PHYS 6610: Graduate Nuclear and Particle Physics I

H. W. Grießhammer

Institute for Nuclear Studies
The George Washington University
Spring 2023

III. Descriptions

5. (Electro-)Weak Interactions: The Glashow-Salam-Weinberg Theory

Or: A Theorist's Theory

References: [phenomenology: PRSZR 10, 11, 12, 18.6; Per 7.1-6 – theory: Ryd 8.3-5; CL 11, 12; Per 7, 8, 5.4;

most up-to-date: PDG 10-14 and reviews inside listings]

(a) Weak Phenomenology: Overview

Oldest trans-atomic signal: 1894 Bequerel's photographic plate

The only interaction which has been shown to:

- act on all fundamental particles (besides gravity; QED: only charged; QCD: only quarks);
- violate each of P, C and CP (i.e. also T);
- change fermion flavours (violate conservation of each quark and lepton species, sum conserved)

Signatures: – tiny cross sections at low energies:

 $\sigma_{\rm typ} \sim 10^{-15} = 1 \, {\rm fb};$

(besides parity, duh!)

very narrow widths/small rates/long lifetimes:

$$\tau_{\rm typ} \sim [10^{-13} \dots 10^3] {\rm s};$$

often "missing" energy & momentum: neutrinos very hard to detect.

Pauli's neutrino hypothesis letter: "Dear Radioactive Ladies and Gentlemen, Zürich, Dec. 4, 1930 [...] I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. [...] there could exist electrically neutral particles [...] that have spin 1/2 and obey the exclusion principle and [...] do not travel with the velocity of light. The mass [...] should be of the same order of magnitude as the electron mass [...]

Mr Debye [...] told me recently in Bruxelles: 'Oh, It's better not to think about this at all, like new taxes."

Same day, private: Today I have done something which you never should do in theoretical physics.

I have explained something which is not understood by something which can never be observed.

Here a-historic approach: Construct from wealth of present evidence.

⇒ Step I: Classify wide variety of phenomena into simple categories.

Involve only leptons – rarest but cleanest \implies Use them to develop general theory!

$$\mu$$
-Decay: $\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$ $\tau \sim 10^{-6} {
m s}$ Both violate *individual* lepton conservation,

Charge Transfer:
$$e^- + \nu_\mu \rightarrow \mu^- + \nu_e$$

but lepton-family number conserved:

$$\Longrightarrow L_{\mu}(\mu^-)=L_{\mu}(\nu_{\mu})=1=-L_{\mu}(\mu^+)=-L_{\mu}(\overline{\nu}_{\mu})$$
 etc.

In both, charge is transferred between leptons: Charged-Current interaction (CC)

The Z^0 resonance: wide, at $\sqrt{s}=91~{\rm GeV}$ in $e^+e^-\to X$ decay 20% into $v_e\overline{v}_e$, $v_\mu\overline{v}_\mu$, $v_\tau\overline{v}_\tau$ pairs.

 \implies Speculate weak process, mediated by $J^{PC}=1^{--}$ boson:

Neutral-Current interaction (NC)

Determine *v* rates indirectly:

$$\Gamma_{v} = \underbrace{\Gamma_{ ext{tot}}}_{ ext{line shape}} - \underbrace{\left(\Gamma_{ ext{hadr}} + \Gamma_{ ext{e}\mu au}
ight)}_{ ext{calorimeters}}$$
No decays like $v_{e}\overline{v}_{\mu}$ observed!

$$\Gamma[\to e^+e^-]:\Gamma[\to \mu^+\mu^-]:\Gamma[\to \tau^+\tau^-]=1:[1.0001\pm0.0024]:[1.0020\pm0.0032]$$

⇒ Weak interaction universal for both neutrinos and charged leptons.

GSW: $\Gamma[\text{invisible}] = [499.0 \pm 1.5] \text{MeV}$. HW 5.5: LO decay $\Gamma = \frac{g^2 M_W}{12\pi}$, $g \to \dots$ GSW theory. Compare to $\Gamma_V^{\text{exp}} \Longrightarrow [2.92 \pm 0.05] \ v$ species with $M_V \ll 90 \ \text{GeV}$

Semi-Leptonic Processes (Examples)

Involve leptons and hadrons - most common, oldest seen.

Uranium decay

Neutron decay

unspecific: Henri Bequerel 26 February 1896

 $n(udd) \rightarrow p(uud) + e^{-} + \overline{V}_{e}$ $\tau = [878.4 \pm 0.5]$ s [PDG 2022]

i.e.
$$d \to ue^- \overline{\nu}_e$$
 \Longrightarrow Charged Current Exchange: CC π decay, e.g. $\pi^+(u\overline{d}) \to \mu^+ + \nu_\mu, e^+ + \nu_e$, i.e. quark process similar to proton CC K decay, e.g. $K^+(u\overline{s}) \to \mu^+ + \nu_\mu, e^+ + \nu_e$, i.e. $u\overline{s} \to (s\overline{s} \text{ or } u\overline{u}) \to \dots$ CC Solar fusion $p+p \to {}^2H + e^+ + \nu_e$ kind of important... CC Nuclear β decay e.g. ${}^{60}\text{Co} \to {}^{60}\text{Ni} + e^- + \overline{\nu}_e$ Wu 1957: P violated CC Nuclear e^- -capture e.g. $e^- + {}^{152}\text{Eu}(J=0) \to {}^{152}\text{Sm}(J=0) + \gamma + \nu_e$ CC

Goldhaber 1958: *v* helicity measurement

All above mutate quark flavours: individual quark-number violated.

$$v_l + A \rightarrow v_l + X$$
 No charged lepton in final state $\Longrightarrow Z^0$!

