PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear Studies
The George Washington University
Spring 2023

II. Phenomena

1. Shapes and Masses of Nuclei

Or: Nuclear Phenomeology

References: [PRSZR 5.4, 2.3, 3.1/3; HG 6.3/4, (14.5), 16.1; cursorily PRSZR 18, 19]

(a) Getting Experimental Information

heavy, spinless, composite target $\Longrightarrow M \gg E' \approx E \gg m_e \to 0$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\Big|_{\mathsf{lab}} = \underbrace{\left(\frac{Z\alpha}{2E\sin^2\frac{\theta}{2}}\right)^2\cos^2\frac{\theta}{2}\frac{E'}{E}}_{\mathsf{lab}} \left|F(\vec{q}^2)\right|^2$$

$$\mathsf{Mott: spin-}\frac{1}{2} \; \mathsf{on spin-}0, \, m_e = 0, \, M_A \neq 0$$

when nuclear recoil negligible: $M_A \gg E \approx E'$ $q^2 = (k - k')^2 \rightarrow -\vec{q}^2 = -2E^2(1 - \cos\theta)$ translate $q^2 \iff \theta \iff E$ max. mom. transfer: $\theta \to 180^{\circ}$: $q^2 \to -(2E)^2$ min. mom. transfer: $\theta \to 0^{\circ}$: $q^2 \to 0$ For E = 800 MeV (MAMI-B), ^{12}C (A = 12):

$$\theta \quad \sqrt{-q^2} = |\vec{q}| \quad \Delta x = \frac{1}{|\vec{q}|}$$

$$180^{\circ} \quad 1500 \,\text{MeV} \quad 0.15 \,\text{fm}$$

$$90^{\circ} \quad 1000 \,\text{MeV} \quad 0.2 \,\text{fm}$$

$$30^{\circ} \quad 400 \,\text{MeV} \quad 0.5 \,\text{fm}$$

$$10^{\circ} \quad 130 \,\text{MeV} \quad 1.5 \,\text{fm}$$
includes E/M (recoil) effects

"Typical" Example: 40,48 Ca measured over 12 orders

Fig. 5.7. Differential cross-sections for electron scattering off the calcium isotopes $^{40}\mathrm{Ca}$ and $^{48}\mathrm{Ca}$ [Be67]. For clarity, the cross-sections of $^{40}\mathrm{Ca}$ and $^{48}\mathrm{Ca}$ have been multiplied by factors of 10 and $10^{-1},$ respectively. The solid lines are the charge distributions obtained from a fit to the data. The location of the minima shows that the radius of $^{48}\mathrm{Ca}$ is larger than that of $^{40}\mathrm{Ca}.$

θ-dependence, multiplied by 10, 0.1!!

[PRSZR]

 40 Ca has less slope \Longrightarrow smaller size

Characterising (Spherically Symmetric) Charge Densities

$$F(\vec{q}^2) := \frac{4\pi}{Ze} \int\limits_0^\infty \mathrm{d}r \, \frac{r}{q} \, \sin(qr) \, \rho(r), \quad \text{normalisation} \quad F(\vec{q}^2 = 0) = 1$$

In principle: Fourier transformation \implies need $F(\vec{q}^2 \rightarrow \infty)$: impossible

⇒ Ways out:

(i) Characterise just object size:

$$F(\vec{q}^2 \to 0) = \underbrace{\frac{4\pi}{Ze} \int\limits_0^\infty \mathrm{d}r \, \frac{r}{q}}_{} \underbrace{\left[qr - \frac{(qr)^3}{3!} + \mathcal{O}((qr)^5)\right]}_{} \rho(r)$$

$$= \underbrace{\frac{4\pi}{Ze} \int\limits_0^\infty \mathrm{d}r \, r^2 \, \rho(r) - \frac{q^2}{3!} \frac{4\pi}{Ze} \int\limits_0^\infty \mathrm{d}r \, r^2 \times r^2 \, \rho(r) + \mathcal{O}((qr)^5)}_{} \right]_{} \text{mean of } r^2 \text{ operator}$$

$$\Longrightarrow \langle r^2
angle = -3! \left. rac{{
m d} F(ec q^2)}{{
m d} ec q^2}
ight|_{ec q^2=0}$$
 (square of) **root-mean-square (rms) radius**

