Supplement on Groups

Def. Group (\mathcal{G}, \circ): a set \mathcal{G} with binary operator "०" such that
(G1) "०": $\mathcal{G} \circ \mathcal{G} \rightarrow \mathcal{G}$, i.e. $\forall g_{1}, g_{2} \in \mathcal{G}: g_{1} \circ g_{2} \in \mathcal{G}$
closure under group-operation
(G2) $\forall g_{1}, g_{2}, g_{3} \in \mathcal{G}: g_{1} \circ\left(g_{2} \circ g_{3}\right)=\left(g_{1} \circ g_{2}\right) \circ g_{3}$ associativity
(G3) $\exists \mathrm{id} \equiv \mathrm{Id} \equiv 1 \equiv e \equiv E \equiv \cdots \in \mathcal{G}: \mathrm{id} \circ g=g \forall g \in \mathcal{G}$
(G4) $\forall g \in \mathcal{G} \exists g^{-1} \in \mathcal{G}: g \circ g^{-1}=\mathrm{id}$
inverse
Def. Abelian/Commutative Group: $g_{1} \circ g_{2}=g_{2} \circ g_{1} \forall g_{1}, g_{2} \in \mathcal{G}$, i.e. all elements commute.
Def. Non-Abelian/Non-Commutative Group: a group which is not Abelian.
Def. Finite/Discrete Group of Order N : group with $N<\infty$ elements.
Def. Subgroup of \mathcal{G} : a set of elements of \mathcal{G} which form a group by themselves.
Def. Representation: map $\mathcal{D}:(\mathcal{G}, \circ) \rightarrow(G, *)$ preserves group structure: $\mathcal{D}\left(g_{1} \circ g_{2}\right)=\mathcal{D}\left(g_{1}\right) * \mathcal{D}\left(g_{2}\right) \forall g_{1}, g_{2} \in$ $\mathcal{G} . \mathcal{D}$ acts on vector space \mathbb{M}, dimension of a representation $\operatorname{dim} \mathcal{D}=\operatorname{dim} \mathbb{M}$.

Def. Linear Rep.: rep. on the set of invertible $n \times n$ matrices, $* \equiv$ matrix multiplications.
Def. Trivial Rep.: $\forall g \in \mathcal{G}: \mathcal{D}(g)=\mathrm{id}$: Al elements mapped into unity. Exists for every group.
Def. Faithful Rep.: \mathcal{D} is bijective (i.e. 1-to-1 and onto): invertible iso-morphism.
Def. Fundamental Rep.: \mathcal{D} is faithful and defines \mathcal{G}.
Def. Reducible Rep.: A linear rep. for which one can find one matrix S which simultaneously brings all elements of \mathcal{G} into block-diagonal form. Then, \mathcal{D} is the direct sum of invariant subspaces.
Def. Irreducible Rep./Irrep: \mathcal{D} has no invariant subspaces except \mathbb{M} : no proper block-diagonal structure.
Def. Unitary Rep.: $\forall g \in \mathcal{G}: \mathcal{D}\left(g^{-1}\right)=\mathcal{D}^{\dagger}(g)$.
Def. Lie/Continuous Group (Version I): A group with at least one continuous parameter.
Def. Lie/Continuous Group (Version II): A group which is also a manifold (closed, smooth hypersurface without boundaries), parameterised by at least one continuous coordinate.

Def. Dimension of a Lie Group: $\operatorname{dim\mathcal {G}}=\operatorname{dim}$ hyper-surface $=$ number of independent continuous parameters = number of coordinates necessary to specify a point on \mathcal{G}.

Def. Compact Group: Volume of manifold is finite. Equivalent: Every $g \in \mathcal{G}$ is bounded.
Def. Connected Component of \mathcal{G} : All g for which a path $g(t)$ exists, parameterised by t, such that $g(0)=\overline{\operatorname{id}, g(t=1)=g \text {, and } \forall t \in[0 ; 1]}: g(t) \in \mathcal{G}$; i.e. g and id can be joined by a path entirely in \mathcal{G}.
Def. Lie Bracket: $\forall x, y, z \in L[\mathcal{G}]$ and $\alpha, \beta \in \mathbb{C}$:
(1) $[x, y] \in$ tangent space
closure
(2) $[\alpha x+\beta y, z]=\alpha[x, z]+\beta[y, z]$
(3) $[x, y]=-[y, x]$ anti-symmetric
(4) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ Jacobi-/Bianchi-identity

Def. Lie Algebra $L[\mathcal{G}]$ (Version I): Tangent space of \mathcal{G} in id, with "Lie Bracket". $\operatorname{dim} L[\mathcal{G}]=\operatorname{dim} \mathcal{G}$
Def. Lie Algebra $L[\mathcal{G}]$ (Version II): vector space L with "Lie Bracket" $L \times L \rightarrow L:[.,]:.(x, y) \mapsto \mathrm{i}[x, y]$.
Def. Basis of $L[\mathcal{G}] /$ Generators of \mathcal{G} : a $\operatorname{CONS}\left\{t^{a}\right\}, a=1, \ldots, \operatorname{dim} L[\mathcal{G}]$ which spans L, ortho-normalised by matrix scalar product $2 \operatorname{tr}\left[t^{a} t_{b}\right]=\delta_{b}^{a}$.

Exp-Map $\exp : L[\mathcal{G}] \rightarrow \mathcal{G}: X \in L[\mathcal{G}] \mapsto g \in \mathcal{G}: g=\exp i X$.
Generates all g in connected component of \mathcal{G}; bijective locally around id, but not globally.

