PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear Studies
The George Washington University
Spring 2023

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY

II. Phenomena

1. Shapes and Masses of Nuclei

Or: Nuclear Phenomeology

References: [PRSZR 5.4, 2.3, 3.1/3; HG 6.3/4, (14.5), 16.1; cursorily PRSZR 18, 19]

(a) Getting Experimental Information

heavy, spinless, composite target $\Longrightarrow M \gg E^{\prime} \approx E \gg m_{e} \rightarrow 0$

$$
\begin{equation*}
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right|_{\text {lab }}=\underbrace{\left(\frac{Z \alpha}{2 E \sin ^{2} \frac{\theta}{2}}\right)^{2} \cos ^{2} \frac{\theta}{2} \frac{E^{\prime}}{E}}_{\text {Mott: spin- } \frac{1}{2} \text { on spin- } 0, m_{e}=0, M_{A} \neq 0}\left|F\left(\vec{q}^{2}\right)\right|^{2} \tag{I.7.3}
\end{equation*}
$$

when nuclear recoil negligible: $M_{A} \gg E \approx E^{\prime}$ $q^{2}=\left(k-k^{\prime}\right)^{2} \rightarrow-\vec{q}^{2}=-2 E^{2}(1-\cos \theta)$ translate $q^{2} \Longleftrightarrow \theta \Longleftrightarrow E$ max. mom. transfer: $\theta \rightarrow 180^{\circ}: q^{2} \rightarrow-(2 E)^{2}$ min. mom. transfer: $\theta \rightarrow 0^{\circ}: \quad q^{2} \rightarrow 0$ For $E=800 \mathrm{MeV}$ (MAMI-B), ${ }^{12} \mathrm{C}(A=12)$:

$$
\theta \quad \sqrt{-q^{2}}=|\vec{q}| \quad \Delta x=\frac{1}{|\vec{q}|}
$$

180°	1500 MeV	0.15 fm
90°	1000 MeV	0.2 fm
30°	400 MeV	0.5 fm
10°	130 MeV	1.5 fm

"Typical" Example: ${ }^{40,48}$ Ca measured over 12 orders

Fig. 5.7. Differential cross-sections for electron scattering off the calcium isotopes ${ }^{40} \mathrm{Ca}$ and ${ }^{48} \mathrm{Ca}$ [Be67]. For clarity, the cross-sections of ${ }^{40} \mathrm{Ca}$ and ${ }^{48} \mathrm{Ca}$ have been multiplied by factors of 10 and 10^{-1}, respectively. The solid lines are the charge distributions obtained from a fit to the data. The location of the minima shows that the radius of ${ }^{48} \mathrm{Ca}$ is larger than that of ${ }^{40} \mathrm{Ca}$.
θ-dependence, multiplied by $10,0.1$!!
${ }^{40} \mathrm{Ca}$ has less slope \Longrightarrow smaller size

$|\vec{q}|$-dependence fm^{-1}
[HG 6.3]

Characterising (Spherically Symmetric) Charge Densities

$$
F\left(\vec{q}^{2}\right):=\frac{4 \pi}{Z e} \int_{0}^{\infty} \mathrm{d} r \frac{r}{q} \sin (q r) \rho(r), \text { normalisation } F\left(\vec{q}^{2}=0\right)=1
$$

In principle: Fourier transformation \Longrightarrow need $F\left(\vec{q}^{2} \rightarrow \infty\right)$: impossible
\Longrightarrow Ways out:
(i) Characterise just object size:

