Additional Practise Sheet: Complex Analysis

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded - the values are only meant as grade of difficulty here.

1. Complex Functions (7P): Let $z=x+\mathrm{i} y$ be complex, with $x(y)$ its real (imaginary) part. Given the complex functions:

$$
\frac{1+z^{2}}{1-z^{2}} \quad, \quad \cos z^{2} \quad, \quad \sqrt{z}
$$

Decompose each function into its real and imaginary part, $u+\mathrm{i} v$. Determine whether it obeys the Cauchy-Riemann condition $\partial u / \partial x=\partial v / \partial y, \partial u / \partial y=-\partial v / \partial x$ everywhere, or at nearly all points (and if so, state at which it does not). Is the function well-defined/analytic everywhere in the complex plane? Determine the nature of each of its singularities and their residues.
2. Complex Mapping ($\mathbf{2 P}$): This problem is really beyond the mainstream of the lecture. A complex function maps complex numbers into complex numbers. Since complex numbers can be interpreted as coordinates in a 2-dimensional plane, it is natural to study how a geometric figure in 2 dimensions is mapped from the complex z-plane into the complex w-plane by a complex function w.
Into which figure on the w-plane is the rectangle $\{z=x+\mathrm{i} y: 0 \leq x \leq 1,0 \leq y \leq \pi\}$ mapped by the complex exponential $w=\mathrm{e}^{z}$?
Point of information: This technique is again quite useful in two-dimensional Electrostatics. Say you have solved a problem without charges on that rectangle with given boundary conditions, getting $\Phi(x, y)$ as the real part of a complex function. Then you map this region via $z \rightarrow w(z)$ into a new region, and Φ to $\Phi(u(x, y), v(x, y))$. If the mapping w is analytic, the new Φ will again obey the Laplace equation, because the analytic function with real part $\Phi(x, y)$ is again analytic, i.e. its real and imaginary parts have to be harmonic. The "only" problem is to find that function w which maps your simple problem to the complicated problem you actually want to solve.
3. Complex Integration ($\mathbf{4 P}$): You can check your final results with an algebraic manipulation programme. If you use contour integration with neglecting an arc at infinity, discuss in detail that your function vanishes indeed on that arc.
a) (2P) Turn the following integral into a contour integral around the unit circle and evaluate:

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \vartheta}{a+\cos \vartheta}, a>1
$$

b) $(\mathbf{2 P})$ Evaluate the integral $\int_{0}^{\infty} \frac{\mathrm{d} x}{6 x^{4}+5 x^{2}+1}$
c) (2P) Calculate $\int_{-\infty}^{\infty} \mathrm{d} x \frac{\mathrm{e}^{-\mathrm{i} a x}}{x^{4}+5 x^{2}+4}$ for $a>0$ and for $a<0$.

Please turn over.

4. Heaviside's Step-Function (4P): Show that the step-function has the integral representation

$$
\theta(x):=\left\{\begin{array}{l}
1 \text { for } x>0 \\
0 \text { for } x<0
\end{array}\right\}=-\frac{1}{2 \pi \mathrm{i}} \lim _{\epsilon \searrow 0} \int_{-\infty}^{\infty} \mathrm{d} \omega \frac{\mathrm{e}^{-\mathrm{i} \omega x}}{\omega+\mathrm{i} \epsilon}, \epsilon>0
$$

and that its derivative is therefore Dirac's δ-distribution with the integral representation

$$
\delta(x)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega x}
$$

Show also the following useful generalisation (a arbitrary):

$$
\mp \mathrm{i} \mathrm{e}^{\mathrm{i} a x} \theta(\pm x)=\lim _{\epsilon \searrow 0} \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{(2 \pi)} \frac{\mathrm{e}^{-\mathrm{i} \omega x}}{\omega-(a \mp \mathrm{i} \epsilon)}, \epsilon>0
$$

5. Analytic Continuation (2P):
a) (1P) Show $\sin ^{2} z+\cos ^{2} z=1$ for $z \in \mathbb{C}$ by analytic continuation from $\sin ^{2} x+\cos ^{2} x=1 \forall x \in \mathbb{R}$.
b) (3P) Let $f(z)$ be analytic at $z=0$ and $f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$ for $n=1,2, \ldots$ What is $f(z)$?
6. Disperson Relation (3P): Apply the Kramers-Kronig relation to a medium which shows no absorption except at a frequency ω_{0}. That means the imaginary part of the frequency-dependent dielectric susceptibility is found to be strongly peaked around $\omega_{0}: \operatorname{Im}[\chi(\omega)]=\alpha \delta\left(\omega-\omega_{0}\right)$. Determine the real part of $\chi(\omega)$ from your observation. You may assume that $\chi(\omega)$ has no poles on the real axis and is causal.