Ways Out: (ii) Assume Charge Density, Calculate its FF, Fit

Very simple form for heavy nuclei: Fermi Distribution

matter density
$$ho_N(r) = rac{
ho_0}{1 + \exprac{r-c}{a}} = rac{A}{Z} \,
ho_{
m charge}$$

experiments: radius at half-density $c \approx A^{1/3} \times 1.07$ fm:

translate hard-sphere:
$$R=\sqrt{rac{5}{3}\langle r^2
angle}pprox A^{1/3} imes 1.21~{
m fm}$$

experiments: $a \approx 0.5$ fm: largely independent of A!;

related to surface/skin thickness $t = a \times 4 \ln 3 \approx 2.40 \text{ fm}$ (drop from 90% to 10%)

□▶ ←圖▶ ←蓋▶ ←蓋▶ 蓋 釣魚(

Charge and Matter Densities in Nuclei

Better parameterise as sum of a few Gauß'ians:

$$\rho_{\text{charge}}(r) = \sum_{i} b_i \exp{-\frac{(r - R_i)^2}{\delta^2}}$$

=== "line thickness" = parametrisation uncertainty

Figure 2.4 Radial charge distributions ρ_{ch} of various nuclei, in units of e fm⁻³; the thickness of the curves near r=0 is a measure of the uncertaintity in ρ_{ch} (adapted from Fr83)

 $\rho_{\text{charge}}(r=0)$ decreases with A, but matter density $\rho_N = \frac{A}{Z} \rho_{\text{charge}}(r=0)$ constant for large A:

 ρ_N plateaus in heavy nuclei \Longrightarrow Saturation of Interaction: attraction long-range, repulsion up-close!?! Nucleons "separate but close": Distance between nucleons in nucleus $\approx 1.4 \times$ nucleon rms diameter.

$$\rho_N \approx \frac{0.17 \text{ nucleons}}{\text{fm}^3} \approx \frac{1}{(1.4 \times (2 \times 0.7 \text{fm}))^3} \, \widehat{=} \, 3 \times 10^{11} \, \frac{\text{kg}}{\text{litre}} = \, 300 \, \frac{\text{tonnes}}{\text{mm}^3} = \frac{3 \text{ space shuttles}}{\text{mm}^3}$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

Putting ρ_N In Perspective

$$\rho_{N} \approx \frac{0.17 \text{ nucleons}}{\text{fm}^{3}} \approx \frac{1}{(1.4 \times (2 \times 0.7 \text{fm}))^{3}} \stackrel{?}{=} 3 \times 10^{11} \frac{\text{kg}}{\text{litre}} = 300 \frac{\text{tonnes}}{\text{mm}^{3}} = \frac{3 \text{ space shuttles}}{\text{mm}^{3}}$$

$$\frac{\text{DENSITY}}{\text{White dwarfs}} \stackrel{\text{Neutron}}{\text{stars}} \stackrel{\text{Black holes}}{\text{holes}} = \frac{3 \text{ space shuttles}}{\text{mm}^{3}}$$

$$\frac{\text{Neutron}}{\text{10}^{-5}} \stackrel{\text{Black holes}}{\text{10}^{15}} = \frac{3 \text{ space shuttles}}{\text{mm}^{3}} = \frac{3 \text{ space sh$$

[HG fig 1.3]

(b) Spin & Deformation Example: Deuteron [HG 14.5; [nucl-th/0608036]]

So far: no spin, no deformation, but spherically-symmetric $F(\vec{q}^2)$ is the exception, not the rule.

