Errata for Principles of Analysis

$$
5 / 28 / 2019
$$

- 47 The line in middle of page

$$
\sigma\left(\mathcal{O}_{1} \times \cdots \times \mathcal{O}_{k}\right)=\sigma\left(\mathcal{O}_{1}\right) \times \cdots \times \sigma\left(\mathcal{O}_{k}\right)=\mathcal{B}\left(\mathbb{R}^{d_{1}}\right) \otimes \cdots \otimes \mathcal{B}\left(\mathbb{R}^{d_{k}}\right)
$$

should read

$$
\sigma\left(\mathcal{O}_{1} \times \cdots \times \mathcal{O}_{k}\right)=\sigma\left(\mathcal{O}_{1}\right) \otimes \cdots \otimes \sigma\left(\mathcal{O}_{k}\right)=\mathcal{B}\left(\mathbb{R}^{d_{1}}\right) \otimes \cdots \otimes \mathcal{B}\left(\mathbb{R}^{d_{k}}\right)
$$

- 65 In line 7 from the top, the sentence beginning "Then the collection" should be replaced by the following:
If $H^{\varepsilon} \subseteq H$ is a closed interval with $\lambda\left(H^{\varepsilon}\right)>\lambda(H)-\varepsilon$, then the collection of intervals $\operatorname{int} H_{j}^{\varepsilon}$ is an open covering of H^{ε}, so there exists an $m \in \mathbb{N}$ such that

$$
H^{\varepsilon} \subseteq \operatorname{int} H_{1}^{\varepsilon} \cup \cdots \cup \operatorname{int} H_{m}^{\varepsilon} \subseteq H_{1}^{\varepsilon} \cup \cdots \cup H_{m}^{\varepsilon}
$$

- 65 In Exercise $1.72, \mathbb{R}$ should be replaced by \mathbb{R}^{d}.
- 77 Line 5 from top should read

$$
\mathcal{F}:=\left\{E \subseteq X: T_{i}^{-1}(E) \in \bigcap_{i \in \mathfrak{I}} \mathcal{F}_{i}\right\}
$$

- 79 To Proposition 2.2 .2 add the sentence: Let μ be a measure on \mathcal{F}.
- 84 Theorem 2.3.3 should begin: Let (X, \mathcal{F}, μ) be a measure space.
- 97 Line 14 from top: delete "the".
- 98 Replace Exercise 3.11 with the following:

Let $f \geq 0$ be Lebesgue integrable on \mathbb{R}^{d} and suppose that f is not zero a.e. Prove that the series $\sum_{n=1}^{\infty} n^{-p} f(n \boldsymbol{x})$ converges a.e. to an integrable function on \mathbb{R}^{d} iff $p>1-d$.