First Neutral-Current (NC) event [CERN 1973; GSW prediction]

NC

Hadronic Processes (Examples)

Involve only hadrons – window to QCD.

$$K$$
 decay $K^0(d\overline{s}) o \pi^+(u\overline{d}) + \pi^-(\overline{u}d)$, i.e. $\overline{s} o \overline{d} + u\overline{u}$

$$\Lambda(1405) \ {\rm decay} \quad \Lambda^0(uds) \to p(uud) + \pi^-(\overline{u}d) \qquad \tau \sim 10^{-10} \ {\rm s} \qquad \qquad {\rm CC}$$

Research Frontier: Hadronic *flavour-conserving* parity-violation (HFCPV), e.g. pp o pp

S-wave (parity +)
$$\stackrel{N}{\longrightarrow}$$
 $\stackrel{N}{\longrightarrow}$ P-wave (parity -)

One of the least-explored sectors of the Standard Model:

GW theory: hgrie

- What is the weak part of the nuclear force? (US, EU Long Range Plans)
- ullet Z^0 (NC) as Inside-Out Probe of non-perturbative QCD: qq correlations at $\dfrac{1}{M_W}\sim 0.002\,\mathrm{fm}$

What we find – and what not (Examples)

Neutral & Charged Current Exchanges with $J^{PC} = 1^{--}$, **like for photon**:

Produced as resonances in annihilations and other processes:

$$e^+e^-(\sqrt{s} = 90\text{GeV}) \to Z^0, e^+e^-(\sqrt{s} = 160\text{GeV}) \to W^+W^-;$$

and in NN or $N\overline{N}$ collisions also resonances from $u\overline{u} \to Z^0$, $u\overline{d} \to W^+$.

 \Longrightarrow Try gauge theory of gauge bosons with charges $\pm 1,0$?

Not/Rarely Seen	Frequently Seen	Interpretation
$\overline{\mathbf{v}}_e + n \not\rightarrow e^- + p$	$\mathbf{v}_e + n \rightarrow e^- + p$	neutrino is not anti-neutrino, $L_e(v_e) = -L_e(\overline{v}_e)$
$\overline{V}_{\mu} + p \rightarrow e^{+} + n$	$\overline{\nu}_e + p \rightarrow e^+ + n$	e -neutrino is not μ - neutrino, but
$v_{\mu} + A \rightarrow e^{-} + X$	$\nu_{\mu} + A \rightarrow \mu^{-} + X$	no interactions across lepton families

 \Longrightarrow Natural grouping into lepton families: $egin{pmatrix} v_e \\ e \end{pmatrix}$, $egin{pmatrix} v_\mu \\ \mu \end{pmatrix}$, $egin{pmatrix} v_ au \\ au \end{pmatrix}$

(b) Weak Interactions Violate Parity

Reminder Fermion Helicity & Chirality

[QFT and TCP chapters]

Helicity
$$h = \frac{\vec{\sigma} \cdot \vec{p}}{E}$$
:

spin component longitudinal to \vec{p}

parallel: right-handed h = +1

anti-parallel: left-handed h = -1

For m=0, indentical to **chirality**: eigenvalues of spinors with respect to γ_5 : $\gamma_5 \varphi_{RL} = \pm \varphi_{RL}$

Projectors:
$$P_{RL} := \frac{1}{2}(1 \pm \gamma_5)$$
, i.e. $P_{RL} \varphi = \varphi_{RL}$, $P_{RL}^2 = P_{RL}$, $P_{RL}P_{LR} = 0$, $P_R + P_L = 1$

Parity transformation: $\vec{\sigma}$ axial, \vec{p} polar $\Longrightarrow Ph_{\pm} = h_{\mp}$

Recall Gauge Theory Lagrangean in chiral basis:
$$\begin{pmatrix} \phi_R^\dagger, \phi_L^\dagger \end{pmatrix} \begin{pmatrix} E - gA_0 + \vec{\sigma} \cdot (\vec{p} + g\vec{A}) & m \\ m & E + gA_0 - \vec{\sigma} \cdot (\vec{p} - g\vec{A}) \end{pmatrix} \begin{pmatrix} \phi_R \\ \phi_L \end{pmatrix}$$

 \Longrightarrow Gauge field does not mix chiralities; only mass term does: $\propto (1-eta) = 1 - \frac{|\vec{p}|}{E}$.

Electron Helicity from Nuclear β Decay (CC Event)

First: Wu 1957 (prompted by theorists Lee/Yang 1956) $^{60}{\rm Co} \rightarrow ^{60}{\rm Ni} + e^- + \overline{\nu}_e$

$$\begin{array}{c}
\mu \\
\pi-\theta \\
e^{-(-\mathbf{p})}
\end{array}$$

Reflection on plane perpendicular to $\vec{\mu}$: $\hat{P}\vec{p} \rightarrow -\vec{p}$, $\hat{P}\vec{\mu} \rightarrow \vec{\mu}$

Result: Intensity $I(\theta) \neq I(\pi - \theta)$, and emission of e^- more likely **against** ⁶⁰**Co spin**, matches dependence on initial e^- -polarisation P:

$$I(\theta) = 1 + P \frac{\vec{\sigma}_e \cdot \vec{p}_e}{E_e} = 1 + P \beta_e \cos \theta$$

and data compatible with P = -1.

 \Longrightarrow Parity violated, electron emitted with $h_e=-1$, $m_e
eq 0$ explains spin-flip observed in detector.

Similar for $\mu^+ \to e^+ + \nu_e + \overline{\nu}_{\mu}$: $P(e^+) = +1$. Both confirmed in cornucopia of systems.

 $\vec{B} = \vec{e}_z$ defines quantisation axis for 60 Co spin $\vec{\mu}$ and e^- spin $\vec{\sigma}_e$.

Expectation if parity conserved:

 e^- emission uniform $I(\theta) = I(\pi - \theta)$.

[Per 7.6 after Koks/van Klinken 1976]

Fig. 7.6. The polarisation P of electrons emitted in nuclear β -decay, plotted as a function of electron velocity. The results demonstrate that P = -v/c, as in (7.16). After Koks and Van Klinken (1976).

