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Il. Phenomena

1. Shapes and Masses of Nuclei

Or: Nuclear Phenomeology

References: [PRSZR 5.4, 2.3, 3.1/3; HG 6.3/4, (14.5), 16.1; cursorily PRSZR 18, 19]



(a) Getting Experimental Information

heavy, spinless, composite target =—> M > E' ~E > m, — 0
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when nuclear recoil negligible: My > E ~ E’

> = (k—k)* = —g*> = —2E*(1 —cos )
translate ¢> <= 0 <= E

max. mom. transfer: 8 — 180°: ¢g* — —(2E)?

min. mom. transfer: 8 — 0°:  ¢*> — 0

For E = 800 MeV (MAMI-B), 12C (A = 12):
. 1

0 V—g¢*=1q] Ax= il

180° 1500 MeV  0.15 fm

90° 1000 MeV 0.2 fm

30° 400 MeV 0.5 fm

10° 130 MeV 1.5fm
includes E /M (recoil) effects




“Typical” Example: “°*3Ca measured over 12 orders

10=27
1028

1029

do/dQ [cm?/sr]

10730
10731
1032
1033
10734
1035

10736

10737 1 1 1 1 1 1 1 1
20° 30° 40° 50° 60°

Fig. 5.7. Differential cross-sections for electron scattering off the calcium isotopes
“0Ca and *®Ca [Be67]. For clarity, the cross-sections of “°Ca and *®*Ca have been
multiplied by factors of 10 and 107", respectively. The solid lines are the charge
distributions obtained from a fit to the data. The location of the minima shows
that the radius of **Ca is larger than that of *°Ca.

6-dependence, multiplied by 10, 0.1!! [PRSZR]

40Ga has less slope — smaller size
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Characterising (Spherically Symmetric) Charge Densities

o0
4
F(g"):= Z—yer/drg sin(gr) p(r), normalisation F(g*=0)=1
0

In principle: Fourier transformation =— need F(Z]’2 — 00): impossible
—> Ways out:

(i) Characterise just object size:

singr
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i r r 3
Fa 0= [l =20 s o) ot

e 3!
0
A [ 241 T
= Ze/dr P p(r) — % Ze/dr P xr p(r)+(9((qr)5)
.0 0
=1 mean of 2 operator
dF(g*
- <r2> = 3! d(fIZ ) (square of) root-mean-square (rms) radius
9~ 1g2=0




Ways Out: (ii) Assume Charge Density, Calculate its FF, Fit

P(r) 4 point-like exponential & Gaussian t uniform % Fermi
sphere function
> ! > > + > I
|F(g?)1] flat “dipole” | Gaussian [ ‘“sinc-like’
»> T ’ > ' h |q2|
[Tho 7.5]Dirac fermion proton 6Li nucleus 1stminatgR~ 4.5 4°Ca nucleus
Very simple form for heavy nuclei: Fermi Distribution
4 p() |
, Po p(0)
matter densit r)=—— ==
y pn(7) Ifexp=C Z Pcharge 1.
a 0.9
experiments: radius at half-density ¢ &~ A'/3 x 1.07 fm: 05
5 2 1/3
translate hard-sphere: R = §<r YRATx1.21fm g1
i ra=0. : i l; r
experiments: a ~ 0.5 fm: largely independent of A!; [PRSZR p. 68]

related to surface/skin thickness t = a x 4In3 ~ 2.40 fm (drop from 90% to 10%)



Charge and Matter Densities in Nuclei

Better parameterise as sum of a few Gauf3’ians:

r—Ri 2
Pcharge(r) = Zbi CXP_M

l
— “line thickness” = parametrisation uncertainty

0.10

ple/fm®] |
0.10-

0.05+

Charge density (e fm™*)

[Mar]

Radial distance (fm)

r[fm Figure 2.4 Radial charge distributions p, of various nuclei, in units of e fm™”; the thickness
[PRSZR] [ ] of the curves near r = 0 is a measure of the uncertaintity in pc, (adapted from Fr83)

A
Pcharge (7 = 0) decreases with A, but matter density py = 7 Pcharge (7 = 0) constant for large A:

pn plateaus in heavy nuclei = Saturation of Interaction: attraction long-range, repulsion up-close!?!
Nucleons “separate but close”: Distance between nucleons in nucleus ~ 1.4 X nucleon rms diameter.

