
Mathematical Methods of Theoretical Physics, GWU Autumn 2010 H.W. Griesshammer

Additional Practise Sheet; Green’s Functions and PDEs Completely voluntary.

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded – the values are only meant as grade of difficulty here.

1. Frobenius’ Method (6P): We will find a solution to the differential equation

4x f ′′(x) + 2(1 − x)f ′(x) − f(x) = 0 by Frobenius’ ansatz f(x) = xα

∞
∑

n=0

anxn a0 6= 0 .

a) (2P) Show that the indicial equation dictates that α = 0 or α = 1

2
.

b) (4P) For the case α = 0, derive the recurrence relation for the coefficients aj and construct the
closed answer.

Note: The case α = 1

2
is straight-forward and therefore boring. Do not do it.

2. A Two-dimensional Green’s Function (4P per correct, independent way) Show that the
Green’s function to the two-dimensional Poisson equation “without boundaries at infinity” is

G(~r,~r′) = α ln
|~r − ~r′|

C
,

where C is an arbitrary constant. Determine the constant α. There are several ways to do this
problem, given the toolchest developed in the last semester. Each correct way gives 4 points.

You might want to recall also some Green’s functions of one- and three-dimensional “empty” space.

3. Image Charges and Green’s Function for Plates at an Angle

(4P) A point charge q is located at ~r0 = (a, a, 0) in front of two infinitely
long, perfectly conducting, grounded plates which meet at the origin in an
angle of 90◦; see figure for details. The problem is three-dimensional. Use
the method of image charges (you need 3 images).
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a) (2P) Determine the potential everywhere.

b) (2P) Derive the induced surface charge density on the plates at z = 0. Sketch!

4. Spherical Harmonics (7P):

a) (2P) Determine the parity of Ylm(θ, φ).

b) (3P) Inspired by a good book, prove the addition theorem for spherical harmonics:

Pl(cos α) =
4π

2l + 1

l
∑

m=−l

Y ∗

lm(Ω) Ylm(Ω′) =

√

4π

2l + 1
Yl0(α, 0) ,

where α is the angle between (θ, φ) and (θ′, φ′), i.e. cos α = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′).

c) (2P) Construct the first three Legendre polynomials from the generating function.

Please turn over.
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5. Square with Boundary Conditions in Electrostatics (8P): The sides
of a square (length of sides L) are made of some material such that the bound-
ary conditions on the potential are

Φ(x, y) =

{

Φ0 sin 3πx
L

on the upper side, y = L

0 on all other sides.
.
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L

The problem is two-dimensional. There are no charges inside the square; see figure.

a) (1P) Are these boundary condition of the Dirichlet or von-Neumann type?

b) (5P) Determine the potential Φ(x, y) everywhere inside the square.

Hint: Show that you need to solve differential equations (you need to determine the constant of
separation α):

d2

dx2
X(x) = −α2 X(x) ,

d2

dy2
Y (y) = α2 Y (y) .

with the boundary conditions X(x = 0) = 0 = X(x = L) and Y (y = 0) = 0.

Fail-safe point: Φ(x, y) ∝ sin 3πx
L

[

e
3πy

L − e
−3πy

L

]

.

c) (2P) Using a pillbox construction, determine the charge density on the lower plate, y = 0.

6. Legendre Polynomials (2P) Prove that

1
∫

−1

dx Pl(x) = 0 for l a positive integer.

7. Electrostatic Multipole Moments (7P): An infinitesimally thin, con-
ducting, circular ring of radius R carries the homogeneous line charge density
µ. It is centred at the origin in the xy plane, see figure.

Hints: Determine all spherical multipole moments with respect to the origin.
x
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If multipole moments vanish, you can substitute a calculation by a short argument.

Recall that Yl0(θ, φ) ∝ Pl(cos θ), so that some results can also be written using Legendre polynomials
at a given value, which you need to look up.

a) (1P) Convince yourself that the charge density can take the form ρ(r, θ, φ) =
µ

r
δ(r−R) δ(cos θ).

Is this a Dirichlet or von-Neumann boundary problem?

b) (5P) Determine all spherical multipole moments for r ≫ R. Give explicit answers for the
monopole, dipole and quadrupole moments.

c) (1P) Determine the scalar potential far from the origin as expansion in a suitable, small param-
eter.

d) (3P) Determine the scalar potential close to the origin as expansion in a suitable, small parameter.


