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For full credit, you should hand in a tidy and efficiently short presentation of your results and how they come about,
in a manner that can be understood and reproduced by your peers. All problems and solutions are for your personal
use only. Please do not pass solutions or problems on to incoming or other students who have not taken the course
(yet). Noncompliance with these rules is a breach of academic integrity.
Handwritten solutions must be on 5x5 quadrille paper; electronic solutions must be in .pdf format.
I reserve the right to award zero points for any illegible, chaotic or irreproducible section of your homework.

News and .pdf-files of Problems also at http://home.gwu.edu/˜hgrie/lectures/math-methods18/math-methods18.html.

1. Heating a Ring: Continuation (7P): In the previous HW, we constructed the Green’s function
to the heat equation on a ring:

DT (x) = Q(x) and T (x = 0) = T (x = 1), T ′(x = 0) = T ′(x = 1) , x ∈ [0; 1]

by using the spectral decomposition of the differential operator D = −d2
x. Now, we test another way

to construct the Green’s function. You (should) have shown before that the Green’s function is not
quite the inverse of D, but that

DxG(x; y) = δ(x− y)− 1 .

a) (2P) Show that both G(x; y) and T (x) have no zero mode, just like Q(x), cf. a) in the last HW.

b) (1P) As you know, 1
2 |x− y| is a Green’s function to +d2

x, but to the wrong boundary conditions.
We therefore write an ansatz

G(x; y) = −1

2
|x− y|+ fh(x) .

Which explicit condition(s) does Dx fh(x) have to fulfill?

c) (4P) Construct now explicitly G(x; y) from the ansatz. Take full advantage of reciprocity, bound-
ary conditions and constraints on G(x; y).

2. Frobenius’ Method for Hermite Polynomials (6P): Hermite polynomials appear in the
quantum-mechanical harmonic oscillator wave-function as solutions to the Hermite equation

f ′′(x)− 2x f ′(x) + 2ν f(x) = 0 .

We can solve this with a simplified Frobenius ansatz f(x) =
∞∑
n=0

anx
n, i.e. α = 0.

a) (1P) Show that the indicial equations dictate that α = 0 or α = 1.

b) (2P) Derive the recurrence relation for the coefficients aj . Show that the solutions consists of
two separate elementary solutions, comprised of either even or odd functions in x.

c) (3P) As you may know from your undergraduate QM class, the wave function of the time-
independent harmonic oscillator is ψ(x) ∝ Hn(x)e−x

2/2 and must be normalisable, i.e.

〈Hn|Hm〉w(x)=exp−x2 :=

∞∫
−∞

dx Hn(x)Hm(x) e−x
2
<∞ .

Show that this imposes that ν must have certain values, and construct the finite Hermite poly-
nomial for ν = 2, up to a normalisation constant.

Please turn over.
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3. Spherical Bessel Functions (10P) are the bread-and-butter of Scattering Theory in Quantum
Mechanics II and arise in Mathematics as solutions to the spherical Bessel equation[

1

x

d2

dx2
x+ 1− l(l + 1)

x2

]
f(x) = 0 ,

with l ∈ N+
0 a non-negative integer which will be the angular momentum in the last sub-problem.

a) (2P) Find the recurrence relation for the coefficients aj of a Frobenius ansatz around x = 0. You
should find ν = l or ν = −(l + 1), and that solutions are either even or odd in x.

b) (1P) Show that the series cannot terminate ever for non-negative integer l. This is a counter-
example to the impression you may have gotten that Frobenius series must terminate.

c) (1P) Depending on your choice of ν in a), you find two classes of solutions: With some normali-
sation choice which we will not deal with, those regular at the origin are the regular spherical
Bessel functions jl(x) (also called sph. Bessel of the first kind); those which diverge at the
origin are the irregular spherical Bessel functions yl(x) (or von-Neumann functions,
sph. Bessel of the second kind, also denoted as nl(x)). Determine (up to a constant) the leading
non-trivial behaviour of the regular and irregular solution as x→ 0.

d) (2P) Construct closed-form expressions for j0(x) and y0(x) (up to an overall normalisation).

e) (4P) An electron with energy E and wave-function Ψnlm(r, θ, φ) = Rnl(r) Ylm(θ, φ) is trapped
in a spherical cavity of radius a with impenetrable walls, i.e. V (r, θ, φ) = 0 for r < a and ∞ for
r > a. Using what you learned above, calculate all energy-levels of wave-functions which are
spherically symmetric only. You do not need to normalise Ψ, but you may have to re-scale r.

4. Multipole Moments on the Surface of a Sphere (7P): The following potential is given on the
surface of a sphere with radius R:

Φ(~R) =
Φ0

2R2

(
3(~ez · ~R)2 − ~R2

)
,

where ~ez is the unit vector in the z-direction, ~R the radial vector from the centre of the sphere to a
point to the surface and Φ0 some constant. The origin is at the centre of the sphere.

a) (5P) Determine the potential both inside and outside the sphere, and the first three spherical mul-
tipole moments (monopole, all dipoles and all quadrupoles) with respect to the given coordinate
system. Recall that the potential should disappear at infinity and be finite as r → 0.

Hint: Upon close inspection, the potential has a form similar to one of the Spherical Harmonics.

b) (2P) Determine the charge distribution on the surface of the sphere which generates the given
potential. Sketch! Careful: There is an electric field both inside and outside the sphere.