0.17 nucleons ~ 1 ~ 3y 10! kig _ 300 tonnes 3 space shuttles

Py = fm? (1.4 x (2x0.7fm))3 litre mm?3 mm3




Putting pn In Perspective

_ 0.17 nucleons 1 ~ n kg tonnes 3 space shuttles
Py 7= fm? T (1.4x(2x0.7fm))3 3x10 litre 300 mm? mm?
DENSITY it
dworfs?
: Neutron Black
Solids| | ] stars holes
I I l I | > g /cm‘°’
10° 10° 10° 10" T1015
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Water
Maftter

[HG fig 1.3]



(b) Spin & Deformation Example: Deuteron!' * [nichn/080503]

[nucl-th/0102049]]
So far: no spin, no deformation, but spherically-symmetric F(Z[z) is the exception, not the rule.
Deformation Example Deuteron d(np) with J'¢ = 17~ L=J-55=1
L=1;1s=0d16®2 = L =0 (s-wave) or L = 2 d-wave — Parity forbids L. = 1.

angular momentum = mag. moment = spin-spin interaction/spin transfer (6 — 180°, helicity)
1

Charge FF: Gelg?) = ¢ Z (my|J°|my) avg. of hadron density, G¢(0) = 1
3 my=—1 M
Magnetic FF: Gu(q?) Gu(0) =: ]\Td Ky, mag. moment k; = 0.857
N

Quadrupole FF: GQ(qz) quadrupole op

——
quadrupole moment Q := G (0) = Ze / &% (322 — %) Peharge (F) = 0.286 fm?

do

2
Zao 6 E 21 872M; 4t(1+7 )
I b: <—) cos® — — X (Gzc+—G,2V,+ dGé) + ngzwtanz—
a

dQ 2Esin’ 2 2 E 3 5 3 .
Mztt 5 helicity == spin transfer
with T = _q_2 as before
Md

— Dis-entangle by 6 & T dependence.


http://arxiv.org/abs/nucl-th/0608036
http://arxiv.org/abs/nucl-th/0102049

Deuteron Form Factors

G (linear scale) i

Gl

[Garcon/van Orden: [nucl-th/0102049]]
does not include most recent data (JLab),
but pedagogical plot

high-accuracy data up to Q% > (1.4 GeV)?

Theory quite well understood:
embed nucleon FFs into deuteron, add:

deuteron bound by short-distance
+ tensor force: one-pion exchange N'G - g (q)N

= photon couples to charged meson-exchanges

RN

many
+ more!!

T

open issues: zero of Gy, form for Q 2 3 fm~!,...


http://arxiv.org/abs/nucl-th/0102049

(c) Nuclear Binding Energies (per Nucleon)
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B/A

rapidly increases from deuteron (A = 2):
to about 2C:

for A = 16 (oxygen) remains around
maximal for *°Fe-%0Co—92Ni:
small decrease to A ~ 250 (U):

75...

1.1 MeV /A
7.5MeV/A
8.5MeV/A
8.5 MeV /A
7.5 MeV /A

180 210 240

= “typically”, fusion gains (much) energy up to Fe; fission gains (some) energy after Fe.

= Fe has relatively large abundance: product of both exothermal fusion and fission.



Bethe-Weizsacker Mass Formula & Interpretation: Liquid Drop Model

Know < 3000 nuclei = roughly parametrise ground-state binding energies, not only for stable nuclei

Total binding energy: SEMF 7 N —2Z)?
Semi-Empirical Mass FormuIaB =avA — s M — e m — : 4A ) - Al/2 (1935/36)
ay = 15.67 MeV volume term cf. py = 0.17 fm 3 = saturation
— Well-separated, quasi-free nucleons, next-neighbour interactions like in liquid.
as =17.23 MeV surface tension fewer neighbours on surface — less B
ac =0.714 MeV Coulomb repulsion of protons = tiltto N > Z
a; =93.15 MeV (a)symmetry/Pauli term Pauli principle = tiltto N ~Z
—11.2MeV Z & N even opposite spins have net attraction
0= 0 Z or N odd pairing term wf overlap decreases with A