Neutrino Helicity from Nuclear Capture (CC event) cf. [PRSZR 18.6, Per 7.6]

First:
$$e^- + {}^{152}\text{Eu}(J=0) \rightarrow {}^{152}\text{Sm}(J=0) + \gamma + \nu_e$$
 Goldhaber 1958

 J_z conservation: photon spin (J=1) parallel to electron spin ($J=\frac{1}{2}$), antiparallel to V spin ($J=\frac{1}{2}$).

 \implies Detect photon spin to know ν helicity (mag. quantum $m_e = m_{\gamma} + m_{\nu}$).

Figure 6.6 Possible helicities of the photon and neutrinos emitted in the reaction $e^- + {}^{152}{\rm Eu}(J=0) \rightarrow {}^{152}{\rm Sm}(J=0) + \nu_e + \gamma$ for those events in which they are emitted in opposite directions. Experiment selects configuration (a) [Mar]

 \Longrightarrow All evidence suggests: only e_L^- , v_L and e_R^+ , \overline{v}_R interact weakly in CC events: Maximal Parity Violation

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^{\pm} , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons emerge from W^\pm process only after conversion by mass term m_l
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED)
- (5) Photon and Z^0 both 1^{--} gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L=inom{v_{eL}}{e_L}, ar{l}_R=inom{\overline{v}_{eR}}{\overline{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them.

 $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons emerge from W^\pm process only after conversion by mass term m_l
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED)
- (5) Photon and Z^0 both 1^{--} gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L = inom{v_{eL}}{e_L}, \ ar{l}_R = inom{\overline{v}_{eR}}{\overline{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them.

 $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .
- (5) Photon and Z^0 both 1^{--} gauge bosons with no elmag. charge. \implies Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L=inom{v_{eL}}{e_L}, ar{l}_R=inom{\overline{v}_{eR}}{\overline{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them.

 $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

Non-Abelian gauge principle already successful in QCD (QED).

- (5) Photon and Z^0 both 1^{--} gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L = \binom{v_{eL}}{e_L}, \bar{l}_R = \binom{\overline{v}_{eR}}{\overline{e}_R} \text{ weak (iso-)doublets: } SU(2)_L \text{ and } U(1)_Y \text{ act on them.}$$

 $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$

weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does.

(8) Same for the other lepton families $\begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix}$, $v_{\mu R}$, μ_R , $\begin{pmatrix} v_{\tau L} \\ \tau_L \end{pmatrix}$, $v_{\tau R}$, τ_R

4 D > 4 D > 4 D > 4 D > 5 P 9 Q C

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED).
- (5) Photon and \mathbb{Z}^0 both $\mathbb{1}^{--}$ gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2023

$$l_L=inom{v_{eL}}{e_L}, ar{l}_R=inom{\overline{v}_{eR}}{\overline{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them.

 $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED).
- (5) Photon and \mathbb{Z}^0 both \mathbb{I}^{--} gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L = \begin{pmatrix} v_{eL} \\ e_L \end{pmatrix}, \bar{l}_R = \begin{pmatrix} \overline{v}_{eR} \\ \overline{e}_R \end{pmatrix} \text{ weak (iso-)doublets: } SU(2)_L \text{ and } U(1)_Y \text{ act on them.}$$

 e_R, V_{eR}, e_L, V_{eL} weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does.

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED).
- (5) Photon and \mathbb{Z}^0 both $\mathbb{1}^{--}$ gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L = inom{v_{eL}}{e_L}, \ \bar{l}_R = inom{\overline{v}_{eR}}{\bar{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them. $e_R, v_{eR}, \overline{e}_L, \overline{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does.

(8) Same for the other lepton families $\begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix}$, $v_{\mu R}$, μ_R , $\begin{pmatrix} v_{\tau L} \\ \tau_L \end{pmatrix}$, $v_{\tau R}$, τ_R

←□ → ←□ → ← 差 → ← 差 → りへ(

Universality of weak interactions: simplifies in elegance of 1 coupling per qlv interaction.

"Theorist's Theory": As simple as possible, as flexible as necessary, and compulsory unless forbidden.

First construct sector for one lepton family (e, v_e) :

- (1) Start from massless fermions: $\psi_{L/R}$ are eigenstates of γ_5 generate masses later.
- (2) Postulate: only l_L, \bar{l}_R couple to W^\pm , but not l_R, \bar{l}_L .
- (3) \Longrightarrow Right-handed leptons \longrightarrow Left-handed anti-leptons emerge from W^{\pm} process only after conversion by mass term m_l .
- (4) Charged & neutral weak currents mediated by $J^{PC}=1^{--}$ gauge bosons W^{\pm},Z^{0} .

 Non-Abelian gauge principle already successful in QCD (QED).
- (5) Photon and \mathbb{Z}^0 both $\mathbb{1}^{--}$ gauge bosons with no elmag. charge. \Longrightarrow Can mix (Swiss Law).
- (6) We still need a massless photon: need a $U(1)_Y$ group somewhere (weak hypercharge).
- (7) Lepton-family number conservation:

$$l_L = inom{v_{eL}}{e_L}, \ \bar{l}_R = inom{\bar{v}_{eR}}{\bar{e}_R}$$
 weak (iso-)doublets: $SU(2)_L$ and $U(1)_Y$ act on them. $e_R, v_{eR}, \bar{e}_L, \bar{v}_{eL}$ weak (iso-)singlets: $SU(2)_L$ does *not* act on them, but $U(1)_Y$ does.

