) are indeed the form factors of electric

charge and magnetic current inside the target in one particular frame:

Breit/Brick-Wall Frame

EB = E′B =⇒ q0 := k′0B − k0
B = 0 No energy transfer.

~pB =−~p′B Nucleon recoils like from brick wall.

=⇒~qB =−2~pB, ^(~kB,~qB)≡ ^(~kB,~pB)

=⇒ t = (k′− k)2 =−2k · k′ =−2E2
B(1− cosθB)

t =−2~kB ·~qB =+4EB |~pB|cos^(~kB,~pB)

θB small =⇒ |~pB|= 1
2 |~qB| small: grazing shot

θB large =⇒ |~pB|= 1
2 |~qB| large: head-on collision

Optional additional details in script.
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(c) Rosenbluth Separation
(

dσ

dΩ

)/(
dσ

dΩ

)
Mott

∣∣∣∣
lab

=

[
G2

E + τ G2
M

1+ τ︸ ︷︷ ︸
intercept A(q2)

+ 2τ G2
M︸ ︷︷ ︸

slope B(q2)

tan2 θ

2

]

For q2→ 0: τ =− q2

4M2 → 0 =⇒
(

dσ

dΩ

)/(
dσ

dΩ

)
Mott
→ G2

E(q
2)→ 1− q2

3!
〈r2

E〉

For q2→−∞: τ =− q2

4M2 →+∞ =⇒
(

dσ

dΩ

)/(
dσ

dΩ

)
Mott
→
(

1+2τ tan2 θ

2

)
G2

M(q2)

=⇒ Each limit has 1 FF which is difficult to measure, and 1 easy one.
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Example: ep→ ep at Elab = 529.5 MeV [Thomson lecture]; exps: MAMI, JLab, SLAC,. . .

q2 =−2EE′(1− cosθlab)≤ 0
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Form Factors at “Any” Q2 from Polarisation Transfer MAMI, JLab,
SLAC,. . .

unpolarised beam & target

outgoing spins undetected

(
dσ

dΩ

)/(
dσ

dΩ

)
Mott

∣∣∣∣
lab

=

[
G2

E + τ G2
M

1+ τ
+ 2τ G2

M tan2 θ

2

]
=⇒ Each limit Q2→ 0,∞ has 1 FF which is difficult to measure, and 1 easy one: How to do better?

Polarisation-Transfer Method: Use helicity conservation to separate electric and magnetic.

mostly∝ P(γ)
trans GM

[cf. Tho 8.6] ∝ P(γ)
long GE

Amplitudes have different spin-transfer~e→~p:

=⇒ Scatter polarised e− with definite helicity,

measure recoil p’s polarisation (not easy).

longitudinal (“Coulomb”) photon: Jz = 0

transverse (“real”) photon: Jz =±1 = right
left

γ-polarisations P(γ)
long/trans by e-spin, kinematics.

=⇒ Spin-dep. measurement uses QM interference of amplitudes:
GE(Q2)

GM(Q2)
=−E+E′

2M
P(γ)

trans tan θ

2

P(γ)
long

No absolute cross section, no absolute beam & recoil polarimetry. =⇒ Many systematics cancel.

So accurate that discrepancies to Rosenbluth led to theory update (2γ exchange) [Afanasev/. . . 2008].
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(d) Experiments: Magnetic Spectrometers SLAC, MAMI, Jlab,. . .

[PRSZR] MAMI-A1 (URL) Spectrometers
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(e) Proton Form Factors: Why So Simple?

[Tho, Fig 7.8; much more data available]

Exp. at low Q2: dipole GE ≈
(

1+
Q2

a2

)−2

≈ GM

µp = 2.79 . . .
with a = 4.27 fm−1 = 0.84 GeV

=⇒ ρ(r) = ρ0 e−ra exponential (in Breit frame) 〈r2
Ep〉=−3!

dGE

dQ2

∣∣∣
Q=0

=
12
a2 ≈ (0.82 fm)2

high-accuracy data at Q2→ 0: 〈r2
Ep〉= ([0.8775±0.0051] fm)2 [PDG 2012 but see in a moment]

high-accuracy data at Q2→ 0: 〈r2
Mp〉= ([0.851±0.026] fm)2 [PDG 2022]
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There Is Some Deviation from Simple 1-Dipole Form at High Q2

dσ

dΩ

∣∣∣∣
lab

=

[
G2

E + τ G2
M

1+ τ
+ 2τ G2

M tan2 θ

2

]
×
(

dσ

dΩ

)
Mott

, τ =
Q2

4M2

Ratio electric-to-magnetic proton FF Magnetic proton FF: deviation from dipole

Dipole GM(Q2)∝ 1(
1+ Q2

a2

)2 largely ok =⇒

(
dσ

dΩ

)
elastic
(Q2→∞, i.e. τ =

Q2

4M2 →∞)∝ τ |GM(Q2)| ∝
tan2 θ

2
Q6 ×

(
dσ

dΩ

)
Mott

=⇒ Q2→∞ dominated by GM .
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(f) Neutron Form Factors: Why So Similar to Proton?
No neutron targets. =⇒ d(e,e′) & subtract binding effects; or at Q2→ 0: scatter n off atomic e− cloud.

