Additional Practise Sheet: Tensor Analysis

Completely voluntary.

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded - the values are only meant as grade of difficulty here.

1. (2P) Let \vec{U}, \vec{V} arbitrary vector fields without source and curl. Which sources and curls has $\vec{U} \times \vec{V}$?
2. Integration Theorems ($\mathbf{6 P}$): The following problems are independent of each other.
a) ($\mathbf{2 P}$) Calculate the surface integral over a cube, sphere and torus, each with volume V, in the field $\vec{A}(\vec{r})=\vec{r}$. Sketch \vec{A}.

Hint: Gauss' theorem allows you to avoid to actually calculate the surface integral.
b) (2P) Determine all exponents α for which the spherically symmetric vector field $\vec{A}(\vec{r})=|\vec{r}|^{\alpha} \overrightarrow{\mathrm{e}}_{r}$ is source-free everywhere.
c) Integral Theorems: Verify Stokes' theorem by explicit calculation in the field $\vec{A}=\left(x y, 4 y z, 3 x^{4} z\right)$. Pick as surface of integration a square with sides L, centred at the origin in the $x y$-plane.
d) ($\mathbf{2 P}$) Prove Green's theorems for arbitrary scalar fields Φ, Ψ (corollaries of Gauss' theorem):

$$
\begin{aligned}
& \int \mathrm{d}^{3} r((\vec{\nabla} \Phi) \cdot(\vec{\nabla} \Psi)+\Phi \Delta \Psi)=\oint \mathrm{d}^{2} \vec{s} \cdot(\vec{\nabla} \Psi) \Phi \\
& \int \mathrm{d}^{3} r(\Phi \Delta \Psi-\Psi \Delta \Phi)=\oint \mathrm{d}^{2} \vec{s} \cdot(\Phi \vec{\nabla} \Psi-\Psi \vec{\nabla} \Phi)
\end{aligned}
$$

3. Vector Potential (4P): Given the vector potential in spherical coordinates:

$$
\vec{A}(r, \theta, \phi)=g_{\mathrm{M}} \frac{1-\cos \theta}{r \sin \theta} \overrightarrow{\mathrm{e}}_{\phi}
$$

Determine its magnetic field $\vec{B}=\vec{\nabla} \times \vec{A}$, and show that \vec{A} has no sources anywhere.
4. Vector Potential (4P): Given the vector potential in cylindrical coordinates:

$$
\vec{A}(\rho, \phi, z)=-I \overrightarrow{\mathrm{e}}_{z} \ln \frac{\rho}{\rho_{0}} \quad \text { with } I, \rho_{0} \text { constants. }
$$

Find its magnetic field $\vec{B}=\vec{\nabla} \times \vec{A}$, and carefully show that \vec{A} has no sources anywhere.
5. Covariant ϵ-Tensor (4P):
a) (2P)Show $\tilde{\epsilon}^{i j k} \sqrt{\operatorname{det} \tilde{g}}=\epsilon^{i j k} \sqrt{\operatorname{det} g}$ under a change of basis for the contravariant components in 3 dimensions.
b) ($\mathbf{2 P}$) Determine now the transformation of the covariant components $\epsilon_{i j k}$. You may use that $\epsilon^{i j k} \epsilon_{i j k}=6$, after you have proven it.

Hint: Sub-section a) was not in vain.

Please turn over.

6. Proper and Pseudo-Tensors (1P) Convince yourself that the following matrix describes a rotation about the z-axis by an angle ϕ and a reflection at the $x y$-plane:

$$
\vec{a}^{\prime}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & -1
\end{array}\right) \vec{a}
$$

Compare the transformation property of the two vectors \vec{a}, \vec{b} with the one of $\vec{a} \times \vec{b}$. Why is $\vec{a} \times \vec{b}$ also called a "pseudo- or axial-vector" and $\epsilon^{i j k}$ a "pseudo-tensor"?
7. Volume Element as Tensor (5P): Consider two sets of coordinates ($\tilde{v}^{1}, \ldots, \tilde{v}^{n}$) and (v^{1}, \ldots, v^{n}) of an n-dimensional vector space.
a) (P) Show that the volume element $\mathrm{d} V=\mathrm{d} \tilde{v}^{1} \mathrm{~d} \tilde{v}^{2} \cdots \mathrm{~d} \tilde{v}^{n}$ transforms under transformations from one set of coordinates $\left(\tilde{v}^{1}, \ldots, \tilde{v}^{n}\right)$ of an n-dimensional vector space to another set $\left(v^{1}, \ldots, v^{n}\right)$ as
8. Parabolic-Cylindrical Coordinates (9P) (u, v, z) are defined in three-dimensional Euclidean space as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
u v \\
\frac{1}{2}\left(u^{2}-v^{2}\right) \\
z
\end{array}\right) .
$$

a) ($\mathbf{2 P}$) Derive the transformation matrix for the change of basis.
b) (3P) Calculate the metric tensor to verify that these are orthogonal curvilinear coordinates. Show that the scale factors are $h_{(u)}=h_{(v)}=\sqrt{u^{2}+v^{2}}, h_{(z)}=1$.
c) ($\mathbf{4 P}$) Sketch the "coordinate grid". If they exist, identify coordinate singularities.
d) ($\mathbf{2 P}$) Calculate the volume of the parameter region $u \in[0 ; 1], v \in[0 ; 1], z \in[0 ; 1]$.