(8) Same for the other lepton families $\begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix}$, $v_{\mu R}$, μ_R , $\begin{pmatrix} v_{\tau L} \\ \tau_L \end{pmatrix}$, $v_{\tau R}$, τ_R

4回 → 4回 → 4 重 → 4 重 → 9 Q G

- (d) GSW for One Lepton Family
- (e) Dynamical Gauge Boson Mass Generation Nobel

Nobel 2013

The Higgs-Kibble-Englert Mechanism: A U(1) Example

See Landau-Ginzburg Theory of Superconductivity

A Sketch of Dynamical Mass Generation in GSW

We want 3 massive and 1 massless vector fields, and "true" Higgs filed φ not to couple to photon.

 \implies Choose complex Higgs doublet $\Phi(x)$, use $SU_L(2)$ gauge trafo to "Unitary Gauge":

$$U(x)\Phi(x) = \begin{pmatrix} 0 \\ a + \frac{\varphi(x)}{\sqrt{2}} \end{pmatrix} \text{ with } \text{real (uncharged) scalar } \varphi(x); \qquad \qquad \text{cf. weak anti-doublet } \begin{pmatrix} e^+ \\ \overline{\nu}_e \end{pmatrix}$$

One Can Show: can always be done: like rotating spin into z direction.

Question: Why is Higgs Vacuum Expectation Value (VEV) $a \neq 0$? — Answer: We do not know.

A Sketch of Dynamical Mass Generation in GSW

We want 3 massive and 1 massless vector fields, and "true" Higgs filed φ not to couple to photon.

 \implies Choose complex Higgs doublet $\Phi(x)$, use $SU_L(2)$ gauge trafo to "Unitary Gauge":

$$U(x)\Phi(x) = \begin{pmatrix} 0 \\ a + \frac{\varphi(x)}{\sqrt{2}} \end{pmatrix} \text{ with } \text{real (uncharged) scalar } \varphi(x); \qquad \qquad \text{cf. weak anti-doublet } \begin{pmatrix} e^+ \\ \overline{v}_e \end{pmatrix}$$

One Can Show: can always be done: like rotating spin into z direction.

Question: Why is Higgs Vacuum Expectation Value (VEV) $a \neq 0$? — Answer: We do not know.

Determine weak hypercharge such that
$$\varphi$$
 neutral: $0 \stackrel{!}{=} Q = T_3 + \frac{Y_{\varphi}}{2} = -\frac{1}{2} + \frac{Y_{\varphi}}{2}$. $\Longrightarrow Y_{\varphi} = +1$

$$\Rightarrow D_{\mu}\Phi = \left[\partial_{\mu}\mathbb{1} - \frac{\mathrm{i}}{2} \begin{pmatrix} gW_{\mu}^{(3)} + g'B_{\mu} \\ g\sqrt{2}W_{\mu}^{-} \end{pmatrix} & g\sqrt{2}W_{\mu}^{+} \\ g\sqrt{2}W_{\mu}^{-} \end{pmatrix} \right] \begin{pmatrix} 0 \\ a + \frac{\varphi(x)}{\sqrt{2}} \end{pmatrix}$$

Multiply out $(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)$: – massless photon A_{μ}

$$- \operatorname{masses} M_W^2 = \frac{g^2 \, a^2}{2}, M_Z^2 = \frac{(g^2 + g'^2) \, a^2}{2} \implies \mu \, \underset{W^{\pm}, Z^0}{\overset{W^{\pm}, Z^0}{\bigvee}} \, v : \frac{-\mathrm{i}}{q^2 - M_{W,Z}^2} \left[g_{\mu \nu} - \frac{q_{\mu} q_{\nu}}{M_{W,z}^2} \right]$$
 with
$$\frac{M_W^2}{M_Z^2} = \frac{g^2}{g^2 + g'^2} = \cos^2 \theta_W \text{ at "tree level" (before quantum corrections)}.$$

(Tree-Level) Interactions and Experimental Numbers

[PDG 2022] [AH II.Q.2.3]

$$W^{\pm} = \frac{ie}{\sqrt{2\sin\theta_W}} \gamma^{\mu} \frac{1-\gamma_5}{2} V_{ff'} V_$$

$$e pprox g \sin heta_W \implies rac{g^2}{4\pi} = rac{lpha}{\sin^2 heta_W} pprox rac{1}{30} \gg rac{1}{137} = lpha$$
 "Weak Coupling not Weak".

Higgs VEV $a pprox \sqrt{2} \, g \, M_W pprox 71 \, {
m GeV}$

Higgs curvature $\lambda pprox rac{m_H^2}{4 \, a^2} pprox 1.5$ large: narrow valley (wide one would give large corrections).

Has most Nobels: Yang/Lee 1957 (th: P violation), Glashow/Slam/Weinberg 1979 (th: GSW), Cronin 1980 (ex: CP violation), Rubbia/Meer 1984 (ex: W, Z), Ledermannn/Schwartz/Steinberger 1988 (ex: v_{μ}), Perl 1995 (ex: τ), Reines 1995 (ex: v), 't Hooft/Veltman 1999 (th: QFT of GSW), Davis/Koshiba 2002 (ex: cosmic v), Kobayashi/Maskawa 2008 (th: CKM), Englert/Higgs 2013 (th: Higgs), Kajita/McDonald 2015 (ex: m_V).

A Loose End: Fermion Masses by Yukawa Mechanism

So far, no fermion masses: helicity = chirality.

Since Higgs was so good at giving mass to W and Z, let it also generate m_f :

Use
$$\Phi = \begin{pmatrix} 0 \\ a + \frac{\varphi(x)}{\sqrt{2}} \end{pmatrix}$$
 $\longrightarrow \sum_{f} \underbrace{a \, g_f}_{\text{mass}} \underbrace{\left[\overline{f}_L f_R + \overline{f}_R f_L \right]}_{\text{mass}} + \underbrace{fermion-Higgs interactions}_{\text{which increase with } m_f}$

Economic but not elegant: one coupling per massive fermion \implies 9 (12) parameters.

Higgs does *not* explain nucleon masses $M_N \approx 940 {
m MeV} \gg m_{u,d} \approx 4 {
m MeV}$: Vast majority of hadron mass (and therefore of visible-universe mass) comes from QCD, not from Higgs (contrary to Particle Physicist Propaganda).

