Supplement on Groups

Def. Group (\mathcal{G}, \circ) : a set \mathcal{G} with binary operator " \circ " such that

(G1) "o": $\mathcal{G} \circ \mathcal{G} \to \mathcal{G}$, i.e. $\forall g_1, g_2 \in \mathcal{G}$: $g_1 \circ g_2 \in \mathcal{G}$	closure under group-operation
(G2) $\forall g_1, g_2, g_3 \in \mathcal{G} : g_1 \circ (g_2 \circ g_3) = (g_1 \circ g_2) \circ g_3$	associativity
(G3) $\exists \operatorname{id} \equiv \operatorname{Id} \equiv 1 \equiv e \equiv E \equiv \dots \in \mathcal{G} : \operatorname{id} \circ g = g \; \forall g \in \mathcal{G}$	identity/unit element
(G4) $\forall g \in \mathcal{G} \exists g^{-1} \in \mathcal{G} : g \circ g^{-1} = \mathrm{id}$	inverse

Def. Abelian/Commutative Group: $g_1 \circ g_2 = g_2 \circ g_1 \forall g_1, g_2 \in \mathcal{G}$, i.e. all elements commute.

Def. Non-Abelian/Non-Commutative Group: a group which is not Abelian.

Def. Finite/Discrete Group of Order N: group with $N < \infty$ elements.

Def. Subgroup of \mathcal{G} : a set of elements of \mathcal{G} which form a group by themselves.

Def. Representation: map $\mathcal{D}: (\mathcal{G}, \circ) \to (\mathcal{G}, *)$ preserves group structure: $\mathcal{D}(q_1 \circ q_2) = \mathcal{D}(q_1) * \mathcal{D}(q_2) \ \forall q_1, q_2 \in \mathcal{D}(q_1)$ \mathcal{G} . \mathcal{D} acts on vector space \mathbb{M} , dimension of a representation dim \mathcal{D} = dim \mathbb{M} .

Def. Linear Rep.: rep. on the set of invertible $n \times n$ matrices, $* \equiv$ matrix multiplications.

Def. Trivial Rep.: $\forall g \in \mathcal{G} : \mathcal{D}(g) = \text{id}$: Al elements mapped into unity. Exists for every group.

Def. Faithful Rep.: \mathcal{D} is bijective (i.e. 1-to-1 and onto): invertible iso-morphism.

Def. Fundamental Rep.: \mathcal{D} is faithful and defines \mathcal{G} .

Def. Reducible Rep.: A linear rep. for which one can find one matrix S which simultaneously brings all elements of \mathcal{G} into block-diagonal form. Then, \mathcal{D} is the direct sum of invariant subspaces.

Def. Irreducible Rep./Irrep: \mathcal{D} has no invariant subspaces except \mathbb{M} : no proper block-diagonal structure.

Def. Unitary Rep.: $\forall g \in \mathcal{G} : \mathcal{D}(g^{-1}) = \mathcal{D}^{\dagger}(g).$

Def. Lie/Continuous Group (Version I): A group with at least one continuous parameter.

Def. Lie/Continuous Group (Version II): A group which is also a manifold (closed, smooth hypersurface without boundaries), parameterised by at least one continuous coordinate.

Def. Dimension of a Lie Group: $\dim \mathcal{G} = \dim$ hyper-surface = number of independent continuous parameters = number of coordinates necessary to specify a point on \mathcal{G} .

Def. Compact Group: Volume of manifold is finite. Equivalent: Every $q \in \mathcal{G}$ is bounded.

Def. Connected Component of \mathcal{G} : All g for which a path g(t) exists, parameterised by t, such that g(0) = id, g(t = 1) = g, and $\forall t \in [0; 1] : g(t) \in \mathcal{G}$; i.e. g and id can be joined by a path entirely in \mathcal{G} .

Def. <u>Lie Bracket</u>: $\forall x, y, z \in L[\mathcal{G}]$ and $\alpha, \beta \in \mathbb{C}$:

(1) $[x, y] \in \text{tangent space}$ closure (2) $[\alpha x + \beta y, z] = \alpha [x, z] + \beta [y, z]$

bilinear

Jacobi-/Bianchi-identity

(4)
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

(3) [x, y] = -[y, x]

Def. Lie Algebra $L[\mathcal{G}]$ (Version I): Tangent space of \mathcal{G} in id, with "Lie Bracket". dim $L[\mathcal{G}] = \dim \mathcal{G}$ **Def. Lie Algebra** $L[\mathcal{G}]$ (Version II): vector space L with "Lie Bracket" $L \times L \to L$: $[.,.] : (x, y) \mapsto i[x, y]$. **Def. Basis of** $L[\mathcal{G}]/\text{Generators of } \mathcal{G}$: a CONS $\{t^a\}, a = 1, \dots, \dim L[\mathcal{G}]$ which spans L, ortho-normalised by matrix scalar product $2\text{tr}[t^a t_b] = \delta_b^a$.

Exp-Map exp : $L[\mathcal{G}] \to \mathcal{G}$: $X \in L[\mathcal{G}] \mapsto g \in \mathcal{G}$: $g = \exp iX$. Generates all g in connected component of \mathcal{G} ; bijective locally around id, but not globally.