$$
\begin{aligned}
F\left(\vec{q}^{2} \rightarrow 0\right) & =\frac{4 \pi}{Z e} \int_{0}^{\infty} \mathrm{d} r \frac{r}{q} \overbrace{\left[q r-\frac{(q r)^{3}}{3!}+\mathcal{O}\left((q r)^{5}\right)\right]}^{\sin q r} \rho(r) \\
& =\underbrace{\frac{4 \pi}{Z e} \int_{0}^{\infty} \mathrm{d} r r^{2} \rho(r)-\frac{q^{2}}{3!} \underbrace{\frac{4 \pi}{Z e} \int_{0}^{\infty} \mathrm{d} r r^{2} \times r^{2} \rho(r)}_{\text {mean of } r^{2} \text { operator }}}_{=1}+\mathcal{O}\left((q r)^{5}\right)
\end{aligned}
$$

$$
\Longrightarrow\left\langle r^{2}\right\rangle=-\left.3!\frac{\mathrm{d} F\left(\vec{q}^{2}\right)}{\mathrm{d} \vec{q}^{2}}\right|_{\vec{q}^{2}=0} \quad \text { (square of) root-mean-square (rms) radius }
$$

Ways Out: (ii) Assume Charge Density, Calculate its FF, Fit

[Tho 7.5]Dirac fermion

proton

${ }^{6}$ Li nucleus

1 st min at $q R \approx 4.5$

${ }^{40} \mathrm{Ca}$ nucleus

Very simple form for heavy nuclei: Fermi Distribution

$$
\text { matter density } \rho_{N}(r)=\frac{\rho_{0}}{1+\exp \frac{r-c}{a}}=\frac{A}{Z} \rho_{\text {charge }}
$$

experiments: radius at half-density $c \approx A^{1 / 3} \times 1.07 \mathrm{fm}$: translate hard-sphere: $R=\sqrt{\frac{5}{3}\left\langle r^{2}\right\rangle} \approx A^{1 / 3} \times 1.21 \mathrm{fm}$ experiments: $a \approx 0.5 \mathrm{fm}$: largely independent of $A!$;

related to surface/skin thickness $t=a \times 4 \ln 3 \approx 2.40 \mathrm{fm}$ (drop from 90% to 10%)

Charge and Matter Densities in Nuclei

Better parameterise as sum of a few Gauß'ians:

$$
\rho_{\text {charge }}(r)=\sum_{i} b_{i} \exp -\frac{\left(r-R_{i}\right)^{2}}{\delta^{2}}
$$

\Longrightarrow "line thickness" = parametrisation uncertainty

[Mar]

Figure 2.4 Radial charge distributions ρ_{ch} of various nuclei, in units of efm^{-3}; the thickness of the curves near $r=0$ is a measure of the uncertaintity in ρ_{ch} (adapted from Fr83)
$\rho_{\text {charge }}(r=0)$ decreases with A, but matter density $\rho_{N}=\frac{A}{Z} \rho_{\text {charge }}(r=0)$ constant for large A :
ρ_{N} plateaus in heavy nuclei \Longrightarrow Saturation of Interaction: attraction long-range, repulsion up-close!?! Nucleons "separate but close": Distance between nucleons in nucleus $\approx 1.4 \times$ nucleon rms diameter.

$$
\rho_{N} \approx \frac{0.17 \text { nucleons }}{\mathrm{fm}^{3}} \approx \frac{1}{(1.4 \times(2 \times 0.7 \mathrm{fm}))^{3}} \widehat{=} 3 \times 10^{11} \frac{\mathrm{~kg}}{\text { litre }}=300 \frac{\text { tonnes }}{\mathrm{mm}^{3}}=\frac{3 \text { space shuttles }}{\mathrm{mm}^{3}}
$$

Putting $\rho_{\mathrm{N}} \operatorname{In}$ Perspective

$\rho_{N} \approx \frac{0.17 \text { nucleons }}{\mathrm{fm}^{3}} \approx \frac{1}{(1.4 \times(2 \times 0.7 \mathrm{fm}))^{3}} \widehat{=} 3 \times 10^{11} \frac{\mathrm{~kg}}{\text { litre }}=300 \frac{\text { tonnes }}{\mathrm{mm}^{3}}=\frac{3 \text { space shuttles }}{\mathrm{mm}^{3}}$
DENSITY
White

