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3. Detectors
Or: How You Measure What You Measure
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(a) What An Experiment Really Is (Ideally)
Beam Cleanup: remove charged undesireds by~B
Collimators: make sure all beam hits target
eliminate “beam halo” (cotravelling undesireds)
#1: define, #2: remove scatters, #3: make sure

Charged-Beam Dump: use Cu; after bend to
reduce backscatter; measure charged-beam flux by
Faraday cup; often most radioactive piece during run
a

θscatt

DAQ

Detector

Target Dump
Beam

Beam

Collimators

Target: typ. 1mol≈ 6×1023 particles to avoid multiple scattering;

gas @STP: 6×1023dm−3 ×1000⇐⇒ liquid/solid: 6×1023cm−3;
often cooled to K or mK (liquid H,4He,. . . ) & polarised

Detector:
collimator often defines angle

Data Acquisition:
hardware/software filters,
event recording,. . .

=⇒ student =⇒ paper

If you are a beam, everything looks like a target:
Nature cannot separate between signal (good) and noise (bad):
contaminations: scatter from wrong reaction, atomic e−,
container, impurities/stabilising compounds (e.g. NaPO3 for P),
collimators, beam dump; environment: concrete, cosmics,. . .
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(b) Interaction of Particles With Matter < 10GeV[HG 3; Per 11.5]

Atomic Physics Dominates. Two extremes: real world in-between, mixed.

[HG 3.1]

Multiple Scattering (e.g. electron)

usually small E loss, small angle

energy & angle spread

R0: mean range energy profile gets
smeared with penetration

[HG 3.3] [Knoll 2.4]

Absorption (e.g. photon)

“all or nothing”

N(x) = N0 e−µx with

attenuation (absorption) coefficient

µ =
# scatt. centres

volume
×σ cross section

X0 =
1
µ

mean free path

[HG 3.4]
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Photons in Matter [HG]

Photoelectric effect (with edges from atomic shells; γ absorbed) ∝ Z4.5/E3

+ Compton (inelastic) γZ→ γeZ′: multi-scatt. with large energy loss =⇒ quasi-attenuation

∝ Z× lnE/E

+ Pair Production γ → e+e− at≥ 1 MeV, in Coulomb of heavy nucleus, coherent ∝ Z2 lnE

=⇒ describe all three by attenuation µ = µphoto +µCompton +µpair
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Heavy Charged Particles: E . m

Loss mostly by Coulomb with bound electrons: avg. ionisation energy I =⇒ multiple scattering process
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[PDG 34.2]

Modelled up to few % by Bethe formula in relativistic QM at
0.1 . βγ . 1000 & I: avg. excitation pot. of material [derivation: Per]

− 1
ρ

dE
dx
≈

4πZ2
particleα2

me

ne
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[
ln

2meβ 2γ2

I ≈ 16Z0.9
mateV

−β
2
]

lowβ

≈ 2MeV
g/cm2

Z2
partα

2

β 2

material: the more electrons, the quicker loss
(here normalised to ρmaterial!)

particle: Rutherford-σ depends only on βγ =
p
m

!

at given p: for m↗, momentum transfer↘
small E (non-relativistic): ∝ 1/E ∝ 1/β 2

long passage time =⇒ long interaction time

minimum at βγ ≈ 3: Hadron Physics problem

above: relativistic rise∝− ln[1−β 2]
moving~E Lorentz contracted =⇒ wider range

eventual saturation (Fermi plateau):
surrounding charges screen

Specific range

R =

0∫
Ein,kin

dEkin

dE/dx

[PDG 34.4]
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Electron vs. Heavier Particles at Same Energy/Momentum

electrons: Fermi Plateau

hadrons: 

relativistic rise

nonrelativistic 1/E

p [GeV/c]
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E

/d
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– electron: relativistic even for MeV; Fermi plateau at 1 GeV

– proton E . 50 MeV: non-relativistic =⇒ photoeffect; stopping� electron for same p: smaller β

– proton E ∼ 5 GeV: minimum between Photo/Compton and Bremsstrahlung

– proton E & 10 GeV: e+e− pair production + hadronic reactions, rise to Fermi plateau.