Discovery 2012 at CERN's LHC ($p\overline{p}$ collider): ATLAS & CMS Collaborations.

Discovery channel $q\overline{q} \rightarrow H \rightarrow \gamma\gamma$:

branching ratio 0.2%, but very clean signature.

Via "top loop" since tH coupling $\propto m_t$ large.

Fig. 2. Invariant mass distribution of diphoton candidates after all selections of the inclusive analysis for the combined 7 TeV and 8 TeV data. The result of a fit to the data with the sum of a SM Higgs boson signal (with $m_H = 126.8$ GeV and free signal strength) and background is superimposed. The residuals of the data with respect to the fitted background are displayed in the lower panel.

Figure 1: The $m_{\gamma\gamma}$ distribution as weighted sum of all categories [13]. S and B are the number of signal and background events, respectively.

By now, many other channels seen as well. - All results consistent with GSW/Standard Model.

(f) The (Low-Energy) EFT of GSW: Fermi's V-A Theory

$$\frac{g^2}{4\pi} \approx \frac{1}{30} \gg \alpha \approx \frac{1}{137}$$

$$\Longrightarrow \text{Why "weak"?}$$

$$\frac{g^2}{4\pi} \approx \frac{1}{30} \gg \alpha \approx \frac{1}{137}$$

$$\Rightarrow \text{Why "weak"?}$$

$$\frac{g^2}{2} \left[\overline{U}_L(p') \gamma^\mu U_L(p) \right] \frac{g_{\mu\nu} - \frac{q_\mu q_\nu}{M_W^2}}{q^2 - M_W^2} \left[\overline{u}_L(k') \gamma^\nu u_L(k) \right]$$

$$+ \frac{g^2}{8M_W^2} \left[\overline{U} \gamma_\mu (1 - \gamma_5) U \right] \left[\overline{u} \gamma^\mu (1 - \gamma_5) u \right] + \mathcal{O}(\frac{q^2}{M_W^2})$$

$$=: J_\mu^{\text{weak}}$$

 \Longrightarrow For momentum transfers $q^2 \ll M_W^2$, see point-like coupling between Axial Currents with

Fermi Constant
$$G_F = \frac{\sqrt{2} g^2}{8 M_W^2} = 1.1663788(6) \times 10^{-5} \text{GeV}^{-2} \text{ [PDG 2022]} \Longrightarrow \text{Postdict } M_W!$$

Example Weak Leptonic Decay
$$l^- \to e^- v_l \overline{v}_e$$
: $\Gamma_l \propto \left| \sum_{l=0}^{v_l} e^{-l} e^{-l} \right|^2 = \frac{G_F^2 m_l^5}{192 \pi^3}$ Sargent's Rule (dim. an.!)

Prediction $\frac{\Gamma_{\tau} m_{\mu}^{5}}{\Gamma_{\mu} m_{\tau}^{5}} \stackrel{!}{=} 1 \iff \exp: 0.999 \pm 0.003 \text{ confirms Lepton Universality}$

Corrections by Taylor & Quantum Effects

suppressed in powers of
$$\frac{{
m typ.~low-momentum}}{{
m breakdown~scale}} = \sqrt {\frac{{q^2 }}{{M_W^2 }}} \ll 1$$

 \implies limited range of applicability $q^2 \ll M_W^2 \iff$ range $\gg \frac{1}{M_W} \approx 0.002 {\rm fm}$ very short-distance!

<ロト <回ト < 重ト < 重ト = 一 の q で

Fermi's V-A Effective (Low-Energy) Field Theory of GSW

 W^{\pm} couples only to left-handed fermions/right-handed anti-fermions

 \Longrightarrow weak microscopic current $J^{\mu}_{\rm weak}=\overline{u}_L\gamma^{\mu}u_L\propto\overline{u}\gamma^{\mu}(1-\gamma_5)u$: (polar) Vector Minus Axial (vector)

Fermi's V-minus-A Theory (Model)

Fermi 1935 predates GSW by 35 years

Nature Rejection 1933: "contained speculations too remote from reality to be of interest to the reader". Consequence: Fermi re-evaluates theory career, tries exp. Chicago Reactor. Nobel 1938.

Confinement & Hadronisation shield details of quark $\to W^{\pm}$ decays inside hadrons. \Longrightarrow V-A modified.

$$J_{\mathrm{weak}}^{\mu} = g_V \, \overline{u}_L \gamma^{\mu} u_L - g_A \, \overline{u}_L \gamma^{\mu} \gamma_5 u_L$$
: couplings g_V, g_A depend on hadron.

⇒ Conserved Vector Current CVC

 $\overline{u}_L \gamma^{\mu} u_L$ baryon number must be conserved

Partially Conserved Axial Current PCAC $\bar{u}_L \gamma^{\mu} \gamma_5 u_L$ not (fully) conserved

PCAC hypothesis (includes Sakurai) predates GSW

Prediction for neutron decay calculation not trivial: $\frac{g_A}{g_V} = \frac{5}{3} + \text{corrections} \iff 1.2754(13) \text{ [PDG 2022]}$

Weak interaction can serve as indirect probe of Physics at $\gtrsim 0.002 \, \mathrm{fm}$: "Inside-Out Microscope" of QCD & Beyond-Standard-Model

(g) Universality for Quarks

Quark Hypercharges: from
$$Y_q = 2[Q_q - T_{3q}] \implies$$
 doublets $\begin{pmatrix} u_L \\ d_L \end{pmatrix}$, $\begin{pmatrix} c_L \\ s_L \end{pmatrix}$, $\begin{pmatrix} t_L \\ b_L \end{pmatrix}$ have $Y_{qL} = +\frac{1}{3}$

 $u_R, d_R, c_R, s_R, t_R, b_R$ have $Y_{q_R} = 2Q_q \neq 0 \implies$ quark-equivalents of neutrinos do couple to $U(1)_Y!$

Anti-quarks of opposite helicity have opposite hypercharge.