[HG fig 1.3]

(b) Spin \& Deformation Exan eie: Deuteron [HG 14.5; [nucl-th/0608036] [nucl-th/0102049]]

So far: no spin, no deformation, but spherically-symmetric $F\left(\vec{q}^{2}\right)$ is the exception, not the rule.
Deformation Example Deuteron $d(n p)$ with $J^{P C}=1^{+-}: \vec{L}=\vec{J}-\vec{S}, S=1$

$$
L=1_{J} \otimes 1_{S}=0 \oplus 1 \oplus 2 \Longrightarrow L=0 \text { (s-wave) or } L=2 \text { d-wave - Parity forbids } L=1
$$

angular momentum \Longrightarrow mag. moment \Longrightarrow spin-spin interaction/spin transfer $\left(\theta \rightarrow 180^{\circ}\right.$, helicity)
Charge FF: $\quad G_{C}\left(q^{2}\right)=\frac{e}{3} \sum_{m_{J}=-1}^{1}\left\langle m_{J}\right| J^{0}\left|m_{J}\right\rangle \quad$ avg. of hadron density, $G_{C}(0)=1$
Magnetic FF: $\quad G_{M}\left(q^{2}\right) \quad G_{M}(0)=: \frac{M_{d}}{M_{N}} \kappa_{d}$, mag. moment $\kappa_{d}=0.857$
Quadrupole FF: $\quad G_{Q}\left(q^{2}\right)$
quadrupole op.
quadrupole moment $Q_{d}:=G_{Q}(0)=Z e \int \mathrm{~d}^{3} r \overbrace{\left(3 z^{2}-r^{2}\right)} \rho_{\text {charge }}(\vec{r})=0.286 \mathrm{fm}^{2}$
$\left.\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}\right|_{\mathrm{lab}}=\underbrace{\left(\frac{Z \alpha}{2 E \sin ^{2} \frac{\theta}{2}}\right)^{2} \cos ^{2} \frac{\theta}{2} \frac{E^{\prime}}{E}}_{\text {Mott }} \times[\left(G_{C}^{2}+\frac{2 \tau}{3} G_{M}^{2}+\frac{8 \tau^{2} M_{d}^{4}}{9} G_{Q}^{2}\right)+\underbrace{\frac{4 \tau(1+\tau)}{3} G_{M}^{2} \tan ^{2} \frac{\theta}{2}}_{\text {helicity } \Longrightarrow \text { spin transfer }}]$

$$
\text { with } \tau=-\frac{q^{2}}{4 M_{d}^{2}} \text { as before }
$$

\Longrightarrow Dis-entangle by $\theta \& \tau$ dependence.

Deuteron Form Factors

[Garçon/van Orden: [nucl-th/0102049]] does not include most recent data (JLab), but pedagogical plot high-accuracy data up to $Q^{2} \gtrsim(1.4 \mathrm{GeV})^{2}$

Theory quite well understood:

embed nucleon FFs into deuteron, add:
deuteron bound by short-distance

+ tensor force: one-pion exchange $N^{\dagger} \vec{\sigma} \cdot \vec{q} \pi(q) N$
\Longrightarrow photon couples to charged meson-exchanges

and
many more!!
open issues: zero of G_{Q}, form for $Q \gtrsim 3 \mathrm{fm}^{-1}, \ldots$

(c) Nuclear Binding Energies (per Nucleon)

B / A rapidly increases from deuteron $(A=2)$: to about ${ }^{12} \mathrm{C}$:
1.1 MeV/A
7.5 MeV/A
for $A \gtrsim 16$ (oxygen) remains around
$7.5 \ldots 8.5 \mathrm{MeV} / A$
maximal for ${ }^{56} \mathrm{Fe}-{ }^{60} \mathrm{Co}-{ }^{62} \mathrm{Ni}$:
8.5 MeV/A
small decrease to $A \approx 250$ (U):
$7.5 \mathrm{MeV} / A$
\Longrightarrow "typically", fusion gains (much) energy up to Fe ; fission gains (some) energy after Fe .
$\Longrightarrow \mathrm{Fe}$ has relatively large abundance: product of both exothermal fusion and fission.

