Additional Practise Sheet: Variations

Completely voluntary.

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded - the values are only meant as grade of difficulty here.

1. A Drummer's Problem (7P): The shape of a distorted drum-skin is described by the height $h(x, y)$ at point (x, y) by which the drum-skin is displaced from the flat, un-distorted skin. Thus, such a point has 3 -dimensional coordinates $(x, y, h(x, y))$.
a) ($4 \mathbf{P})$ Show: The area of the distorted drum is

$$
A[h]=\int_{\text {drum boundary }} \mathrm{d} x \mathrm{~d} y \sqrt{1+\left(\frac{\partial h}{\partial x}\right)^{2}+\left(\frac{\partial h}{\partial y}\right)^{2}}
$$

b) (1P) Show: For small distortions and with $\vec{\nabla}$ the gradient w.r. to x and y, the area reduces to

$$
A[h \ll 1]=\text { const. }+\frac{1}{2} \int_{\text {drum boundary }} \mathrm{d} x \mathrm{~d} y(\vec{\nabla} h(x, y))^{2} .
$$

c) $(\mathbf{2 P})$ Use the result of problem 2 to derive the corresponding Euler-Lagrange equation and verify that A is extremal when $h(x, y)$ obeys the two-dimensional Laplace equation.
2. Euler's Problem ($\mathbf{8 P}$): Determine the stability criterion for the buckling of a slender column under a compressive load, as posed in [SG, problem 1.4.a)]:

The elastic energy per unit length of a bent steel column is $Y I /\left(2 R^{2}\right)$. Here, R is the radius of curvature due to the bending, Y is Young's modulus of the steel and I is the moment of inertia of the rod's cross section about an axis through its centroid and perpendicular to the plane in which the rod is bent. A mass M is put on top of the massless column of length L, see figure. We assume that the rod is only slightly bent into the $y z$ plane and lies close to the z axis.

a) $(\mathbf{2 P})$ Show that when the rod buckles slighly (i.e. deforms with both ends remaining on the z axis) the total energy, including the gravitational potential energy of the loading mass M , is approximately (the prime denotes differentiation with respect to z):

$$
U[y]=\int_{0}^{L} \mathrm{~d} z\left[\frac{Y I}{2}\left(y^{\prime \prime}\right)^{2}-\frac{M g}{2}\left(y^{\prime}\right)^{2}\right]
$$

b) ($\mathbf{3 P}$) Solve the resulting Euler-Lagrange equations. Carefully examine the boundary conditions: The column is nailed to the floor. Since the column is very slender, it will tripp over when the weight is not right over its foot. Is the variation of y^{\prime} at the endpoints fixed?
Hint: If you think a bit, you do not have to extend the Euler-Lagrange equation to the case that the functional depends on higher derivatives, $y^{\prime \prime}(x)$ etc. If you use the extension, prove it.
c) $(\mathbf{3 P})$ Anrbitrary deformations of the static solution can be written as a Fourier series

$$
y(z)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi z}{L} .
$$

Discuss this form and the boundary conditions it needs to fulfill. Show that the solution to the Euler-Lagrange equation is a local minimum of $U[y]$ only when $\frac{M G}{I Y}<\left(\frac{n \pi}{L}\right)^{2}$. Interpret the implications for the stability of the column against buckling and collapse.

Please turn over.

3. A Surprising Perspective to a Familiar Equation (3P) We now explore a complex scalar field $\Phi(t, \vec{r})$, i.e. $\Phi=\Phi_{R}+\mathrm{i} \Phi_{I}$ has both a real and imaginary part, and $\Phi^{\dagger}=\Phi_{R}-\mathrm{i} \Phi_{I}$ is its complex conjugate. The field and its complex conjugate are best treated as independent variables. Derive the Euler-Lagrange equations for Φ and Φ^{\dagger} from the Lagrange density

$$
\mathcal{L}_{\Phi}=\frac{\mathrm{i}}{2} \Phi^{\dagger} \dot{\Phi}-\frac{1}{2 M}\left(\vec{\nabla} \Phi^{\dagger}\right) \cdot(\vec{\nabla} \Phi)+V \Phi^{\dagger} \Phi .
$$

Interpret and discuss the implications of your findings.
4. Compression Waves ($\mathbf{1 P}$) in an isotropic, homogeneous and elastic medium are described by

$$
\mathcal{L}=\frac{1}{2} \rho_{0}\left[\dot{\vec{\Phi}}^{2}-c_{s}^{2}(\vec{\nabla} \cdot \vec{\Phi})^{2}\right] .
$$

The field $\vec{\Phi}(t, \vec{r})$ is a three-component vector (one component for each direction in which the medium can be compressed). The two constants are: the density coefficient ρ_{0}; and the speed of sound c_{s}. Derive the Euler-Lagrange equations of this problem.
5. Standard Toy-Model of High-Energy Physics (1P): We now explore the complex scalar field $\Phi\left(x^{\mu}\right)$ of a spin-zero particle with mass m, i.e. $\Phi=\Phi_{R}+\mathrm{i} \Phi_{I}$ has both a real and imaginary part, and $\Phi^{\dagger}=\Phi_{R}-\mathrm{i} \Phi_{I}$ is its complex conjugate. The Lagrangean is

$$
\mathcal{L}_{\Phi}=\dot{\Phi}^{\dagger} \dot{\Phi}-\left(\vec{\nabla} \Phi^{\dagger}\right) \cdot(\vec{\nabla} \Phi)-m^{2} \Phi^{\dagger} \Phi .
$$

Derive the Euler-Lagrange equations for Φ and Φ^{\dagger}. The field and its complex conjugate are best treated as independent variables.
6. Merging Variational and Tensor Calculus (6P): Consider the functional

$$
J\left[f_{1}, f_{2}\right]=\int \mathrm{d} x\left[f_{1}(x ; y(x))+f_{2}(x ; y(x)) \frac{\partial y}{\partial x}\right]
$$

in which neither f_{1} nor f_{2} depend on derivatives of $y(x)$, and both functions vanish at infinity.
a) $(\mathbf{2 P})$ Show that $\frac{\partial f_{1}}{\partial y}=\frac{\partial f_{2}}{\partial x}$.
b) (4P) Prove that $f_{1}=\frac{\partial}{\partial x} g(x, y)$ and $f_{2}=\frac{\partial}{\partial y} g(x, y)$, where $g(x, y)$ is one common function.

