Supplement on Vector Spaces

Def. Vector Space $(\mathbb{M},+, \times)$: a set \mathbb{M} with operations

$$
\begin{array}{llll}
\text { addition "+" } \quad: \quad \mathbb{M} \times \mathbb{M} & \rightarrow & \mathbb{M} \\
& & (x, y) & \mapsto
\end{array}
$$

multiplication " \times " : $(\mathbb{C}$ or $\mathbb{R}) \times \mathbb{M} \rightarrow \mathbb{M}$ $(\lambda, x) \mapsto \lambda \times x$
such that
(A1) $(\mathbb{M},+)$ is an Abelian group with id $=0$ the "zero vector", i.e.
(A1a) $\forall x, y, z \in \mathbb{M}:(x+y)+z=x+(y+z)$
(A1b) $\forall x, y \in \mathbb{M}: x+y=y+x$
(A1c) \exists "zero vector" id $\equiv 0: 0+x=x \forall x \in \mathbb{M}$
(A1d) $\forall x \in \mathbb{M} \exists x^{-1}: x+x^{-1}=\mathrm{id} \equiv 0$
associativity in + commutativity (Abelian) zero vector as identity/unit element
(A2) $\forall x, y \in \mathbb{M}, \lambda, \mu \in \mathbb{C}$ or \mathbb{R} :
(A2a) $(\lambda+\mu) \times(x+y)=\lambda \times x+\lambda \times y+\mu \times x+\mu \times y$
(A2b) $(\lambda \mu) \times x=\lambda \times(\mu \times x)$
(A2c) $1 \times x=x$
distributive multiplication associativity in \times unit element of multiplication

This is not the most general definition possible, but it suffices for us: "FAPP"
Def. Scalar/Inner Product $\langle.,$.$\rangle :$

$$
\begin{array}{rll}
\overline{\mathbb{M}} \times \mathbb{M} & \rightarrow & (\mathbb{C} \text { or } \mathbb{R}) \\
(y, x) & \mapsto\langle y, x\rangle
\end{array}
$$

maps vectors in \mathbb{M} with vectors in $\overline{\mathbb{M}}$ into numbers such that $\forall x, x^{\prime} \in \mathbb{M}, y, y^{\prime} \in \overline{\mathbb{M}}, \mu \in \mathbb{C}$:
(A1) $\left\langle y, \lambda x+x^{\prime}\right\rangle=\lambda\langle y, x\rangle+\left\langle y, x^{\prime}\right\rangle$, i.e. linear in \mathbb{M}
sesqui-linear
$\left\langle\lambda y+y^{\prime}, x\right\rangle=\lambda^{*}\langle y, x\rangle+\left\langle y^{\prime}, x\right\rangle$, i.e. anti-linear in $\overline{\mathbb{M}}$
(A2) $\langle y, x\rangle=\langle x, y\rangle^{*}$
Hermitean/conjugate symmetric
A vector space $\overline{\mathbb{M}}$ which does achieve this is the dual space to \mathbb{M}.
Def. Posititve definite scalar product: $\forall x \in \mathbb{M}:\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
Def. Length/Norm of $x:\|x\|:=\sqrt{\langle x, x\rangle}$
Def. x and y are orthogonal: $\langle y, x\rangle=0$
Triangle Inequality: $\|x+y\| \leq\|x\|+\|y\|$, and " $=$ " only iff $x=\lambda y$, i.e. x and y are parallel.
Cauchy-Schwarz Inequality: $\langle y, x\rangle^{2} \leq\langle x, x\rangle\langle y, y\rangle$, and " $=$ " only iff $x=\lambda y$, i.e. x and y are parallel.