Deformation Example Deuteron
$$d(np)$$
 with $J^{PC}=1^{+-}$: $\vec{L}=\vec{J}-\vec{S},\,S=1$

$$L = 1_J \otimes 1_S = 0 \oplus 1 \oplus 2 \implies L = 0$$
 (s-wave) or $L = 2$ d-wave – Parity forbids $L = 1$.

angular momentum \implies mag. moment \implies spin-spin interaction/spin transfer ($\theta \to 180^{\circ}$, helicity)

Charge FF:
$$G_C(q^2) = \frac{e}{3} \sum_{m_I = -1}^{1} \langle m_J | J^0 | m_J \rangle$$
 avg. of hadron density, $G_C(0) = 1$

Magnetic FF:
$$G_M(q^2)$$
 $G_M(0)=:rac{M_d}{M_N} \; \kappa_d$, mag. moment $\kappa_d=0.857$

Quadrupole FF: $G_Q(q^2)$

quadrupole op.

quadrupole moment
$$Q_d := G_Q(0) = Ze \int d^3r \ \overline{(3z^2 - r^2)} \ \rho_{\rm charge}(\vec{r}) = 0.286 \ {\rm fm}^2$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\bigg|_{\mathsf{lab}} = \underbrace{\left(\frac{Z\alpha}{2E\sin^2\frac{\theta}{2}}\right)^2\cos^2\frac{\theta}{2}\,\frac{E'}{E}}_{\mathsf{Mott}} \times \\ \left[\left(\frac{G_{\mathsf{C}}^2 + \frac{2\tau}{3}G_{\mathsf{M}}^2 + \frac{8\tau^2M_d^4}{9}G_{\mathsf{Q}}^2}{9}\right) + \underbrace{\frac{4\tau(1+\tau)}{3}G_{\mathsf{M}}^2\tan^2\frac{\theta}{2}}_{\mathsf{helicity}}\right] \\ \mathsf{with} \,\, \tau = -\frac{q^2}{4M_c^2} \,\, \mathsf{as} \,\, \mathsf{before}$$

 \Longrightarrow Dis-entangle by θ & τ dependence.

Deuteron Form Factors

[Garçon/van Orden: [nucl-th/0102049]] does not include most recent data (JLab), but pedagogical plot

high-accuracy data up to $Q^2 \gtrsim (1.4~{
m GeV})^2$

Theory quite well understood:

embed nucleon FFs into deuteron, add:

deuteron bound by short-distance

- + tensor force: one-pion exchange $N^\dagger \vec{\sigma} \cdot \vec{q} \pi(q) N$
- photon couples to charged meson-exchanges

and many more!!

open issues: zero of G_Q , form for $Q \gtrsim 3 \text{ fm}^{-1},...$

(c) Nuclear Binding Energies (per Nucleon)


```
B/A rapidly increases from deuteron (A=2): 1.1 MeV/A to about ^{12}C: 7.5 MeV/A for A\gtrsim 16 (oxygen) remains around 7.5 ... 8.5 MeV/A maximal for ^{56}Fe-^{60}Co-^{62}Ni: 8.5 MeV/A small decrease to A\approx 250 (U): 7.5 MeV/A
```

⇒ "typically", fusion gains (much) energy up to Fe; fission gains (some) energy after Fe.

⇒ Fe has relatively large abundance: product of both exothermal fusion and fission.

<ロト <回ト < 重ト < 重ト = 一 の q で

Bethe-Weizsäcker Mass Formula & Interpretation: Liquid Drop Model

Know < 3000 nuclei \implies roughly parametrise ground-state binding energies, not only for stable nuclei

Total binding energy: SEMF Semi-Empirical Mass Formula $B = a_V A - a_s A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_a \frac{(N-Z)^2}{4A} - \frac{\delta}{A^{1/2}}$ (1935/36)

$$a_V = 15.67 \, {
m MeV}$$
 volume term cf. $ho_N \approx 0.17 \, {
m fm}^{-3} \Longrightarrow$ saturation \Longrightarrow Well-separated, quasi-free nucleons, next-neighbour interactions like in liquid. $a_S = 17.23 \, {
m MeV}$ surface tension fewer neighbours on surface \Longrightarrow less B $a_C = 0.714 \, {
m MeV}$ Coulomb repulsion of protons \Longrightarrow tilt to $N > Z$ $a_a = 93.15 \, {
m MeV}$ (a)symmetry/Pauli term Pauli principle \Longrightarrow tilt to $N \sim Z$

opposite spins have net attraction wf overlap decreases with \boldsymbol{A}

 \Longrightarrow A-dependence

Valley of Stability around $N \gtrsim Z$

$$B = a_V A - a_s A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_a \frac{(A - 2Z)^2}{4A} - \frac{\delta}{A^{1/2}}$$

