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Problem Sheet 8 Due date: 08 Mar 2018 12:00

For full credit, you should hand in a tidy and efficiently short presentation of your results and how they come about,
in a manner that can be understood and reproduced by your peers. All problems and solutions are for your personal
use only. Please do not pass solutions or problems on to incoming or other students who have not taken the course
(yet). Noncompliance with these rules is a breach of academic integrity.
Handwritten solutions must be on 5x5 quadrille paper; electronic solutions must be in .pdf format.
I reserve the right to award zero points for any illegible, chaotic or irreproducible section of your homework.

News and .pdf-files of Problems also at home.gwu.edu/˜hgrie/lectures/nupa-18I/nupa-18I.html.

1. ∆(1232) Wave Functions (3P): Construct the combined spin-isospin wave function of the ∆+ and
of the ∆0 in the constituent quark model, when each is in the Ms = 1

2 state.

2. Deuteron Wave Function (5P): Let’s find the nucleon-nucleon spin and isospin wave functions
for the part of the deuteron in which the two nucleons are in a relative s-wave. First, recall that the
deuteron is a system of two identical fermions N in the isospin formalism, so its total wave function
must be anti-symmetric. Second, recall that there is only one deuteron state, and not three facets
with different charges. Third, the deuteron is predominantly s-wave.

a) (3P): Show now: The deuteron must be a J = 1 state, and its parity must be positive. This
proves the assertion made in the CTP section that the deuteron is a pseudo-vector.

b) (2P): Write down the spin-isospin wave function of the deuteron, for spin-magnetic quantum
number M = 0.

3. Decay of a Massive Vector Particle (6P): The following could serve as a first shot to describe
the decay of vector mesons like the ω0(782) (JPC = 1−−), or of the Z boson of the electroweak theory.
We assume either can be described by the Lagrangean of a real (i.e. charge-neutral) Lorentz-vector
field Bµ, see previous HWs.

You can use the following without proof: A vector field has three spin states (polarisation vectors)
~ε(M) with M = ±1, 0. For a B particle at rest, they span all of space, i.e.∑

M=0,±1
~ε∗(M) ⊗ ~ε(M) = 1, or in Einstein’s Summation convention

∑
M=0,±1

ε
∗(M)
i ε

(M)
j = δij ,

or in the relativistic version (not at rest):
∑

M=0,±1
ε∗(M)
µ ε(M)

ν = −gµν +
qµqν
M2

.

You already showed that the coupling of the vector boson to a fermionic current is the same as for
electron-photon coupling, so we can take over that Feynman rule. Let’s denote the coupling constant
by g (identical to e in scalar QED).

Calculate now the width of the decay B → e+e− for massless electrons. The result is Γ =
g2M

12π
.

4. Isospin Breaking by Electromagnetism (2P): The nuclei 3He and 3H (also called the triton)
have nearly the same total binding energies: B(3He) = 7.7 MeV, B(3H) = 8.5 MeV. Attributing the
difference to electrostatic repulsion in 3He, estimate the mean distance between its two protons using
classical arguments.

Please turn over.
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5. Spin of the ∆(1232) (5P):

The angular distribution of the differential cross
section of π+p → π+p around

√
s = 1232 MeV

(see figure) is parametrised by:

dσ

dΩ
(θ) =

dσ

dΩ
(θ = 0)

[
A+B cos θ + C cos2 θ

]
= |g(θ,E)|2 + |h(θ, E)|2 .

Its decomposition into partial wave amplitudes is:

g(θ, E) =
∑
l≥0

[(l + 1) al+(E) + l al−(E)]Pl(cos θ)

with h(θ,E) = sin θ
∑
l≥0

[al+(E)− al−(E)]P ′l (cos θ).

Pl is the lth Legendre Polynomial, and P ′l = dPl(x)
dx . The coefficients al±(E) are the partial-wave

amplitudes to total angular momentum l ± 1
2 and can be assumed to be real.

a) (1P) Find A,B,C from the plot by rough estimates at θ = 0, π2 and considering the overall shape.

b) (4P) Match the two parametrisations (for S- and P -waves only). Show that the ∆(1232) reso-
nance indeed has l = 1 and J = 3

2 – assuming there is no fine-tuning between unrelated partial
waves. This vindicates the hand-waving argument based on the Breit-Wigner formula.