Bethe-Weizsäcker Mass Formula \& Interpretation: Liquid Drop Model

Know <3000 nuclei \Longrightarrow roughly parametrise ground-state binding energies, not only for stable nuclei

$$
\begin{align*}
& \begin{array}{l}
\text { Total binding energy: SEMF } \\
\text { Semi-Empirical Mass Formula }
\end{array} B=a_{V} A-a_{s} A^{2 / 3}-a_{C} \frac{Z^{2}}{A^{1 / 3}}-a_{a} \frac{(N-Z)^{2}}{4 A}-\frac{\delta}{A^{1 / 2}}(1935 / 3) \\
& \hline a_{V}=15.67 \mathrm{MeV}
\end{align*} \text { volume term } \quad \text { cf. } \rho_{N} \approx 0.17 \mathrm{fm}^{-3} \Longrightarrow \text { saturation }
$$

\Longrightarrow Well-separated, quasi-free nucleons, next-neighbour interactions like in liquid.
$a_{s}=17.23 \mathrm{MeV}$
$a_{C}=0.714 \mathrm{MeV}$
$a_{a}=93.15 \mathrm{MeV}$
fewer neighbours on surface \Longrightarrow less B
Coulomb repulsion of protons \Longrightarrow tilt to $N>Z$
(a)symmetry/Pauli term Pauli principle \Longrightarrow tilt to $N \sim Z$
$\delta=\left\{\begin{array}{ccc}-11.2 \mathrm{MeV} & Z \& N \text { even } \\ 0 & Z \text { or } N \text { odd pairing term } \\ +11.2 \mathrm{MeV} & Z \& N \text { odd }\end{array}\right.$
opposite spins have net attraction wf overlap decreases with A
$\Longrightarrow A$-dependence

Valley of Stability around $N \gtrsim Z$

$$
B=a_{V} A-a_{s} A^{2 / 3}-a_{C} \frac{Z^{2}}{A^{1 / 3}}-a_{a} \frac{(A-2 Z)^{2}}{4 A}-\frac{\delta}{A^{1 / 2}}
$$

\Longrightarrow Parabola in Z at fixed A with $Z_{\min }=\frac{a_{a} A}{2\left(a_{a}+a_{C} A^{2 / 3}\right)} \lesssim \frac{A}{2}$

Valley of Stability

Probe nuclear interactions
by pushing to "drip-lines":
Facility for Rare Isotope Beams FRIB at MSU

(d) Application: Nuclear Fission

For $A>60$, fission can release energy, but must overcome fission barrier. Let's assume fission into 2 equal fragments.

The liquid drop model of fission.
Estimate: infinitesimal deformation into ellipsoid (egg) with excentricity ϵ at constant volume
\Longrightarrow surface tension \nearrow, Coulomb \searrow :
E (sphere) $-E$ (ellipsoid)

$$
\sim \frac{\epsilon^{2}}{5}\left(2 a_{S} A^{2 / 3}-a_{C} Z^{2} A^{-1 / 3}\right)
$$

Fission barrier classically overcome when ≤ 0 :

$$
\frac{Z^{2}}{A} \sim \frac{2 a_{s}}{a_{C}} \approx 48
$$

e.g. $Z>114, A>270$
below: QM tunnel prob. $\propto \exp -2 \int \sqrt{2 M(E-V)}$ between points with $r(E=V)$
Induced Fission: importance of pairing energy
$n+{ }_{92}^{238} U \rightarrow{ }_{92}^{239} U$: even-even \rightarrow even-odd
\Longrightarrow invest pairing $E_{\delta}=\frac{\delta=11.2 \mathrm{MeV}}{\sqrt{239}}=0.7 \mathrm{MeV}$
$n+{ }_{92}^{235} U \rightarrow{ }_{92}^{236} U:$ even-odd \rightarrow even-even

fragment separation
\Longrightarrow gain pairing energy $\frac{\delta}{\sqrt{236}}=-0.7 \mathrm{MeV} \Longrightarrow$ can use thermal neutrons (higher $\sigma!$)