 \Longrightarrow Parabola in Z at fixed A with $Z_{\min} = \frac{a_a A}{2(a_a + a_C A^{2/3})} \lesssim \frac{A}{2}$

Valley of Stability

Probe nuclear interactions
by pushing to "drip-lines":
Facility for Rare Isotope Beams FRIB at MSU

For A > 60, fission can release energy, but must overcome fission barrier.

Let's assume fission into 2 equal fragments.

The liquid drop model of fission.

Estimate: infinitesimal deformation into ellipsoid (egg) with excentricity ϵ at constant volume

$$\Longrightarrow$$
 surface tension \nearrow , Coulomb \searrow :

$$E({\rm sphere}) - E({\rm ellipsoid})$$

$$\sim \frac{\epsilon^2}{5} \left(2a_s A^{2/3} - a_C Z^2 A^{-1/3} \right)$$

Fission barrier classically overcome when ≤ 0 :

$$\frac{Z^2}{A} \sim \frac{2a_s}{a_C} \approx 48$$

e.g.
$$Z > 114, A > 270$$

$$rac{Z^2}{A}\simrac{2a_s}{a_C}pprox48$$
 e.g. $Z>114,A>270$ is below: QM tunnel prob. $\propto\exp{-2\int\sqrt{2M(E-V)}}$

between points with r(E = V)

Induced Fission: importance of pairing energy

$$n + \frac{238}{92}U \rightarrow \frac{239}{92}U$$
: even-even \rightarrow even-odd

$$\Longrightarrow$$
 invest pairing $E_{\delta}=rac{\delta=11.2 \mathrm{MeV}}{\sqrt{239}}=0.7 \mathrm{MeV}$

$$n + \frac{235}{92}U \rightarrow \frac{236}{92}U$$
: even-odd \rightarrow even-even

$$\frac{\delta}{\sqrt{236}} = -0.7 \text{MeV}$$

 \implies gain pairing energy $\frac{\delta}{\sqrt{236}} = -0.7 \text{MeV} \implies$ can use thermal neutrons (higher σ !)

(e) First Dash into Nuclear Matter

Nuclear Interactions Saturate: $\rho_N \approx \frac{0.17 \text{ nucleons}}{\text{fm}^3} \rightarrow \text{const. in heavy nuclei}$

Nucleons "separate but close": Distance between nucleons in nucleus $\approx 1.4 \times$ nucleon rms diameter.

Fermi distribution at temperature T = 0 for N = Z:

occupy all levels, 2 spins, proton & neutron, N = Z

$$ho_N =
ho_p +
ho_n = 2 \int\limits_{|\vec{k}| < k_F} rac{\mathrm{d}^3 k}{(2\pi)^3} \left[n_p(\vec{k}) + n_n(\vec{k}) \right] = rac{2}{3\pi^2} k_F^3$$

 \implies Fermi momentum (max. nucleon momentum) $k_F = \sqrt[3]{\frac{3\pi^2\rho_N}{2}} \approx 1.3 {\rm fm}^{-1} \approx 260 {\rm MeV} \approx 2m_\pi.$

Liquid-gas transition for temperature $T \nearrow$

Liquid-Drop Model: heat ⇒ evaporation

T via E-distrib. of collision fragments:

$$N(E) \propto \sqrt{E} \, \exp[-E/T]$$
 (Maxwell)

but need many fragments, angle-indep. exp: $T \approx 5 \text{MeV}$ in *finite* symmetric nuclei.

