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For full credit, you should hand in a tidy and efficiently short presentation of your results and how they come about,
in a manner that can be understood and reproduced by your peers. All problems and solutions are for your personal
use only. Please do not pass solutions or problems on to incoming or other students who have not taken the course
(yet). Noncompliance with these rules is a breach of academic integrity.
Handwritten solutions must be on 5x5 quadrille paper; electronic solutions must be in .pdf format.
I reserve the right to award zero points for any illegible, chaotic or irreproducible section of your homework.

News and .pdf-files of Problems also at http://home.gwu.edu/˜hgrie/lectures/math-methods18/math-methods18.html.

1. Sturm-Liouville Theory (10P): For this very important problem, you can profit greatly by being
inspired by textbooks. Consider the one-dimensional second-order differential operator

L(x) := p2(x)
d2

dx2
+ p1(x)

d

dx
+ p0(x) ,

where pi(x) are three given real functions of x which (we assume) have no singularities inside the open
domain x ∈]a; b[, with a, b two real numbers which also can be ±∞. Singularities can occur at a

and/or b. We equip the Hilbert space with the “standard” scalar product: 〈f |g〉 =

b∫
a

dx f∗(x) g(x).

a) (3P) Show:
d

dx
p2(x) = p1(x) is a necessary condition for the operator to be Hermitean. Recall

that you need to check 〈g|Lf〉 = 〈Lg|f〉+ surface terms. We will deal with the surface terms
below, so keep them in mind.

b) (1P) Show: If L is Hermitean, then L =
d

dx
p(x)

d

dx
+ q(x). Determine p, q from the pi’s.

c) (3P) Such Hermitean operators L often arise in variational problems. Find a functional whose
minimisation leads to an Euler-Lagrange equation of the form Lf(x) = g(x).

d) (3P) You showed in a) that in order for L to be Hermitean,

p(x) g∗(x)
d

dx
f(x) = p(x) f(x)

d

dx
g∗(x) at x = a, b .

Discuss now under which conditions on f , g and their derivatives the operator L is self-adjoint
when: (i) p(a) = p(b) = 0; (ii) p(a) 6= 0, p(b) 6= 0; (iii) the special case f(a) = f(b) = 0 ∧ f ′(a) =
f ′(b) = 0.

2. Yukawa Potential as Green’s Function (6P): If the photon had a mass m, the Poisson
equation of Electrostatics would read[

∆−m2
]

Φ(~r) = −4π ρ(~r)

So, the resulting Green’s function can be interpreted as the scalar potential of a “unit” point charge
if the photon had a mass.

a) (4P) Construct a Green’s function for this case, assuming that there are no charges or surfaces
around. The scalar potential shall vanish at infinity. Name the boundary condition this imposes.

Hint: One may for example first construct the solution to
[
∆−m2

]
G(r, 0) = 0, and then deter-

mine the integration constants, keeping in mind the boundary conditions and that singularities
or dis-continuities in G have to be avoided.

b) (2P) What is the solution Φ, given ρ? Is it unique?

Please turn over.
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3. One-Dimensional Green’s Function and the Superposition Principle (7P): The superposi-
tion principle is very useful even for very simple charge distributions. You know the solution to this
problem inside-out, so enjoy a slightly different angle: Consider a homogeneously charged, infinitely
long but infinitesimally thin, perfectly conducting plate with constant surface charge density σ, aligned
in the (xy)-plane.

a) (1P) Constrain the form of the field ~E by symmetry arguments and reduce the problem to a
one-dimensional one, with x the distance from the plate.

As we discussed in the lecture, the Green’s function to the one-dimensional operator
d2

dx2
“without

boundaries at infinity” is

G(x;x′) =
1

2
|x− x′| .

b) (3P) Calculate the electrostatic potential Φ and ~E for given surface charge density σ.

Fail-safe point: For a plate located at x0, the scalar potential is from ∆Φ = −4πρ, up to a
constant:

Φ(x) =

{
−2πσ(x− x0) for x > x0
2πσ(x− x0) for x < x0

c) (3P) Determine now the electric field between and on either side of two parallel, homogeneously
charged, infinitely long, perfectly conducting plates with constant surface charge densities σ1, σ2.

4. Heating a Ring: Green’s Functions with Zero Modes (7P): A time-independent heat Q(x)
is applied to an infinitesimally thin ring, parameterised by x ∈ [0; 1]. With the differential operator
D = −d2

x, the heat equation and boundary conditions for the temperature T (x) are therefore

DT (x) = Q(x) and T (x = 0) = T (x = 1), T ′(x = 0) = T ′(x = 1) .

In this problem, we will see that a zero eigenvalue of a differential operator can constrain the solutions,
because the differential operator is “not quite” invertible: If you apply it to the Green’s function, you
will not get a δ-distribution. In this case, the Green’s function is not the inverse to the differential
operator, but only to the eigenspaces of D to non-zero eigenvalues. Such Green’s functions without
zero modes are called “modified Green’s functions”.

a) (1P) Show that the boundary conditions imply that a solution exists only if
1∫
0

dx Q(x) = 0, i.e. if

Q has no zero mode.

b) (5P) Find the spectral representation of the “inverse” of D, i.e. its eigenfunctions and eigenvalues
(in coordinate space), namely the Green’s function G(x; y). Pay particular attention to the zero
mode (i.e. to the eigenfunctions with eigenvalue zero). Check whether G is really an inverse in
the space of functions which are subject to the constraint of a).

Note: For the following, it is easier to leave your result in the form of an infinite series.

c) (1P) Show whether G(x; y) has a zero mode in x or y, cf. a). Are you surprised by your result?