(e) First Dash into Nuclear Matter

Nuclear Interactions Saturate: $\rho_{N} \approx \frac{0.17 \text { nucleons }}{\mathrm{fm}^{3}} \rightarrow$ const. in heavy nuclei

Nucleons "separate but close": Distance between nucleons in nucleus $\approx 1.4 \times$ nucleon rms diameter.
Fermi distribution at temperature $T=0$ for $N=Z$: occupy all levels, 2 spins, proton \& neutron, $N=Z$

$$
\rho_{N}=\rho_{p}+\rho_{n}=2 \int_{|\vec{k}| \leq k_{F}} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}}\left[n_{p}(\vec{k})+n_{n}(\vec{k})\right]=\frac{2}{3 \pi^{2}} k_{F}^{3}
$$

\Longrightarrow Fermi momentum (max. nucleon momentum) $k_{F}=\sqrt[3]{\frac{3 \pi^{2} \rho_{N}}{2}} \approx 1.3 \mathrm{fm}^{-1} \approx 260 \mathrm{MeV} \approx 2 m_{\pi}$.

Liquid-gas transition for temperature T Liquid-Drop Model: heat \Longrightarrow evaporation T via E-distrib. of collision fragments:

$$
N(E) \propto \sqrt{E} \exp [-E / T](\text { Maxwell })
$$

but need many fragments, angle-indep. exp: $T \approx 5 \mathrm{MeV}$ in finite symmetric nuclei.

Neutron-E-distrib. in ${ }^{235} \mathrm{U}$ fission: $T=1.29 \mathrm{MeV}$

excitation energy $E / A[\mathrm{MeV}]$ per nucleon
compare to water

Nuclei Are Not "Nuclear Matter"

SEMF of finite nuclei:

$$
\frac{B}{A}=a_{V}-\frac{a_{s}}{A^{1 / 3}}-a_{C} \frac{Z^{2}}{A^{4 / 3}}-a_{a} \frac{(N-Z)^{2}}{4 A^{2}}-\frac{\delta}{A^{3 / 2}} \approx 8.5 \mathrm{MeV}
$$

Infinite nuclear matter: no surface, Coulomb negligible, no pairing
$\Longrightarrow \frac{B}{A} \approx a_{V}=15.6 \mathrm{MeV}$.
grand canonical ensemble: $\mathcal{Z}=\operatorname{tr} \exp -\frac{1}{T}\left[H-\mu_{p} N_{p}-\mu_{n} N_{n}\right] \quad$ with μ_{N} : chem. potentials

$$
-T \ln \mathcal{Z}=-P V=E-T S-\mu_{p} N_{p}-\mu_{n} N_{n}
$$

\Longrightarrow pressure $-P=\mathcal{E}-T s-\mu_{p} \rho_{p}-\mu_{n} \rho_{n}$ with \mathcal{E} : energy density, s : entropy density
Need to extrapolate or solve nuclear many-body problem: specify interactions!
Descriptions agree at $\rho_{0} \approx 0.16 \mathrm{fm}^{-3}-$ here $\chi \mathrm{EFT}(\pi, N, \Delta(1232))$ [Fiorilla/. . [arXiv:1111.3688 [nucl-th]]].

Empirical first-order liquid-gas phase transition for infinite, symmetric ($N=Z$) nuclear matter at critical temperature $T_{c}=[16 \ldots 18] \mathrm{MeV}$.