Neutron-*E*-distrib. in 235 U fission: T = 1.29MeV

Nuclei Are Not "Nuclear Matter"

SEMF of finite nuclei:

$$\frac{B}{A} = a_V - \frac{a_s}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_a \frac{(N-Z)^2}{4A^2} - \frac{\delta}{A^{3/2}} \approx 8.5 \text{MeV}$$

Infinite nuclear matter: no surface, Coulomb negligible, no pairing

$$\Longrightarrow \frac{B}{A} \approx a_V = 15.6 \text{MeV}.$$

grand canonical ensemble:
$$\mathcal{Z} = \operatorname{tr} \exp{-\frac{1}{T}[\mathbf{H} - \mu_p N_p - \mu_n N_n]}$$

with μ_N : chem. potentials

$$-T\ln \mathcal{Z} = -PV = E - TS - \mu_p N_p - \mu_n N_n$$

 \implies pressure $-P = \mathcal{E} - Ts - \mu_p \rho_p - \mu_n \rho_n$ with \mathcal{E} : energy density, s: entropy density

Need to extrapolate or solve nuclear many-body problem: specify interactions!

Descriptions agree at $\rho_0 \approx 0.16 {\rm fm}^{-3}$ — here χ EFT (π , N, $\Delta(1232)$) [Fiorilla/...[arXiv:1111.3688 [nucl-th]]

Empirical first-order liquid-gas phase transition for infinite, symmetric (N = Z) nuclear matter at critical temperature $T_c = [16...18]$ MeV.

Chemical potential at temperature T = 0:

$$\mu_N(T=0) = M_N - \frac{B}{A} = [939 - 16] \text{MeV} \approx 923 \text{MeV}$$

A First Phase Diagram of Nuclear Matter: N = Z

 $T_c \ll m_\pi, M_N \implies$ symmetric nuclear matter close to liquid-gas transition: just inside liquid phase.

Density $\rho(T, \mu_N)$ of stable nuclear matter depends on T, μ .

Nature is Not Symmetric: Dependence on Proton-Neutron Mix

Again relatively good agreement between descriptions – here χ EFT [Fiorilla/...[arXiv:1111.3688 [nucl-th]]].

- \implies Nuclear-matter density $\rho(N-Z)$ decreases as Z/A decreases.
- Nuclear Matter becomes unbound for $Z/A \lesssim 0.1$.
- Why is pure-neutron matter unbound (a gas)??

(Pauli-principle??)

– In early 1900's, neutron "invented" to mitigate Coulomb repulsion between protons.

So why no binding when I take all protons away?

– Lattice QCD: Neutron matter might actually be bound for larger $m_{\pi} > 600 \text{ MeV}$ (controversial).

So Why Are There Neutron Stars??

Gravity compacts interior \Longrightarrow saturation point shifts: $\rho_0 \approx 0.16 \text{fm}^{-3} \rightarrow 3 \rho_0$, holds neutrons together.

How to extrapolate to there – and how to extrapolate from $Z \approx 0.4A$ to $Z \lesssim 0.1A$ ("neutron" star!)?

Nuclei (SEMF): "(a)symmetry energy" $a_a(\rho_0)/4 \approx 22 \text{ MeV}$; nucl. matter: [29...33] MeV

slope $L=3\frac{\mathrm{d}(a_a/4)}{\mathrm{d}\ln\rho}\Big|_{\rho_0}=[40\dots62]~\mathrm{MeV}.$ Method: compare different Z/A nuclei & extrapolate.

Taylor in
$$(\rho - \rho_0)$$
:
$$\mathcal{E}(\rho, \frac{N-Z}{A}) = \mathcal{E}_0(\rho_0, \frac{N-Z}{A} = 0) + \frac{\mathrm{d}^2 \mathcal{E}}{\mathrm{d}\rho^2} \Big|_{\rho_0} (\rho - \rho_0)^2 + \dots$$

$$\rho = \rho_0 + K(\rho_0) (\rho - \rho_0)^2 + \dots \text{ justified for } \rho \text{ (neutron star)} = 3\rho_0 ??$$

Compressibility of nuclear matter $K(\rho) = 9\rho \frac{\mathrm{d}^2 \mathcal{E}}{\mathrm{d}\rho^2} > 0$ for stable nuclear matter at density ρ .