Low Q2: nearly same dipole as proton for
Gn

M
µn =−1.91 . . .

≈
(

1+
Q2

(0.84 GeV)2

)−2

high-accuracy data: 〈r2
Mn〉= ([0.864±0.009] fm)2 ≈ 〈r2

Ep〉 ≈ 〈r2
Mp〉 [PDG 2022]

high-accuracy data: 〈r2
En〉=−[0.1155±0.0017] fm2< 0!!

high-accuracy data: This is allowed:
∫ d3r

(2π)3 r2 [ |ρ+(r)|− |ρ−(r)|
]

high-accuracy data: This is allowed: = 〈r2
+〉−〈r2

−〉
>
< 0!
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❤ ➘ ✭ ❃ ➋ ➋ ✐ ❥ ➥ ➋ ❦ ❧ ❃ ❃ ♠ ➚ → ❈ → ❃ → ❃ ❢ → ➚ ♥ ❃ ❢ ❃ ➐ ❃ ♦ ❃ ❃ ♣ � � → � ✖ � � ✉ ➘ ✖ ❛ ➋ ✉ ✈ ➋ ✇ ① ➴ ② ✖ ✭ ➋ ❈ ➚ ➧ ➐ ➐ ❂ → → ③ ❚ ➋ ④ ✖ ✭ ➴ ⑤ ➘ ⑥ ❚ ➋ ➋ ⑦⑧ ➥ →❃ ⑨ → ⑩ ❶ ➋ ➋ p ~ ❷ ⑩ ❸ ➧ ➚ ❹ ➚ ❃ ❃ ❺ → ❻ ❼ ❽ ❃ ✇ ❃ ❼ → → → → ❾ ❿ ❥ ➀ ➁ ➁ ➂ ➃ ➚ → ➄ ❃ ❘ → ⑩ ➅ ➆ ➋ ➋ � ➇ ➈ ➉ ➊ ➋ ➧ ➚ ➋ → ❺ ➚ ❿ ➋ →➌ ➍ ➅ ➎ ➅→ ➚ →→ →
=⇒ On average, negative-charged neutron constituents farther from centre than positive-charged ones.
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(g) Reconstructed Charge-Densities in Breit Frame

Nucleon Form Factors have surprisingly simple form:

Excellent fit with two dipoles: GN
E (Q

2)' b(
1+ Q2

a1

)2 +
1−b(

1+ Q2

a2

)2

=⇒ 4πr2
ρ(r)∝ r2 [be−ra1 +(1−b)e−ra2

]
is a pretty good representation.

proton

r [fm]          
0 0.5 1 1.5 2 2.5

] 
  

  
  

  
  

­1
 [

fm
p B

re
it

ρ 
2 rπ

4
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neutron

r [fm]          
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] 
  

  
  

  
  

­1
 [

fm
n B
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ρ 
2 rπ

4
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[Crawford et al. PRC82 (2010) 045211 and 2010 LRP]
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(h) Not Even A Model: Meson-Cloud Argument [PRSZ 6.3]
[HG 6.6]

QFT: Every particle has a virtual cloud. =⇒ Even point-particle has F(Q2) 6= 1.

RMS of hadron FFs set by
1

2×mass of lightest constituent of cloud – typically mπ

=⇒ |〈r2〉|hadron ' (0.7fm)2

But need virtual particles produced at good rates! HW!
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Application: Meson Form Factors Still Quite Simple [HG 6.7]

Expect |〈r2〉| ≈ (0.7 fm)2 of all hadrons still set by pion cloud.

Pion, Kaon: spin 0 =⇒ only electric F(q2), no magnetic FF.

Unstable Particle =⇒ Experiment in “inverse kinematics”: (cf. neutron)

scatter secondary beam on electron cloud of atoms, detect recoil electron (not meson)

monopole: F(Q2) =

(
1+

Q2

a2

)−1

=⇒ ρ(~r)∝ e−ar

r

[PRSZR]

〈r2
π〉=

6
a2

π

= ([0.67±0.02] fm)2 〈r2
K〉=

6
a2

π

= ([0.58±0.04] fm)2 (s-quark!)
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(i) List of Accomplishments [PRSZR 6.3, HG 6.6]

– Measurements so accurate that one has to go beyond One-Photon Approximation:

Example contributions atO(α3):

[Afanasev, Koshchii, Solyanik]

– Nucleons have common dipole form: Gp
E ≈

Gp
M

µp ≈
Gn

M
µn ≈

(
1+

Q2

(0.84 GeV)2

)−2

=⇒ ρ(r) = ρ0 e−ra, a = 4.27 fm−1.

– 〈r2
Ep〉 ≈ 〈r2

Mp〉 ≈ 〈r2
Mn〉 ≈ (0.8 fm)2 ≈ 1

(2mπ)2 .

– Distribution of charges inside hadrons similar, but different to that of currents.

