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Additional Practise Sheet: Complex Analysis Completely voluntary.

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded – the values are only meant as grade of difficulty here.

1. Complex Functions (7P): Let z = x + iy be complex, with x (y) its real (imaginary) part. Given
the complex functions:

1 + z2

1 − z2
, cos z2 ,

√
z

Decompose each function into its real and imaginary part, u + iv. Determine whether it obeys the
Cauchy-Riemann condition ∂u/∂x = ∂v/∂y, ∂u/∂y = −∂v/∂x everywhere, or at nearly all points
(and if so, state at which it does not). Is the function well-defined/analytic everywhere in the complex
plane? Determine the nature of each of its singularities and their residues.

2. Complex Mapping (2P): This problem is really beyond the mainstream of the lecture. A complex
function maps complex numbers into complex numbers. Since complex numbers can be interpreted as
coordinates in a 2-dimensional plane, it is natural to study how a geometric figure in 2 dimensions is
mapped from the complex z-plane into the complex w-plane by a complex function w.

Into which figure on the w-plane is the rectangle {z = x + iy : 0 ≤ x ≤ 1, 0 ≤ y ≤ π} mapped by the
complex exponential w = ez?

Point of information: This technique is again quite useful in two-dimensional Electrostatics. Say
you have solved a problem without charges on that rectangle with given boundary conditions, getting
Φ(x, y) as the real part of a complex function. Then you map this region via z → w(z) into a new
region, and Φ to Φ(u(x, y), v(x, y)). If the mapping w is analytic, the new Φ will again obey the
Laplace equation, because the analytic function with real part Φ(x, y) is again analytic, i.e. its real
and imaginary parts have to be harmonic. The “only” problem is to find that function w which maps
your simple problem to the complicated problem you actually want to solve.

3. Complex Integration (4P): You can check your final results with an algebraic manipulation pro-
gramme. If you use contour integration with neglecting an arc at infinity, discuss in detail that

your function vanishes indeed on that arc.

a) (2P) Turn the following integral into a contour integral around the unit circle and evaluate:

2π
∫

0

dϑ

a + cos ϑ
, a > 1

b) (2P) Evaluate the integral

∞
∫

0

dx

6x4 + 5x2 + 1

c) (2P) Calculate

∞
∫

−∞

dx
e−iax

x4 + 5x2 + 4
for a > 0 and for a < 0.

Please turn over.

4. Heaviside’s Step-Function (4P): Show that the step-function has the integral representation

θ(x) :=

{

1 for x > 0
0 for x < 0

}

= − 1

2πi
lim
ǫց0

∞
∫

−∞

dω
e−iωx

ω + iǫ
, ǫ > 0
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and that its derivative is therefore Dirac’s δ-distribution with the integral representation

δ(x) =

∞
∫

−∞

dω

2π
e−iωx .

Show also the following useful generalisation (a arbitrary):

∓i eiax θ(±x) = lim
ǫց0

∞
∫

−∞

dω

(2π)

e−iωx

ω − (a ∓ iǫ)
, ǫ > 0

5. Analytic Continuation (2P):

a) (1P) Show sin2 z + cos2 z = 1 for z ∈ C by analytic continuation from sin2 x+ cos2 x = 1 ∀x ∈ R.

b) (3P) Let f(z) be analytic at z = 0 and f(
1

n
) =

1

n2
for n = 1, 2, . . . . What is f(z)?

6. Disperson Relation (3P): Apply the Kramers-Kronig relation to a medium which shows no
absorption except at a frequency ω0. That means the imaginary part of the frequency-dependent
dielectric susceptibility is found to be strongly peaked around ω0: Im[χ(ω)] = αδ(ω − ω0). Determine
the real part of χ(ω) from your observation. You may assume that χ(ω) has no poles on the real axis
and is causal.