Energy loss at low-E: proton� electron⇐⇒ at high-E: proton� electron =⇒ Discriminate!
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Electrons & Positrons in Matter: Charged but E� m [Edyn RadSys 42]

Atomic Ionisation & Excitation (like heavy particle)

+ Bremsstrahlung e±Z→ e±Zγ: dominant above E ≈ 600MeV
Z

:

direction change in Coulomb field of heavy nucleus (Larmor)

=⇒ radiation: −dE
dx
∝ Z2 E

m2 : suppressed for all but electrons [HG 3.9b]

small mass more easily deflected

+ pair-production from secondary photon� 1MeV =⇒ shower

e− energy loss in lead

[PDG 34.11]
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Nuclear Reactions [Tav 2.5]

Most important for neutral hadrons at low momenta (neutron,. . . ), any hadron at high momenta:

– eV−keV: fission, capture∝ 1/velocity: time in nucleus

– MeV: elastic/inelastic scattering – most E loss when scattering off light/similar-mass partner

additional enhancement : σnp(1MeV)≈ 4π a2
np with scatt. length anp ≈ 24fm

=⇒ detect recoil proton & its shower (esp. for neutron)

– & GeV: inelastic scattering =⇒ hadron showers (like in cosmic rays)

wins over elmag; large range R0 =⇒ large penetration length

neutron energy vs. cross section (barn)

[Bethge/Walter/Wiedemann:

Kernphysik Fig 5.6]
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(c) Detectors

Usually needed:

– θscatt→ position detectors

– particle ID: charge, mass

interaction characteristics

=⇒ measure two of E,p,β :

E =
√

p2 +m2 = γ m

p = βγ m

No detector can do all,

but most are multifunctional.

=⇒ Compromise!

Efficiencies always < 100%.

Here: only talk about some popu-

lar ones.
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Multipurpose Example: Bubble Chamber with Magnetic Field

[HG 4.12]

ionisation in superheated medium =⇒ nucleus (i.e. seed) for a bubble =⇒ track =⇒ position(s)

identify: charge Q; momentum p[GeV]≈ 0.3 |Q[e]| B[T] R[GeV−1]; track thickness =⇒ particle ID

repetition rate 1 s−1 very slow, but nowadays CCD cameras, automated track recognition, rare processes
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Detector Systems Depend on Purpose, Beam & Energy Briscoe, Downie

  

CB@MAMI Detector System TAPS Elements

PID Detector

MWPCs Target

 Crystal Ball

TAPS

0.5m

Crystal Ball at MAMI (former SLAC & DESY)

. GeV; “4π detector”: 93% of solid angle

CMS (LHC@CERN; URL): TeV
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Spectrometer: Momentum Selector

θscatt by entrance collimator; B≈ 1−2 T, sophisticated focussing & field mapping, position detector

Example MAMI-A1 (URL): electron scattering for nucleon form factors,. . .

[PRSZR]
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Some Position Detectors

Gas Filled Chambers: cheap, large, robust against radiation – but fragile; Eionisation ≈ 30 eV

Principle: particle ionises =⇒ accelerate electrons (ions) in E & kV/cm field =⇒ more ionisation

=⇒ avalanche accelerated to anode (1 : 10>4!) =⇒ detect, resolution ∆x & 100 µm

Multiwire Proportional Chamber
MWPC

typ. wire-distance & 200µm∼ ∆x [PRSZR A.7]

=⇒ needs very small structure

Drift Chamber

measure drift time to anode for 2-dim resolution

Scintillator needed to set trigger for arrival of particle

typ. wire distance∼ 2cm� ∆x [Per 11.8]

needs constant drift velocity (i.e. const.~E-field)

Semiconductor Strips:

Eion ≈ 3 eV =⇒ shower↗, fluctuation↘
=⇒ great energy resolution

∆x & 2 . . .5µm (etching) =⇒ close to target

but prone to radiation damage, expensive
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Example of New Develoment: Gas Electron Multiplier GEM [Tav, Downie]

Cu-layer-sandwiched kapton (insulator) foil with micro-holes: strong~E in hole =⇒ accelerate, shower

– resolution & 70 µm; efficiency∼ 95%
– very stable operation, robust

– large & small structures; “cheap”
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More Position Detectors: Scintillators
particle excites/ionises =⇒ visible/UV light by de-excitations, augment by PhotoMultiplier Tube PMT

[Per 9.11]

very fast (200 ps), robust, simple

=⇒Workhorses:

– position at spectrometer-end

– trigger/timing:

set acceptance window for detectors & DAQ

– veto (cosmic,. . . )