Test dependence on $(\rho, N-Z)$ in neutron skin of heavy nuclei, collective excitations & extrapolate!

At
$$\rho_0$$
, $N=Z$: compressibility $K=k_F^2(\rho_0)\frac{\mathrm{d}^2\mathcal{E}}{\mathrm{d}\rho^2}\Big|_{\rho_0}=[210\pm10]\mathrm{MeV}.$ Wide agreement.

At ho_0 , pure neutron matter: $K \approx 600 {
m MeV}$, error $\pm 100 {
m MeV}$ or more.

People disagree! Number here from [Vretenar/...PRC68 (2003) 024310]

メロト (個) (種) (種) (種) 種 の9.0

Measure Compressibility & Neutron Skin? PREX at JLab & Co...

Problem: Neutrons have no charge \implies higher-order effect & weak interactions.

Inference Depends on Theory: skin only skin-deep, not "nuclear matter",...

Experimental values of the 208 Pb neutron skin thickness (Δr_{np}), which is related to the neutron matter pressure at $\rho \approx 2/3~\rho_0$, agree better with calculations that include 3-nucleon forces.

Preview: Nuclear Matter Phase Diagram for N = Z

When you compress nucleons, additional energy can be converted into new particles: baryons ($\Lambda(1440),\ldots$) mesons (kaon,...), resonances/excitations ($\Delta(1232,\ldots)$, exotics... \Longrightarrow Influence on neutron-star radius,...! \Longrightarrow Later.

Preview: Nuclear Matter Phase Diagram for $N \neq Z$

Need third axis with chemical potential $\mu_I = \mu_p - \mu_n$ for Z - N to place neutron stars.

Box 3 Features of the QCD Phase Diagram at Low Temperature and High Density

The 3-dimensional QCD phase diagram at high baryonic μ_{R} and moderate isospin μ_{L} densities has a rich and yet largely unexplored structure: a critical endpoint separates a smooth cross-over from a first order as well as a chiral phase transition at high baryon densities. New and exotic phases like quarkyonic matter or color superconducting phases might appear at baryonic high densities. At very high μ_R a superfluid color-flavor-locked phase is speculated on. Supernovae are formed at initial proton fractions ≈ 0.4 which reduce to ≈ 0.1 for cold neutron stars. Heavy-ion collisions at FAIR or NICA energies are expected to probe this region as well as the conjectured phase boundaries to quarkyonic or fully deconfined matter.

[NuPECC Long-Range Plan 2017 p. 89]

(f) Inelasticities: Excitations, Breakup, Knockout

SEMF does not explain nuclear level spectrum.

Fig. 5.9. Spectrum of electron scattering off ¹²C. The sharp peaks correspond to elastic scattering and to the excitation of discrete energy levels in the ¹²C nucleus by inelastic scattering. The excitation energy of the nucleus is given for each peak. The 495 MeV electrons were accelerated with the linear accelerator MAMI-B in Mainz and were detected using a high-resolution magnetic spectrometer (cf. Fig. 5.4) at a scattering angle of 65.4°. (*Courtesy of Th. Walcher and G. Rosner, Mainz*)

< ロ ト → □ ト → 重 ト → 重 → りへ(

(g) Beyond the SEMF/Liquid Drop

Difference Semi-Empirical Mass Formula SEMF – Experiment

Bethe-Weizsäcker: Semi-Empirical Mass Formula, good for qualitative arguments.

Magic numbers 2, 8, 20, 28, 50, 82, 126 for Z or N more stable than SEMF \Longrightarrow Shell-like structure?

Example of Single-Particle Models: 3 Minutes on the Shell Model

Single-Particle Models: Individual nucleon moves in average potential created by all other nucleons.