Chemical potential at temperature $T=0$:
$\mu_{N}(T=0)=M_{N}-\frac{B}{A}=[939-16] \mathrm{MeV} \approx 923 \mathrm{MeV}$

A First Phase Diagram of Nuclear Matter: $N=Z$

$T_{c} \ll m_{\pi}, M_{N} \Longrightarrow$ symmetric nuclear matter close to liquid-gas transition: just inside liquid phase.
Density $\rho\left(T, \mu_{N}\right)$ of stable nuclear matter depends on T, μ.

Nature is Not Symmetric: Dependence on Proton-Neutron Mix

Again relatively good agreement between descriptions - here χ EFT [Fiorilla/ . . [arXiv:1111.3688 [nucl-th]]].

\Longrightarrow Nuclear-matter density $\rho(N-Z)$ decreases as Z / A decreases.

- Nuclear Matter becomes unbound for $Z / A \lesssim 0.1$.
- Why is pure-neutron matter unbound (a gas)??
- In early 1900's, neutron "invented" to mitigate Coulomb repulsion between protons.

So why no binding when I take all protons away?

- Lattice QCD: Neutron matter might actually be bound for larger $m_{\pi}>600 \mathrm{MeV}$ (controversial).

So Why Are There Neutron Stars??

Gravity compacts interior \Longrightarrow saturation point shifts: $\rho_{0} \approx 0.16 \mathrm{fm}^{-3} \rightarrow 3 \rho_{0}$, holds neutrons together.
How to extrapolate to there - and how to extrapolate from $Z \approx 0.4 A$ to $Z \lesssim 0.1 A$ ("neutron" star!)?
Taylor in $\frac{N-Z}{A}: \mathcal{E}\left(\rho, \frac{N-Z}{A}\right)=\mathcal{E}_{0}\left(\rho_{0}, \frac{N-Z}{A}=0\right)+\left[\frac{a_{a}\left(\rho_{0}\right)}{4}+\left.\frac{\mathrm{d}\left(a_{a} / 4\right)}{\mathrm{d} \rho}\right|_{\rho_{0}}\right]\left(\frac{N-Z}{A}\right)^{2}+\ldots$
Nuclei (SEMF): "(a)symmetry energy" $a_{a}\left(\rho_{0}\right) / 4 \approx 22 \mathrm{MeV}$; nucl. matter: [29 $\left.\ldots 33\right] \mathrm{MeV}$ slope $L=\left.3 \frac{\mathrm{~d}\left(a_{a} / 4\right)}{\mathrm{d} \ln \rho}\right|_{\rho_{0}}=[40 \ldots 62] \mathrm{MeV}$. Method: compare different Z / A nuclei \& extrapolate.
Taylor in $\left(\rho-\rho_{0}\right): \quad \mathcal{E}\left(\rho, \frac{N-Z}{A}\right)=\mathcal{E}_{0}\left(\rho_{0}, \frac{N-Z}{A}=0\right)+\left.\frac{\mathrm{d}^{2} \mathcal{E}}{\mathrm{~d} \rho^{2}}\right|_{\rho_{0}}\left(\rho-\rho_{0}\right)^{2}+\ldots$

$$
\rho=\rho_{0}+K\left(\rho_{0}\right)\left(\rho-\rho_{0}\right)^{2}+\ldots \text { justified for } \rho(\text { neutron star })=3 \rho_{0} ? ?
$$

Compressibility of nuclear matter $K(\rho)=9 \rho \frac{\mathrm{~d}^{2} \mathcal{E}}{\mathrm{~d} \rho^{2}}>0$ for stable nuclear matter at density ρ.
Test dependence on $(\rho, N-Z)$ in neutron skin of heavy nuclei, collective excitations \& extrapolate!
At $\rho_{0}, N=Z$: compressibility $K=\left.k_{F}^{2}\left(\rho_{0}\right) \frac{\mathrm{d}^{2} \mathcal{E}}{\mathrm{~d} \rho^{2}}\right|_{\rho_{0}}=[210 \pm 10] \mathrm{MeV}$.
Wide agreement.
At ρ_{0}, pure neutron matter: $K \approx 600 \mathrm{MeV}$, error $\pm 100 \mathrm{MeV}$ or more.
People disagree! Number here from [Vretenar/. . .PRC68 (2003) 024310]

Measure Compressibility \& Neutron Skin? PREX at JLab \& Co...