– Proton: positive charges more on surface; mag. currents less spread.

– Neutron: 〈r2
En〉. 0: charges about equally distributed, but negative charges more on surface.

〈r2
E〉 〈r2

M〉

proton −([0.8775±0.0051] fm)2 ([0.851±0.026] fm)2

neutron −([0.1155±0.0017] fm2 ([0.864±0.009] fm)2

– Mesons: Monopole FFs with small dependence on constituent quark content.
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(j) . . . Then Someone Had To Do An Experiment Downie
Briscoe

New Method in 2000: Hyperfine Splitting∝ ~σe ·~σp

[
δ (3)(~r)+ 〈r2

p〉~∇2δ (3)(~r)
]
+ . . . [Hänsch et al.]

=⇒ Atomic Precision Spectroscopy: 〈r2
p〉 from Hydrogen-atom near-identical, compatible error bars.

=⇒ Until 2010: static properties of proton very well known.

Idea: Muonic Hydrogen µH: mµ ≈ 200me =⇒ Bohr-radius of µH is aB(µ)≈
aB

mµ/me ≈ 200
:

=⇒ µ closer to proton =⇒ Better signal. Indeed, much smaller error bars.

µH result is 7 standard-deviations off accepted value!!

[PDG 2014-2019] “The µp and ep results for the charge radius are much too different

to average them. The disagreement is not yet understood.”
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Theorists Speculate. . . But Be Careful! slide: Downie

Beyond-The-Standard Model: Break Lepton Universality:

An interaction which is seen by µ but not by e??

[Afanasev, Koshchii, Solyanik]

And, of course: check & recheck Theory of previous analyses!!

Sagan: Extraordinary claims need extraordinary evidence!
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The MUon Proton Scattering Experiment MUSE at PSI

Link to proposal here. GW: Downie (spokesperson), Briscoe, Afanasev, Lavrukhin, Ratvasky,. . .

Idea: Use PSI mixed meson/muon/electron beam at Ebeam = 115,153,210 MeV
Idea: to simultaneously measure ep and µp and πp scattering.

=⇒ Simultaneous determination of proton radius from e−p and e+p and µ−p and µ+p.

present & projected total uncertainties

Goals: – Test theory understanding of two-photon effects. – Test Lepton Universality.

Funding by NSF: US$2.5M
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From Data to Values: e Scattering vs. Atomic Spectra

! $9B878X&B4(#TC'S#T&7BC'#G974'B&89B5

! \J#^F894:#!"#$%&:#678*CIB *H5IJ#*'C7J#=:#/.N#

>./.0?
anticipated MUSE
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Update 2020/22: Puzzle Solved? Ron Gilman (MUSE)

The Proton Radius Puzzle and MUSE Physics

Many hydrogen results over past several years - new 
experiments and re-analyses

4

0.8 0.82 0.84 0.86 0.88 0.9
rp

H Spectroscopy: are some results wrong? Why?

CODATA 18 not shown here
?
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Update 2020/22: Puzzle Solved? Ron Gilman (MUSE)

The Proton Radius Puzzle and MUSE Physics

Many hydrogen results over past several years - new 
experiments and re-analyses

5

0.8 0.82 0.84 0.86 0.88 0.9
rp

ep scattering: are some results wrong? Why?

CODATA 18 not shown here
?
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Update 2020/22: Puzzle Solved? Ron Gilman (MUSE)

The Proton Radius Puzzle and MUSE Physics

Many hydrogen results over past several years - new 
experiments and re-analyses

6

0.8 0.82 0.84 0.86 0.88 0.9
rp

Analyses inconsistent

CODATA 18 not shown here
?
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Update 2020/22: Puzzle Solved? Ron Gilman (MUSE)

The Proton Radius Puzzle and MUSE Physics

Many hydrogen results over past several years - new 
experiments and re-analyses

7

0.8 0.82 0.84 0.86 0.88 0.9
rp

Note that position of MUSE (future) point biases the eye

CODATA 18 not shown here
?
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Update 2020/22: Puzzle Solved?
[PDG 2020]: However, reflecting the new electronic measurements, the 2018 CODATA recommended

value is 0.8414(19)fm, and the puzzle appears to be resolved.

H spectro Grinin '20, Brandt '22

My (non-expert) Questions: Result of re-analysis of old data?

What’s methodologically wrong with pre-2012 exp’s?

Unconscious Bias?

CODATA does not disclose how

uncertainties are combined.

-3±1 3±1

combined:

0±
1

2
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Update 2021: Hiding A Justification

CODATA’s explanation for the error assess-

ment in its 2018 value has to wait for 3 years

until the next-to-last sentence in a paragraph

on p. 6 of a 62-page article published in 2021.

[E. Tiesinga et al (CODATA) J. Phys. Chem. Ref. Data 50 (2021) 033105]
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Next: 3. Resonance Region, Isospin

Familiarise yourself with: [PRSZR 2.4, 6.2, 7.1/4; HG 6.8, 14.2, 8.4-7; Per 3.12;
HM 2.6/7; PDG 49]
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