Quark Decays:
$$\pi^+(u\overline{d}) \to \pi^0 e^+ \overline{\nu}_e \Longleftrightarrow K^+(u\overline{s}) \to \pi^0 e^+ \overline{\nu}_e$$

If universal, should differ only by "phase space". \implies Should extract $G_{\rm hadr}^2 \approx 192\pi^3 \frac{1}{m_{\rm hadr}^5} \stackrel{!}{=} G_F^2$!?!

exp: no at all!
$$G_{\pi^+} \approx 10~G_{K^+}$$
 and $G_{\pi^+}, G_{K^+} \neq G_F = 1.16 \cdots \times 10^{-5}~{\rm GeV}^{-2}$

Postulate common coupling to save quark universality: $G_F \stackrel{!}{=} \frac{G_{\pi^+}}{\cos \theta_C} \stackrel{!}{=} \frac{G_{K^+}}{\sin \theta_C}$: Cabbibo angle θ_C

exp: The 2 constraints hold. $\sin \theta_C = 0.2265(5)$: $\theta_C = 13.091(27)^\circ$ mnemonic: $\sin^2 \theta_W \approx \sin \theta_C$

 \Longrightarrow Leptonic & semi-leptonic weak couplings are related, and we restored & enlarged universality! \checkmark

Re-definition looks like a rotation of quark/hadron coulings: Change of basis?!?!?!:

 \implies **Postulate:** Eigenstates q^{weak} of electro-weak T_3 (coupling to $\gamma W^{\pm} Z^0$) are *not* eigenstates q^{mass} to mass operator \hat{M} (coupling to Higgs):

$$[T_3, \hat{M}] \neq 0$$
 Not forbidden \Longrightarrow Compulsory!

→□▶ →□▶ → □▶ → □ ♥ ♥ ♥ ♥

Two-Generation Quark Mixing: (ud), (cs) and the GIM Mechanism

 \implies **Postulate:** Eigenstates q^{weak} of electro-weak T_3 (coupling to $\gamma W^{\pm} Z^0$) are *not* eigenstates q^{mass} to mass operator \hat{M} (coupling to Higgs):

One Can Show: Mathematically, one can *choose* $u_L^{\text{weak}} = u_L^{\text{mass}}$ etc. for upper components of doublet.

Mathematically sufficient to have the *lower* components of the weak doublets mix in flavour space:

$$\begin{pmatrix} d_L^{\text{weak}} \\ s_L^{\text{weak}} \end{pmatrix} = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d_L^{\text{mass}} \\ s_L^{\text{mass}} \end{pmatrix}$$

 \implies Weak eigenstates of doublet couple to γ, W^{\pm}, Z^{0} as before, but mass eigentstates mix, e.g.:

Weak Eigenstates $W_{\mu} \overline{u}_{L} \gamma^{\mu} d_{L}^{\text{weak}} = W_{\mu} \left[\overline{u}_{L} \gamma^{\mu} \cos \theta_{C} d_{L}^{\text{mass}} + \overline{u}_{L} \gamma^{\mu} \sin \theta_{C} s_{L}^{\text{mass}} \right]$ couple via weak int.s: $W_{\mu} \overline{c}_{L} \gamma^{\mu} d_{L}^{\text{weak}} = W_{\mu} \left[\overline{c}_{L} \gamma^{\mu} \left(-\sin \theta_{C} \right) d_{L}^{\text{mass}} + \overline{c}_{L} \gamma^{\mu} \cos \theta_{C} s_{L}^{\text{mass}} \right]$

Consequence of Dictate of Universality: Works only if one weak-isospin partner for each quark!

 \Longrightarrow New 4th quark *must* complete 2nd-generation doublet $\begin{pmatrix} \otimes_L \\ s_L \end{pmatrix}$ [Glashow/Iliopulos/Maiani (GIM) 1970] [followed by $J/\psi(c\overline{c})$ discovery 1973]

Two-Generation Quark Mixing: (ud), (cs) and the GIM Mechanism

 \implies **Postulate:** Eigenstates q^{weak} of electro-weak T_3 (coupling to $\gamma W^{\pm} Z^0$) are **not** eigenstates q^{mass} to mass operator \hat{M} (coupling to Higgs):

One Can Show: Mathematically, one can *choose* $u_L^{\text{weak}} = u_L^{\text{mass}}$ etc. for upper components of doublet.

Mathematically sufficient to have the *lower* components of the weak doublets mix in flavour space:

$$\begin{pmatrix} d_L^{\text{weak}} \\ s_L^{\text{weak}} \end{pmatrix} = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d_L^{\text{mass}} \\ s_L^{\text{mass}} \end{pmatrix}$$

 \implies Weak eigenstates of doublet couple to γ, W^{\pm}, Z^{0} as before, but mass eigentstates mix, e.g.:

 $W_{\mu}\overline{u}_{L}\gamma^{\mu}d_{L}^{\text{weak}} = W_{\mu}\left[\overline{u}_{L}\gamma^{\mu}\cos\theta_{C}d_{L}^{\text{mass}} + \overline{u}_{L}\gamma^{\mu}\sin\theta_{C}s_{L}^{\text{mass}}\right]$ Weak Eigenstates $W_{\mu} \overline{c}_{L} \gamma^{\mu} d_{I}^{\text{weak}} = W_{\mu} \left[\overline{c}_{L} \gamma^{\mu} \left(-\sin \theta_{C} \right) d_{L}^{\text{mass}} + \overline{c}_{L} \gamma^{\mu} \cos \theta_{C} s_{L}^{\text{mass}} \right]$ couple via weak int.s:

Consequence of Dictate of Universality: Works only if one weak-isospin partner for each quark!