—> A-dependence

/ G
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Valley of Stability around N > Z

1 T
2 2 5
B=aVA—asA2/3—acZ——aa (A-22) — g )
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Valley of Stability

56.00
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Probe nuclear interactions E
by pushing to “drip-lines”: 5_';55 sl |
. n T
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http://www.frib.msu.edu/

(d) Application: Nuclear Fission [PRSZR 3.3]

For A > 60, fission can release energy, G

1) 2 9
L ]
“u '\.
but must overcome fission barrier. . - “ H. .H
L ]
™

Let’'s assume fission into 2 equal fragments.

The liquid drop model of fission.
Estimate: infinitesimal deformation into ellipsoid (egg) with excentricity € at constant volume

— surface tension *, Coulomb “\: |

> 200 A = 300 )
E(sphere) — E(ellipsoid) E ;
2
€ .
~% <2aSA2/3 —aCZZA’m) by 200
(7]
b
Fission barrier classically overcome when < 0: g
ZZ 2a ot 150
=~ 48 eg.Z>114,A>270 §
A aC o
below: QM tunnel prob. o< exp — 2/\/2M (E—V) .g
between points with r(E = V)
Induced Fission: importance of pairing energy 20
n+g§8U — gggU: even-even — even-odd :

—> invest pairing E5 = 52“2% =0.7MeV O CD 0D () O
n+3°U — 33°U: even-odd 6—> even-even fragment separation
—> gain pairing energy —— = —0.7MeV — can use thermal neutrons (higher ¢!
V236



(e) First Dash into Nuclear Matter

0.17 nucleons

fm>
Nucleons “separate but close”: Distance between nucleons in nucleus ~ 1.4 X nucleon rms diameter.

Nuclear Interactions Saturate: py ~ —> const. in heavy nuclei

Fermi distribution at temperature T = 0 for N = Z:

n(p)
occupy all levels, 2 spins, proton & neutron, N =7 1

. . 2
_ 3
pv=pton=2 [ o iy @®+m() = 55 p
P,
F|<kp 3oy
—> Fermi momentum (max. nucleon momentum) kg = 4 > ~ 1.3fm~! ~ 260MeV ~ 2my.
o . T (o eoomer
Liquid-gas transition for temperature 7 " 012G 180 + " Ag 19T Ay, 30.64 AMSY
Liquid-Drop Model: heat == evaporation 10 + 1  compare to water
T via E-distrib. of collision fragments: PTOAE AR, 1 / m
— ;' vapour
= 7 | . . 400
N(E) x VE exp|—E/T| (Maxwell) 2 -,:f_ Z
= \-; .‘,- -1 water 300 E
E ||
O O | ice 200 g
O o] O P =
Qo .O ° 5 2(AETIAALT - 2MeV) HOatlam —f
but need many fragments, angle-indep. [NUPECC LRP] S
0
exp: T =~ SMeV in finite symmetric nuclei. 05— é i -110- s -1|5‘ = excilation energy per mofecule [meV]

Neutron-E-distrib. in 235U fission: 7 = 1.29MeV  excitation energy E /A [MeV] per nucleon



Nuclei Are Not “Nuclear Matter”

" . B as z? (N—2)? )
SEMF of finite nuclei: 1= ay — YU ac e ag iz R 8.5MeV
B
Infinite nuclear matter: no surface, Coulomb negligible, no pairing — 1 ~ay = 15.6MeV.
1
grand canonical ensemble: Z = tr exp 7 [H — UpNp — 1yNy] with ty: chem. potentials

~TInZ =—PV=E—TS— i,N, — N,

== pressure —P = & — Ts — W, 0, — WPy With £: energy density, s: entropy density

Need to extrapolate or solve nuclear many-body problem: specify interactions!

Descriptions agree at pg ~ 0.16fm > — here YEFT (7, N, A(1232)) [Fiorilla/. . . [arXiv:1111.3688 [nucl-th]]
4 - T

symmetric
3L nuclear matter
N=12Z

Empirical first-order liquid-gas phase transition

for infinite, symmetric (N = Z) nuclear matter at
critical temperature 7. = [16...18]MeV.