Problem: Neutrons have no charge \Longrightarrow higher-order effect \& weak interactions.
Inference Depends on Theory: skin only skin-deep, not "nuclear matter",...

Experimental values of the ${ }^{208} \mathrm{~Pb}$ neutron skin thickness $\left(\Delta r_{\mathrm{np}}\right)$, which is related to the neutron matter pressure at $\rho \approx 2 / 3 \rho_{0}$, agree better with calculations that include 3 -nucleon forces.

Preview: Nuclear Matter Phase Diagram for $N=Z$

When you compress nucleons, additional energy can be converted into new particles: baryons ($\Lambda(1440), \ldots$) mesons (kaon,...), resonances/excitations ($\Delta(1232, \ldots)$, exotics...
\Longrightarrow Influence on neutron-star radius,...! \Longrightarrow Later.

Preview: Nuclear Matter Phase Diagram for $N \neq Z$

Need third axis with chemical potential $\mu_{I}=\mu_{p}-\mu_{n}$ for $Z-N$ to place neutron stars.

Box 3

Features of the QCD Phase Diagram at Low Temperature and High Density
The 3-dimensional QCD phase diagram at high baryonic μ_{B} and moderate isospin μ_{1} densities has a rich and yet largely unexplored structure: a critical endpoint separates a smooth cross-over from a first order as well as a chiral phase transition at high baryon densities. New and exotic phases like quarkyonic matter or color superconducting phases might appear at baryonic high densities. At very high μ_{B} a superfluid color-flavor-locked phase is speculated on. Supernovae are formed at initial proton fractions ≈ 0.4 which reduce to ≈ 0.1 for cold neutron stars. Heavy-ion collisions at FAIR or NICA energies are expected to probe this region as well as the conjectured phase boundaries to quarkyonic or fully deconfined matter.
[NuPECC Long-Range Plan 2017 p. 89]

(f) Inelasticities: Excitations, Breakup, Knockout

SEMF does not explain nuclear level spectrum.

Fig. 5.9. Spectrum of electron scattering off ${ }^{12} \mathrm{C}$. The sharp peaks correspond to elastic scattering and to the excitation of discrete energy levels in the ${ }^{12} \mathrm{C}$ nucleus by inelastic scattering. The excitation energy of the nucleus is given for each peak. The 495 MeV electrons were accelerated with the linear accelerator MAMI-B in Mainz and were detected using a high-resolution magnetic spectrometer (cf. Fig. 5.4) at a scattering angle of 65.4°. (Courtesy of Th. Walcher and G. Rosner, Mainz)

(g) Beyond the SEMF/Liquid Drop

Difference Semi-Empirical Mass Formula SEMF - Experiment

```
Bethe-Weizsäcker: Semi-Empirical Mass Formula, good for qualitative arguments.
```

Magic numbers $2,8,20,28,50,82,126$ for Z or N more stable than SEMF \Longrightarrow Shell-like structure?

Example of Single-Particle Models: 3 Minutes on the Shell Model

Single-Particle Models: Individual nucleon moves in average potential created by all other nucleons.
\Longrightarrow Neglect feedback of motion onto potential. Saturation, short-range forces $\Longrightarrow V(r) \propto \rho(r)$ Light Nuclei: Gaußian profile; Heavy nuclei: Fermi/Woods-Saxon potential $V(r)=\frac{-V_{0}}{1+\exp \frac{r-c}{a}}$

Full QM: Solve Schrödinger Equation

Analytically solvable models provide insight:

- Fermi Gas/Liquid Model: 3-dim. potential square-well with depth V_{0}.
- 3-dim Harm. Oscillator $E_{\text {h.o. }}=\left(N_{x}+N_{y}+N_{z}+\frac{3}{2}\right) \hbar \omega$; ang. mom. $l=N-2(=\#$ wf nodes -1$)$

Refinement Coulomb:

proton sees charges, neutron not.
$\Longrightarrow V_{0}^{p}>V_{0}^{n}$.