– time-of-flight =⇒ β to find m from p or E,

but
∆m
m
∼ γ

2
∆t

Materials:

– inorganic crystals (NaI, glass,. . . )

– organic: plastic, liquid

– semiconductor: very thin
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Calorimeters: Scintillators as Shower Detectors

HW Spectrometer:
∆p
p
∼ p: deflection angle→ 0 for p↗ =⇒ measure E for E =

√
p2 +m2 ≈ p

=⇒ total energy by stopping/destroying particle =⇒ length∝ lnE = many interaction lengths R0, X0

Poisson:
∆E
E
∝ 1√

E
; position & time resolution possible

Electromagnetic Calorimeter tuned to γ,e± detection:

Shower∝ Z2, small X0, narrow (σRutherford∝
1

sin4
θ/2

)

[Per] discusses a simple shower model, but. . .

Real World: GEANT4 Monte Carlo simulation
of shower profile/evolution, efficiency!

shower from 6 GeV electrons [Per 11.14]
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Electromagnetic Calorimeters: Example NaI Crystals [Briscoe, Downie,
Feldman]

radiation length X0 = 2.6 cm =⇒ 15 . . .20 X0 = 40−60 cm: huge mono-crystals

make sure that all shower captured:
∆E
E
∼ 1 . . .2%

2...4
√

E [GeV]
[PRSZR]

CATS NaI Detector

48 cm 27 cm

Front View

64 cm

Side View

2 MeV

Eγ = 100 MeV

1 of 4 largest monocrystals, 24 X0, now at HIγS Crystal Ball, now at MAMI (URL) [PRSZR]

672 crystals, 15.7 X0 each

For Compton scattering, meson production, hadron & nuclear spectroscopy, e+e− annihilation,. . .
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Hadronic Calorimeters

low-E: short shower, cone wide relative to length but narrow absolutely (bowling ball on bowling ball)

high-E: long shower, broad but narrowing as E↗: Lorentz boost

elmag. loss & strong interactions =⇒ prefer large A (hard-sphere)

produce other hadrons

with large masses =⇒ fewer particles

. 30% of shower “lost”: µ, ν , π0, . . .

=⇒ ∆E
E
∼ 30 . . .80%√

E [GeV]
!!

ID often tricky, ambiguous. =⇒ Combine with information from TOF, spectrometer, shower profile,. . .
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Particle ID at CB-TAPS [Downie]

  

CB@MAMI Detector System TAPS Elements

PID Detector

MWPCs Target

 Crystal Ball

TAPS

Coincidence plot: Show only events in both PID and NaI

800 MeV photon beam on hydrogen target

PID≡ Particle ID: thin plastic scintillator =⇒ particles pass through

Shower discriminant: PID scintillator for “track length”; NaI for calorimetry

neutrals (γ, n): lots in NaI, nothing in PID =⇒ not on this plot

shower profile in NaI: proton signal in 1 crystal only e±, π± 2-6 adjacent crystals (wide shower)
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Čerenkov Radiation: Superluminal Shockwave [Edyn Media 50]

When β>
c

refractive index n
phase velocity of light in medium

=⇒ relaxation along path by shock wave =⇒ light

=⇒ radiation in cone cosθC =
1

βn
depends only on β

Threshold mode: only detect light =⇒ βmin (π+ vs. K+ vs. p)

Ring Image Čerenkov RICH: measure θC =⇒ β

tune material, pressure =⇒ γ ∼ 1.2 · · ·> 100 possible [Per]

AMS@ISS (URL)

“reactor glow”: superluminal e±

see ν by recoiling light nucleus ν(X,X)ν :
Super-K, ICEcube, Antares
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More Special Cases

Short-lived Particles: by decay products (invariant-mass method); e.g. π0→ γγ

Neutrons: next-to-no elmag, only strong:

dote scintillators

use proton conversion in low-A material,
6Li(n,α)3He for En > 20MeV,. . .

Muons: if survives tons of shielding but then shows up in elmag calorimeter, it’s a muon. (see CMS)

Neutrinos: missing E and p
If it survives kilometres of shielding and then suddenly you see

a recoil nucleus/atom which cannot be explained any other way, it’s a neutrino.