P [MeV fm™]

Chemical potential at temperature 7" = O:

pn(T =0) = My — £ =939 — 16]MeV ~ 923MeV



http://arxiv.org/abs/1111.3688

A First Phase Diagram of Nuclear Matter: N =Z

20 B Gas

Critical Point
/ T.= 15MeV

15

s |
) i
= | Gas Liquid
= 10 |
5.—
0—.‘.1...1..11‘.......1
914 916 918 920 922 924

i [MeV]

T, < myg,My — symmetric nuclear matter close to liquid-gas transition: just inside liquid phase.

Density p (7', Ly ) of stable nuclear matter depends on 7, LL.



Nature is Not Symmetric: Dependence on Proton-Neutron Mix

Again relatively good agreement between descriptions — here Y EFT [Fiorilla/. . . [arXiv:1111.3688 [nucl-th]]].

0 0.05 0.1 0.15 0.2
p [fm?]

T [MeV]
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0.1
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1
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I
1
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1
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0
0 0.02

0.04 0.06 0.08 0.1 0.12  0.14 0.16
p [f1n’3|

= Nuclear-matter density p (N — Z) decreases as Z /A decreases.

— Nuclear Matter becomes unbound for Z/A < 0.1.

— Why is pure-neutron matter unbound (a gas)??

(Pauli-principle??)

— In early 1900’s, neutron “invented” to mitigate Coulomb repulsion between protons.

So why no binding when [ take all protons away ?

— Lattice QCD: Neutron matter might actually be bound for larger m; > 600 MeV (controversial).


http://arxiv.org/abs/1111.3688

So Why Are There Neutron Stars??

Gravity compacts interior = saturation point shifts: pg ~ 0.16fm > — 3o, holds neutrons together.

How to extrapolate to there — and how to extrapolate from Z ~ 0.4A to Z < 0.1A (“neutron” star!)?

_N-Z N-Z N-Z aa(po)  d(aa/4) ] N-2z\*

Tayl : — %)= = =2+
aylor in —, Ep, 1 ) = &o(po, 1 0)+[ 4 + P yy +
Nuclei (SEMF): “(a)symmetry energy” a,(po)/4 ~ 22 MeV; nucl. matter: [29...33] MeV
d 4
slope L =3 Eﬁ:l/p ) =[40...62] MeV.  Method: compare different Z /A nuclei & extrapolate.
Po
N-Z N-Z d&
Taylorin (p —po):  E(p,——) = &o(po, =0)+-——| (p—po)*+
A dp“lpy
p=po+K(po)(p— p0)2 + ... justified for p (neutron star) = 3py??
2

Compressibility of nuclear matter K(p) = 9p$ > ( for stable nuclear matter at density p.
Test dependence on (p, N — Z) in neutron skin of heavy nuclei, collective excitations & extrapolate!

At po, N = Z: compressibility K = kz(pg) 95| = [210+ 10]MeV. Wide agreement.

dp2

At po, pure neutron matter: K ~ 600MeV, error +100MeV or more.
People disagree! Number here from [Vretenar/... PRC68 (2003) 024310]



Measure Compressibility & Neutron Skin? PREX at JLab & Co...

Problem: Neutrons have no charge == higher-order effect & weak interactions.

Inference Depends on Theory: skin only skin-deep, not “nuclear matter”,....

e Pb-208

y, 20
— ‘ Normal Nuclei Neutron-Skin Nuclei Neutron-Halo Nuclei
P core P4 core
Skin
3 T halo
* HICBMSU " gosH i L
O PDR = i g neutron-rich (T,)
= ["F & 6 S, <1MeV
E ® (5.p) S vhisnn] = S, |~S,~8MeV__ 1| &
2F0 ®B.B) forces/ | N
87| —= prex I S,~20M
= crust EOS
(0]
5
% 1r i T Neutron-Skin
Calculations SgAE o R ulensiiBn 1]Li
- g
0 — ' 0.2-0.8fm 5,,=370keV
0.0 0.5 1.0
Density p/p, 2n Halo ~7fm

Experimental values of the ?°8Pb neutron skin thickness (Ar,,), which is
related to the neutron matter pressure at p = 2/3 p,, agree better with
calculations that include 3-nucleon forces.