 \implies Neglect feedback of motion onto potential. Saturation, short-range forces \implies $V(r) \propto \rho(r)$

Light Nuclei: Gaußian profile; Heavy nuclei: Fermi/Woods-Saxon potential $V(r) = \frac{-v_0}{1 + \exp{\frac{r-c}{a}}}$

Full QM: Solve Schrödinger Equation

Analytically solvable models provide insight:

- Fermi Gas/Liquid Model: 3-dim. potential square-well with depth V_0 .
- 3-dim Harm. Oscillator $E_{\mathrm{h.o.}} = (N_x + N_y + N_z + \frac{3}{2})\hbar\omega$; ang. mom. l = N 2 (=# wf nodes 1)

Refinement Coulomb:

proton sees charges, neutron not.

$$\Longrightarrow V_0^p > V_0^n.$$

[PRSZR 18.1]

Refinement Spin-Orbit Coupling $V_{ls}(r)\vec{l}\cdot\vec{s}$: like (??) fine structure in H atom, where it is tiny $\mathcal{O}(\alpha^2)$.

$$\text{Nucleon } \vec{s} \otimes \vec{l} = \vec{j} \implies l \in \{j - \frac{1}{2}; j + \frac{1}{2}\} \implies \vec{l} \cdot \vec{s} = \frac{1}{2}[(\vec{l} + \vec{s})^2 - \vec{l}^2 - \vec{s}^2] = \frac{1}{2}[j(j+1) - l(l+1) - \frac{3}{4}]$$

$$\Longrightarrow \Delta E_{ls} = (l+rac{1}{2}) \ \langle V_{ls}
angle$$
 Experiment: $\langle V_{ls}
angle pprox -20 {
m MeV} < 0 \ {
m huge}$

(heavy & close constituents), opposite sign to H atom.

And, of course, many more refinements...

 III.1.24

 III. W. Grießhammer, INS, George Washington University

Example of Single-Particle Models: 3 Minutes on the Shell Model

Each state with 2 protons & 2 neutrons (spin!); pairing \implies closed shells do not contribute.

 \implies Gaps at magic numbers 2, 8, 20, 28, 50, 82, 126.

 \implies Spin-orbit responsible for **gaps** at **magic numbers** 28, 50, 82, 126.

[Maria Goeppert Mayer/Wigner/Jensen 1949 + developments: "Periodic table" of nuclei]

Very good close to shell closure ("valence nucleons"; incl. magnetic moments!), bad-ish off-closure.

Liquid Drop Is Example of A Collective Model

Collective Model: Nucleons loose individuality, form continuous fluid/gas.

Example Collective Vibrations/Shape Oscillations: shape of nucleus deformed.

Example Compressibility of Nuclear Matter: "monopole mode" $J^{PC}=0^{+-}$: radial oscillations.

Experiment: excitation energy $\approx 80A^{-1/3} \text{MeV} \gg \text{any other mode}$

⇒ Nuclear matter pretty incompressible (except for interior of Neutron stars!).

Example Giant Electromagnetic Dipole Resonance: p & n oscillate against each other.

Coherent elmag. excitation $\propto Z^2$; huge resonance. $\uparrow \vec{r} = \vec{r}_0 e^{i\omega t}$ | Neutrons | Protons | Neutrons | Protons | Neutrons | Neutron

Example Collective Rotations

Non-spherical nucleus rotates around non-symmetry axis, inertia *I*:

$$E_{
m rot} = rac{ec{J}^2}{2I} = rac{J(J+1)}{2I}$$
 "rotation bands"

characteristic spacing

$$\Delta E \propto (2J+1)$$
.

Experiment: Inertia I < rigid ellipsoid, but I > irrotational flow (superfluid)

→ Nucleus like raw egg.

Fig. 18.14. Energy levels of ¹⁵²Dy [Sh90]. Although the low energy levels do not display typical rotation bands, these are seen in the higher excitations, which implies that the nucleus is then highly deformed.

(ㅁㅏ ఠ醪ㅏ ఠ혈ㅏ ఠ혈ㅏ

Familiarise yourself with: [HM 8.2 (th); HG 6.5/6; Tho 7.5; Ann. Rev. Nucl. Part. Sci. 54 (2004) 217]