 \implies New 4th quark *must* complete 2nd-generation doublet $\binom{\bigotimes_L}{s_I}$ [Glashow/Iliopulos/Maiani (GIM) 1970] [followed by $J/\psi(c\overline{c})$ discovery 1973]

GIM Mechanism: flavour-changing neutral currents suppressed, e.g. $K^0(d\bar{s}) \to W^+W^- \to \mu^+\mu^-$:

$$d \stackrel{\cos \theta_C}{\longrightarrow} u \stackrel{\sin \theta_C}{\longrightarrow} s$$

$$d \xrightarrow{-\sin\theta_C} c \xrightarrow{\cos\theta_C} s$$

Equal in magnitude, opposite in sign.

(h) Mixing for Three Generations: One Can Show

- Most general form allows upper entries of weak doublet to be eigenstates to both mass and weak:

$$u_{w} = u_{m} \qquad c_{w} = c_{m} \qquad t_{w} = t_{m}$$

$$- \text{ Most general matrix} \qquad \begin{pmatrix} d_{w} \\ s_{w} \\ b_{w} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \begin{pmatrix} d_{m} \\ s_{m} \\ b_{m} \end{pmatrix}$$

$$\text{weak}$$

$$\text{eigenstates} \qquad \text{Cabibbo-Kobayashi-Maskawa}$$

$$\text{(CKM) matrix - includes Cabibbo matrix} \qquad \text{eigenstates}$$

W/oLOG parametrised by 3 magnitudes + 1 complex phase: CP-violation in K^0/\overline{K}^0 ($\delta \approx 70^\circ$):

- Experiment: Diagonal elements: coupling within same generation: ≈ 1
- **Experiment:** Off-diagonal elements much smaller: mixing generations $1 \longleftrightarrow 2: \approx 0.2$ Why that hierarchy? mixing generations $2 \longleftrightarrow 3: \approx 0.04 = 0.2^2$ mixing generations $1 \longleftrightarrow 3: \approx 0.008 = 0.2^3$

Unitarity Test of the CKM matrix: Measure all matrix entries (including 3 complex phases).
 So far unitary ⇒ really 3 generations. If not: New Quark Family/Beyond-Standard-Model??

What About Mixing Leptons?

Assumed massless neutrinos. \implies No difference between mass and weak eigenstates.

But why should neutrinos be massless? – No compelling symmetry found.

Swiss Basic Law: Everything which is not forbidden, is compulsory.

Neutrino oscillations seen in solar, atmospheric, reactor & collider neutrino experiments: $m_{v} \sim \mathrm{eV}$ 'ish

⇒ Introduce analogue to CKM matrix, but now for *upper entries* of weak doublet (convenience).

Much less diagonal that CKM (plus one complex phase, at present undetermined):

[PDG2022]

$$\begin{pmatrix} |U_{e1}| & |U_{e2}| & |U_{e3}| \\ |U_{\mu 1}| & |U_{\mu 2}| & |U_{\mu 3}| \\ |U_{\tau 1}| & |U_{\tau 2}| & |U_{\tau 3}| \end{pmatrix} = \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.36 & 0.70 & 0.61 \\ 0.44 & 0.46 & 0.77 \end{pmatrix}$$
— with errors $\pm [0.01 \dots 0.06]$

Disappearance Experiment: find remaining original ↔ **Appearance Experiment:** look for converted.

$$\Delta m^2 \ll {
m eV}^2,\, p \gtrsim {
m MeV} \implies L \gg {{
m MeV} \over {
m eV}^2} \sim {
m km}$$
: QM interference on macroscopic lengths.

Table 14.1: Sensitivity of different oscillation experiments.

Source	Type of ν	$\overline{E}[\mathrm{MeV}]$	$L[\mathrm{km}]$	$\min(\Delta m^2)[\mathrm{eV}^2]$
Reactor	$\overline{ u}_e$	~ 1	1	~ 10 ⁻³
Reactor	$\overline{ u}_e$	~ 1	100	$\sim 10^{-5}$
Accelerator	$ u_{\mu}, \overline{ u}_{\mu}$	$\sim 10^3$	1	~ 1
Accelerator	$ u_{\mu}, \overline{ u}_{\mu}$	$\sim 10^3$	1000	$\sim 10^{-3}$
Atmospheric ν 's	$\nu_{\mu,e},\overline{ u}_{\mu,e}$	$\sim 10^3$	10^{4}	$\sim 10^{-4}$
Sun	$ u_e$	~ 1	1.5×10^8 [PDG 2	$\sim 10^{-11}$ 2015]

Besides θ , combination $\frac{\Delta m^2 L}{n=E}$ gives sensitivity:

Reactor: \bigoplus short L, controlled

 \bigcirc low-E**Accelerator**: \bigoplus high-E, controlled \bigcirc short L

Atmospheric: \bigoplus high-E, $L = R_{Earth} \bigoplus$ no control

Solar: (+) longest baseline

solar modelling

Sudbury Neutrino Observatory SNO: Test Solar Neutrinos

 $1,000 \mathrm{m}^3$ D_2O , monitored by 9,600 Photomultipliers for Čerenkov light $2\mathrm{km}$ under ground in operating nickel mine in Sudbury, Ontario, Canada.

SNO: Comprehensive Measurement of Neutrino Flux

Measure total and individual solar neutrino flux by Čerenkov of superluminal e^- of different origins:

 Φ_e via $v_e d o ppe^-$: breakup, omnidirectional: **CC**

 $\Phi_e + \Phi_{\mu\tau}$ via $v_{e\mu\tau}d \to pnv_{e\mu\tau}$: inel. scatt. NC $nd \to {}^3{\rm H}\gamma(6{\rm MeV}), \ \gamma e^- \Rightarrow e^-$ superlum.