– or very special detectors:

chemical conversion (Cl→Ar, Ga→Ge),

phototubes watching “nothing”
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(d) Some General Detector Characteristics [Grupen/Shwartz 2]
[Leo 5]

Resolutions in energy, momentum, spatial, temporal,. . .

Depend on all variables: particle charge, energy, momentum, hit location, time,. . .

Measurement uncertainties±σE/p/x/t/...

usually not Gauß’ian/normal distributed:

Particle number is discrete, minimal detectable energy,. . .

=⇒ Poisson, Bernoulli, Fano, rare-event statistics,. . .

But often taken as Gauß’ian to make life easier,

if narrowly peaked: “Full Width at Half Maximum concept”

FWHM = 2
√

2ln2 σX ≈ 2.355σX (if narrow & Gaußian)
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Response dep. on hit charge, E, p, location in detector, time,. . .

Sensitivity: minimum threshold to trigger signal

Saturation: maximum possible signal (e.g. before radiation damage)

wanted for spatial resolution, unwanted for total energy

e.g. energy response function: monoenergetic beam can produce

broad spectrum of deposited energies due to subsequent interaction of recoils & secondaries

Response Function & Pulse Height often highly nonlinear in intensity, energy,. . . !

Example particle energy: can often not read off accurately simply from peak position.
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Efficiency dep. on hit charge, E, p, location in detector, time,. . .

Detector Efficiency 0≤ ε≤ 1: probability that particle actually seen in detector.

γ-ray in gas counter: few-%; charge in scintillator: ∼ 100%; MeV – neutrinos in huge detector: 10−18

infer true event number =
seen events

efficiency ε±σε
= Ntrue±σNtrue =⇒ Need calibration!

Total/Multiparticle Efficiency: all efficiencies combined.
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Time Resolution and Characteristic Times

GW: rare events/high accuracy =⇒ eliminate coincidentals (cosmic, false starts,. . . ) by time-window:

Trigger: arrival of particle bunch (pulsed beam), signal in other detector,. . .

Sensitive time: allowed window after trigger

Response time: form signal (quick rise!)

Dead time from registration to seeing next

event; Čerenkov: 10−9s; Geiger: 10−3s
Event pile-up can extend dead-time.

Correction to true events Ntrue =
N

1−N τD

Recovery time: until fully sensitive again

Example: e− form shower→ propagate (next event unseen)→ recombine with ions→ restore equilibrium

Readout time e.g. into memory: depends on amount of information, writing speed,. . .

Repetition time: minimum between events that can be distinguished by all components of experiment.

We need repetition time <
1

event rate
, but not ≪.
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(e) What An Experiment Really Is (Ideally)
Beam Cleanup: remove charged undesireds by~B
Collimators: make sure all beam hits target
eliminate “beam halo” (cotravelling undesireds)
#1: define, #2: remove scatters, #3: make sure

Charged-Beam Dump: use Cu; after bend to
reduce backscatter; measure charged-beam flux by
Faraday cup; often most radioactive piece during run
a

θscatt

DAQ

Detector

Target Dump
Beam

Beam

Collimators

Target: typ. 1mol≈ 6×1023 particles to avoid multiple scattering;

gas @STP: 6×1023dm−3 ×1000⇐⇒ liquid/solid: 6×1023cm−3;
often cooled to K or mK (liquid H,4He,. . . ) & polarised

Detector:
collimator often defines angle

Data Acquisition:
hardware/software filters,
event recording,. . .

=⇒ student =⇒ paper

If you are a beam, everything looks like a target:
Nature cannot separate between signal (good) and noise (bad):
contaminations: scatter from wrong reaction, atomic e−,
container, impurities/stabilising compounds (e.g. NaPO3 for P),
collimators, beam dump; environment: concrete, cosmics,. . .
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Next: 4. Statistics and Some of Its
Pitfalls in 180 Minutes

Familiarise yourself with: [PDG 39/40,

Press/Teukolsky/Vetterlin/Flanery: Numerical Recipes 14/15,

Taylor: Introduction to Error Analysis,

Berendsen: A Student’s Guide to Data and Error Analysis,

Andrae/Schulze-Hartung/Melchior: Dos and Don’ts of Reduced Chi-Squared

[arXiv:1012.3754 [astro-ph.IM]],

ASA Statement on p-Values: Context, Process and Purpose
Bailey: Not Normal: The Uncertainties of Scientific Measurements, R. Soc. open

sci.4:160600]
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