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Problem Sheet 10 Due date: 7 November 2018 16:00

For full credit, you should hand in a tidy and efficiently short presentation of your results and how they come about,
in a manner that can be understood and reproduced by your peers. All problems and solutions are for your personal
use only. Please do not pass solutions or problems on to incoming or other students who have not taken the course
(yet). Noncompliance with these rules is a breach of academic integrity.
Handwritten solutions must be on 5x5 quadrille paper; electronic solutions must be in .pdf format.
I reserve the right to award zero points for any illegible, chaotic or irreproducible section of your homework.

News and .pdf-files of Problems also at http://home.gwu.edu/˜hgrie/lectures/math-methods18/math-methods18.html.

1. Dirac’s δ-Distribution (continued) (8P): Prove the following properties. Where applicable, show
that the proposition holds when multiplied with any square-integrable, suitable test function f(x) and
integrated over all space.

a) (3P) It seems odd that we can construct δ(x) as limit of functions: Didn’t we require that the
space of functions be complete, i.e. that every Cauchy sequence converges to a function in the
Hilbert space of functions? Show that your favourite sequence of “true” functions whose limit is
the δ-distribution is not a Cauchy-sequence. Why does this imply that [δ(x)]2 does not exist?

b) (2P) Derive a representation of Heaviside’s step-”function” as limit of a sequence of functions

using its definition θ(x) :=

x∫
−∞

dy δ(y) =

{
1 for x > 0
0 for x < 0

and the “rectangle-representation” of

the sequence whose limit is the δ-distribution.

c) (1P) Calculate the “derivative of the δ-distribution”,

∞∫
−∞

dx f(x)
d

dx
δ(x).

d) (2P) Derive from the Cartesian version expressions for Dirac’s δ-distribution in cylindrical and

spherical coordinates. It may be useful to recall that

∫
d3r δ(3)(~r) = 1, whatever coordinate

system you use.

2. Practising with Dirac’s δ-Distribution (3P):

a) (2P) Show that
d2

dx2
|x| = 2 δ(x) in the “distributional sense”.

b) (1P) Watching the integration limits, calculate:

∞∫
0

dx δ(x2 − x− 2) e−x
2

(
1− cos

5πx

2

)

3. Properties of Fourier Transforms (7P): Prove for functions f(x), g(x) with Fourier transforms
F (ω), G(ω) and N the normalisation convention of the Fourier transform:

a) Faltung/Convolution Theorem (2P): N
∫

dy g(y) f(x− y) =

∫
dω

2πN
F (ω)G(ω) e+iωx.

b) (1P) The Fourier transform of a real function f(x) obeys F (−ω) = F ∗(ω∗), ω complex.

c) (2P) The Fourier transform of an even function f(x) = f(−x) is even. When f(x) is also real,
then so is its Fourier transform.

d) (2P) As we expect to recover Fourier series from Fourier integrals, proving the following result is
very informative: When f(x) is periodic with period L, then its Fourier transform is zero, except
when kL = 2πn, where n ∈ Z is an integer. Can you write this using Dirac’s δ-distribution?
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4. Practising with Fourier Transforms (5P):

a) (2P) Find the Fourier transforms of e−a|x| and
1

a2 + x2
, where Re[a] > 0.

b) (2P) Construct the solution to ~∇2G(~r) = δ(d)(~r) in momentum space. Does G̃(~k) depend on the
number of dimensions d you consider?

c) (1P) Combine this result with the result of 2a above to calculate the Fourier transform of 1/k2

in one dimension.

5. Helmholtz’ Fundamental Theorem (3P) Fill in the dots in the Fourier back-transformation in
our “proof” of Helmholtz’ Fundamental Theorem, i.e. calculate F−1 of:

Φ(~k) = i
~k · ~A(~k)

|~k|2
, ~a(~k) = −i

~k × ~A(~k)

|~k|2

6. Hermitean Operator Theory in Quantum Mechanics (4P): Consider now the radial part of

the Laplace operator in three dimensional, spherical coordinates:
1

r

∂2

∂r2
r. It appears, for example,

in the Schrödinger equation for the hydrogen atom. For bound states, we obviously want that the
wave-function f is finite everywhere and disappears for large distances (it’s called “bound state”, after
all): f(r = 0) finite, f(r =∞) = f ′(r =∞) = 0. Is the operator Hermitean on these functions? Is it
self-adjoint? Discuss in particular functions which diverge as r → 0, but for which lim

r→0
rn g(r) = 0 for

suitable n ∈ N.

Caveat: Recall
∫

d3r =
∫

dr dcos θ dφ r2.

Question of the Week (bonus 3P): Mammals in the arctic are pretty big. Explain this by com-
paring their heat production (proportional to the number of cells the animal has) to their heat loss.