Refinement Spin-Orbit Coupling $V_{l s}(r) \vec{l} \cdot \vec{s}$: like (??) fine structure in H atom, where it is tiny $\mathcal{O}\left(\alpha^{2}\right)$.
Nucleon $\vec{s} \otimes \vec{l}=\vec{j} \Longrightarrow l \in\left\{j-\frac{1}{2} ; j+\frac{1}{2}\right\} \Longrightarrow \vec{l} \cdot \vec{s}=\frac{1}{2}\left[(\vec{l}+\vec{s})^{2}-\vec{l}^{2}-\vec{s}^{2}\right]=\frac{1}{2}\left[j(j+1)-l(l+1)-\frac{3}{4}\right]$ $\Longrightarrow \Delta E_{l s}=\left(l+\frac{1}{2}\right)\left\langle V_{l s}\right\rangle \quad$ Experiment: $\left\langle V_{l s}\right\rangle \approx-20 \mathrm{MeV}<0$ huge (heavy \& close constituents), opposite sign to H atom.

And, of course, many more refinements...

Example of Single-Particle Models: 3 Minutes on the Shell Model

Each state with 2 protons \& 2 neutrons (spin!); pairing \Longrightarrow closed shells do not contribute.
\Longrightarrow Gaps at magic numbers $2,8,20,28,50,82,126$.
\Longrightarrow Spin-orbit responsible for gaps at magic numbers $28,50,82,126$.
[Maria Goeppert Mayer/Wigner/Jensen 1949 + developments: "Periodic table" of nuclei]
Very good close to shell closure ("valence nucleons"; incl. magnetic moments!), bad-ish off-closure.

${ }^{210} \mathrm{Ra}$

Liquid Drop Is Example of A Collective Model

Collective Model: Nucleons loose individuality, form continuous fluid/gas.
Example Collective Vibrations/Shape Oscillations: shape of nucleus deformed.

Example Compressibility of Nuclear Matter: "monopole mode" $J^{P C}=0^{+-}$: radial oscillations.
Experiment: excitation energy $\approx 80 A^{-1 / 3} \mathrm{MeV} \gg$ any other mode
\Longrightarrow Nuclear matter pretty incompressible (except for interior of Neutron stars!).

Example Giant Electromagnetic Dipole Resonance: p \& n oscillate against each other.
\Longrightarrow Coherent elmag. excitation $\propto Z^{2}$; huge resonance.

Example Collective Rotations

Non-spherical nucleus rotates around non-symmetry axis, inertia I :
$E_{\text {rot }}=\frac{\vec{J}^{2}}{2 I}=\frac{J(J+1)}{2 I}$ "rotation bands"
\Longrightarrow characteristic spacing

$$
\Delta E \propto(2 J+1) .
$$

Experiment: Inertia $I<$ rigid ellipsoid, but $I>$ irrotational flow (superfluid)
\Longrightarrow Nucleus like raw egg.
[PRSZR 18.14]

Fig. 18.14. Energy levels of ${ }^{152}$ Dy [Sh90]. Although the low energy levels do not display typical rotation bands, these are seen in the higher excitations, which implies that the nucleus is then highly deformed.

Next: 2. Hadron Form Factors \& Radii

Familiarise yourself with: [HM 8.2 (th); HG 6.5/6; Tho 7.5; Ann. Rev. Nucl. Part. Sci. 54 (2004) 217]