Preview: Nuclear Matter Phase Diagram for N = Z

When you compress nucleons, additional energy can be converted into new particles:

baryons (A(1440),...) mesons (kaon,...), resonances/excitations (A(1232,...), exotics. ..
— Influence on neutron-star radius,...! — Later.
200 1 1 1 | 1 1 1 1 1 1 1 1 1 |
{W/T=2x10" ~ ..
1754 C Critical o Colour Deconfinement:
E-"EO_SE,O_VQ Endpoint (?) "free" quarks
150 - Quark Gluon Plasma
Chirally Symmetric Phase
S1254| = 2
[ Q‘:* ‘B Colour Confinement:
E - = hadrons, no free quarks
g100q) = % Hadron Gas
g £ < Chirally Broken Phase
g- 754y 2 B
O
=
>0 Nuclear Liquid-Gas
Phase Transition  Nuclear\ Color Super- [
254 Matter | conducting
/ liquid Phases
o+
0 200 400 600 800 1000 1200 1400

Baryon chemical potential [MeV]




Preview: Nuclear Matter Phase Diagram for N £ Z

Need third axis with chemical potential 11, = (1, — U, for Z — N to place neutron stars.

AT
(&)
bt Quark,
\‘5005 = s & QIUGHS
{\Lﬁ.bg . Ly "'u:?t'j EVE.' Cep
C\“@ " - -0
e #
o
hagp,
T@& 42 Ong
Q’uamy Ol
<@ Matia,

Box 3

Features of the QCD Phase Diagram at Low
Temperature and High Density

The 3-dimensional QCD phase diagram at high
baryonic p, and moderate isospin y, densities has a
rich and yet largely unexplored structure: a critical
endpoint separates a smooth cross-over from a
first order as well as a chiral phase transition at
high baryon densities. New and exotic phases
like quarkyonic matter or color superconducting
phases might appear at baryonic high densities. At
very high p, a superfluid color-flavor-locked phase
is speculated on. Supernovae are formed at initial
proton fractions = 0.4 which reduce to = 0.1 for
cold neutron stars. Heavy-ion collisions at FAIR or
NICA energies are expected to probe this region
as well as the conjectured phase boundaries to
quarkyonic or fully deconfined matter.

[NuPECC Long-Range Plan 2017 p. 89]



(f) Inelasticities: Excitations, Breakup, Knockout

SEMF does not explain nuclear level spectrum.

e+'2C—>e'+12C

700
% Pe = 495 MeV/c >
3 0=65.4° 2
g 600 Iql/h = 2.68 fm-1 3
5 S
2 s00
€
z
400 elastic peak

300

16.58 MeV
16.11 MeV

9.64 MeV

7.65 MeV

200

100

15.11 MeV
14.08 MeV

b |

0
450 455 460 465 470 475 480 485
P [MeVi/c]

Fig. 5.9. Spectrum of electron scattering off 12C. The sharp peaks correspond to
elastic scattering and to the excitation of discrete energy levels in the *2C nucleus by
inelastic scattering. The excitation energy of the nucleus is given for each peak. The
495 MeV electrons were accelerated with the linear accelerator MAMI-B in Mainz
and were detected using a high-resolution magnetic spectrometer (cf. Fig. 5.4) at a
scattering angle of 65.4°. (Courtesy of Th. Walcher and G. Rosner, Mainz)

[PRSZR]



AVERAGE BINDING ENERGY per NUCLEON

W & o o N ®
T T

(g) Beyond the SEMF/quUid DrOp cursory look at [PRSZR 18, 19]

Difference Semi-Empirical Mass Formula SEMF — Experiment

Bethe-Weizsacker: Semi-Empirical Mass Formula, good for qualitative arguments.

Magic numbers 2, 8,20,28, 50,82, 126 for Z or N more stable than SEMF —> Shell-like structure?