 $\Phi_e + 0.16 \Phi_{\mu\tau}$ via $v_{e\mu\tau}e^- o v_{e\mu\tau}e^-$: forward ES

Agrees excellently with Standard Solar Model!

$$\Phi(^8\mathrm{B}) \propto \mathrm{Temp}_{\mathrm{Sun}}^{25} \leftrightarrow T_{\mathrm{Sun}} = 15.7 \times 10^6\mathrm{K} \pm 1\%.$$

$$\theta_{12} = 33.6(8)^{\circ}, \Delta m_{12}^2 = 7.53(0.18) \times 10^{-5} \text{eV}^2$$

Neutrino Oscillations: What We Know, What Not, and What's Cool

- Weak and mass eigenstates of neutrinos different. ⇒ Neutrinos mix.
- Neutrinos have nonzero mass-difference, V_e is lightest.
- Is lightest neutrino massless? What are the individual masses?
- Is $m_{V\mu} < m_{V\tau}$ (ordered like quark & charged-lepton masses), or $m_{V\mu} > m_{V\tau}$ ("inverted ordering")?

Majorana Neutrinos? So far, $v = \begin{pmatrix} particle_R \\ particle_L \\ antiparticle_R \\ antiparticle_L \end{pmatrix}$ was **Dirac spinor**, but only v_L and \overline{v}_R couple.

Neutrinos charge-neutral, weak hypercharge is Y = 0.

 \Longrightarrow Could be its own antiparticle: $v_R \equiv \overline{v}_R$, $v_L \equiv \overline{v}_L$

If so, then use that nonzero masses mix helicities e.g. in

$$\begin{array}{c} W^- \to e^- + (\overline{\nu}_R \equiv \nu_R) \colon W^- \text{ decay} \\ \text{mass converts helicity: } \nu_R \stackrel{m_\nu \neq 0}{\longrightarrow} \nu_R + \frac{m_\nu}{p_\nu} \nu_L, \frac{m_\nu}{p_\nu} \ll 1 \\ e^- \text{ production } \nu_L + W^- \to e^- \end{array}$$

 \Longrightarrow Lepton Number violated by 2 units, probability $\propto \frac{m_V^2}{p_V^2}!$

(i) Summarising Some Features of the GSW Theory

What We Like and Dislike About the GSW Theory

3 generations of quarks and leptons: nicely symmetric.

$$\begin{pmatrix} v_{eL} \\ e_L \end{pmatrix} \begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix} \begin{pmatrix} v_{ au L} \\ au_L \end{pmatrix} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{pmatrix} t_L \\ b_L \end{pmatrix} \qquad l_R \ q_R$$

- Every particle but photon gets a mass: Higgs-Kibble-Englert and Yukawa mechanisms.
- Unified electromagnetic and weak interaction: 2 sides of same coin: first unification since Maxwell.
- Universality for all fermions.
- Has not failed any test yet and we are really talking precision!
- But it took advantage of all freedoms ($W^0_\mu B_\mu$ mixing, weak eigenstates, v mass,...)
- And why is parity violated in the first place?
- Not nice: not *one* coupling, but *two*: g, g' (or e, θ_W)

plus 2 Higgs parameters: VEV a & curvature λ ,

plus 2×4 CKM/PMNS mixing parameters,

plus 2×6 Higgs-fermion couplings to generate lepton & quark masses:

24 parameters is a lot!

QCD: 1 ($lpha_s(M_Z^2)\longleftrightarrow \Lambda_{QCD}$) & 6 (double-counted) quark masses & 1 "vacuum angle" $heta_{QCD}$

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ■ ・ O へ ○ H.W. Grießha

Not nice: Higgs the only "fundamental" scalar field in Nature – and why is its VEV nonzero??

(j) QCD vs. GSW

Both are **Quantum Field Theories**, and even **Gauge Theories**, and even **non-Abelian**.

 \Longrightarrow Both show asymptotic freedom as $q^2 \to \infty$.

Obvious differences: only quark-gluon via colour $SU_c(3)$ vs. all particles via $SU_L(2) \times U_Y(1)$.

There are some oft-overlooked fundamental differences:

QCD (Confinement Phase)	GSW (Higgs Phase)		
q & g confinement: not in detector	single leptons and gauge particles γ, W^\pm, Z^0 observed in detector		
absence of coloured states	states with nonzero charge Q , hypercharge Y , weak isospin \vec{T} are common $(e, \tau, \mu, v, \ldots)$		
nonperturbative at $q^2 \lesssim (3{ m GeV})^2$	perturbative everywhere		
low-energy complicated: lattice, χ EFT	$q^2\lesssim (30{ m GeV})^2$: EFT is simple Fermi/V-A		
gluons massless	3 of 4 gauge bosons massive		
(at least in perturbative régime)	by Higgs mechanism		

It's fair to say we do not understand why these are so different.

6. Finally: The Standard Model - and Beyond

This was a great time [...], the period of the famous triumph of quantum field theory. And what a triumph it was, in the old sense of the word: a glorious victory parade, full of wonderful things brought back from far places to make the spectator gasp with awe and laugh with joy. [S. Coleman 1985]

Answered a Lot of Questions, but Leave Many Open, For Example:

- Unification to 1 parameter

- Mass hierarchy problem
- Gravitation not quantised
- Why 3 generations? Why $Q = \pm 1, \pm \frac{2}{3}, \pm \frac{1}{3}, 0$? Why these gauge groups? Why 4 dimensions?

⇒ Simplify (fewer parameters), or find processes which are not explained by freedoms of SM!

Look for new fundamental particles (supersymmetry, strings, prions) & forces (dark energy/matter), violations of lepton & baryon number & universalities, Lorentz invariance,...

Lots of answers, but each raises more questions! ⇒ Your Turn!

But Wait, There is *More*: in PHYS 6710:

Nuclear and Particle Physics II: THE RETURN OF THE THEORIST

Topics Tuned To Audience; Typically: Less-Informal QFT & Renormalisation

- Less-Informal Statistics & Data Analysis - Instrumentation

Spring 2024 - watch this space!