100

80 +

[ ———(

MASS NUMBERS A

40 |

Z

binding energy difference
Mass Formula - experiment

S

25 50 75 100 125 150



Example of Single-Particle Models: 3 Minutes on the Shell Model

Single-Particle Models: Individual nucleon moves in average potential created by all other nucleons.
= Neglect feedback of motion onto potential. Saturation, short-range forces = V(r) o p(r)

-V
Light Nuclei: GauBian profile; Heavy nuclei: Fermi/Woods-Saxon potential V(r) = H—OFC
CXP -
Full QM: Solve Schrédinger Equation Analytically solvable models provide insight:

— Fermi Gas/Liquid Model: 3-dim. potential square-well with depth V.

3
— 3-dim Harm. Oscillator E}, , = (N, + Ny +N;+ =) ho; ang. mom. [ = N — 2(=# wf nodes — 1)

2
Proton
Refinement Coulomb: potential™-~ L
proton sees charges, neutron not. Neutron” [ Protons Neurons | |
potential I ;
— V{ > VL. Rodihed
3 oo oo ! EE Ep
[PRSZR 18.1] 100 oo
”””” ooy

Refinement Spin-Orbit Coupling Vls(rﬁ-ﬁ: like (??) fine structure in H atom, where it is tiny O(a?).
Nucleon 3@ 1 =] =l € {j— Li+3} —135= %[(74—3)2 — P3P = G+ —11+1)=3]
1
= AE = (I+ 5) (Vig) Experiment: (V) ~ —20MeV < 0 huge
(heavy & close constituents), opposite sign to H atom.

And, of course, many more refinements. ..



Example of Single-Particle Models: 3 Minutes on the Shell Model

Each state with 2 protons & 2 neutrons (spin!); pairing == closed shells do not contribute.

—> Gaps at magic numbers 2, 8,20,28,50,82,126.
= Spin-orbit responsible for gaps at magic numbers 28,50, 82, 126.
[Maria Goeppert Mayer/Wigner/Jensen 1949 + developments: “Periodic table” of nuclei]
Very good close to shell closure (“valence nucleons”; incl. magnetic moments!), bad-ish off-closure.

Spherical shell model

]

Spherical

5 ' T ' a2
= - = - Hsn 3d »
: p Shell Model S = ¥
b ® S L. S —
Ih - = ———lhyy 2
= .@ 1, o2
3 3s il “Iu?n W 1
B R Sy w—
126 126 . b %
1 - s 21— 2f
(3pl 2) 3p| 2 jg ;h'l w2 92
3 = - - - 2y
(2£,,) 000 %rﬁz i =L = = ;I‘,:: A n—| th
(3ps2) Psz . i . s = T i
114 : i » o [ —
liy, 0000 0000000000 1i . :
1h 2 i i ldy 1g ‘9
of, | ee-eee lh, == - T s S S
—H-— 1h, —0-000-0 26, = ldgy v<( 52 E:;j( i
t
82 " 82 @ ) e ——
20
1 1 a2
i P LT
L v 1Py 3 PR %
) e —
210Ra 0 le 1,
Simple Woads-Saxon Woods-Saxon 1 112 1 11”2
Harmonde with spin-orbit Protons Neutrons

Oscillator coiipling



Liquid Drop Is Example of A Collective Model

Collective Model: Nucleons loose individuality, form continuous fluid/gas.

Example Collective Vibrations/Shape Oscillations: shape of nucleus deformed.

Example Compressibility of Nuclear Matter: “monopole mode” JPC = 0%~ radial oscillations.
Experiment: excitation energy ~ 80A~1/3MeV > any other mode

= Nuclear matter pretty incompressible (except for interior of Neutron stars!).

Example Giant Electromagnetic Dipole Resonance: p & n oscillate against each other.

== Coherent elmag. excitation o 72 huge resonance. R
E
AUV N
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Example Collective Rotations
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Fig. 18.14. Energy levels of '*?Dy [Sh90]. Although the low energy levels do not
display typical rotation bands, these are seen in the higher excitations, which implies
that the nucleus is then highly deformed.



Next: 2. Hadron Form Factors & Radii

Familiarise yourself with: [HM 8.2 (th); HG 6.5/6; Tho 7.5;
Ann. Rev. Nucl. Part. Sci. 54 (2004) 217]
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