- 107 In last line of Exercise 3.36, switch lower and upper integrals and delete $d \lambda$ in the notation.
- 111 Replace Ex. 3.57 by the following: Let $f_{n}: X \rightarrow[0, \infty)$ be integrable, $f_{n+1} \leq f_{n}$ a.e. for all n, and $f_{n} \rightarrow 0$ on X. Show that $\sum_{n}(-1)^{n+1} f_{n}$ is integrable and that $\int\left(\sum_{n}(-1)^{n+1} f_{n}\right) d \mu=\sum_{n}(-1)^{n+1} \int f_{n} d \mu$.
- 124 In line one of the proof of $4,1,2$, the word "holds" should be replaced by the phrase "is zero".
- 130 In line 9 of proof of 4.2.2, $\lambda\left(U_{k} \backslash C_{k}\right)$ should be $\lambda^{d}\left(U_{k} \backslash C_{k}\right)$.
- 130 In line 8 of proof of $4.2 .3,2 M^{p}$ should be $(2 M)^{p}$.
- 131 Last sentence of the statement of Theorem 4.3 .1 should read: In particular, $f_{n} \xrightarrow{L^{\infty}} f$ implies that $f_{n} \xrightarrow{\text { a.u. }} f$.
- 142 Exercise 5.3. Last equation should read $\mu^{-}(E)=-\mu\left(E \cap Q^{c}\right)$.
- 142 Exercise 5.4. Add the hypothesis $\{x\} \in \mathcal{F}$.
- 150 Second sentence in argument of Case I: Change \mathfrak{F} to \mathscr{F}.
- 151 Second sentence in argument of Case II: Change \mathscr{F} to \mathcal{F}.
- 161 In the proof of 5.5 .4 , line 7 , the inequality should be $V_{\mathcal{P}}(f) \leq V_{\mathcal{Q}}(f)+V_{\mathcal{R}}(f)+$ $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right| \leq T(x)+V_{(x, y]}(f)$. Also in line 9 , the inequality should read $V_{\mathbf{Q}}(f)+V_{\mathcal{R}}(f) \leq T(y)$.
- 161 In the statement of 5.5 .6 , add the hypothesis that f be real-valued.
- 164 Second to last sentence on page should read: Since m such sums comprise $V_{\mathbb{Q}}(f)$, $V_{\mathcal{P}}(f) \leq V_{\mathcal{Q}}(f) \leq m \leq 1+2 \ell / \delta$, the last inequality by (\dagger).
- 208 The definition of C_{1}^{\prime} should read $C_{1}^{\prime}:=\left\{f \in \mathscr{X}^{\prime}:\|f\| \leq 1\right\}$.
- 209 Switch $1 / p$ and $1 / q$ in the last expression of Exercise 8.42.
- 218 The definition of positive homogeneity should $\operatorname{read} p(t \boldsymbol{x})=t p(\boldsymbol{x}), t \geq 0$.
- 221 In the definition of bidual, replace $\boldsymbol{x}=\left(x_{n}\right)$ in line 3 by \boldsymbol{x}.
- 223 Last line of 8.62 proof: "function" should read "functions".
- 228 In the last sentence of $\operatorname{Ex} 8.71$, remove the phrase "and \mathscr{Y} ".
- 243 In the statement of Proposition 9.1.4 remove the word "balanced". Also, at the end of the statement, add the sentence, "If U is balanced, then p_{U} is a seminorm."
- 243 Replace the beginning of line 5 of the proof of Proposition 9.1 .4 by "For homogeneity, let $c \in \mathbb{F}, c \neq 0$. If U is balanced, then $c^{-1} U=\left|c^{-1}\right| U$, hence". Replace line 8 by "Therefore, p_{U} is a Minkowski functional and a seminorm if U is balanced." Replace the last line of the proof by "By convexity, $\boldsymbol{x}=t \boldsymbol{x} / t+(1-t) 0 \in U$ ".
- 259 In line 6 , write " $y(1)=\operatorname{sgn} x_{n_{1}}$ and" before the equality $y(j)=\operatorname{sgn} x_{n_{k}}$.
- 261 In Ex. 10.5, replace $\sup \left\|f_{n}\right\|_{\infty}$ in (a) by $\sup \left\|f_{n}\right\|_{p}$.
- 263 In first line of proof of 10.2 .5 replace "sequence" by "bounded sequence".
- 274 In second line of proof of 11.1.3 replace $\|t \boldsymbol{x}+\alpha \boldsymbol{y}\|$ by $\|t \boldsymbol{x}+\alpha \boldsymbol{y}\|^{2}$.
- 284 Third line from bottom: replace F_{τ} by $F_{\mathscr{T}}$.
- 286 Replace Ex. 11.25 by the following: Let (X, \mathcal{F}, μ) be σ-finite, $\phi \in L^{\infty}(\mu)$, and let $M_{\phi} f:=f \phi$ on $L^{2}(\mu)$. Show that the orthogonal decomposition $\left(\operatorname{clran} M_{\phi}\right) \oplus$ $\left(\operatorname{clran} M_{\phi}\right)^{\perp}$ takes the form $f \mapsto f \phi+f(1-\phi)$ iff $\phi=\mathbf{1}_{E}$ for some $E \in \mathcal{F}$. Show that in this case ran M_{ϕ} is closed.
- 290 Sixth line from bottom: replace "all with $|c|=1$ " by "all c with $|c|=1$ "
- 291 Bottom line: replace $\left(\boldsymbol{x} \mid T_{n} \boldsymbol{y}\right)=\left(T_{n} \boldsymbol{x} \mid \boldsymbol{y}\right)=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left(T_{n} \boldsymbol{x}+i^{k} \boldsymbol{y} \mid T_{n} \boldsymbol{x}+i^{k} \boldsymbol{y}\right)$ by $\left(\boldsymbol{x} \mid T_{n} \boldsymbol{y}\right)=\left(\sqrt{T_{n}} \boldsymbol{x} \mid \sqrt{T_{n}} \boldsymbol{y}\right)=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left(T_{n}\left(\boldsymbol{x}+i^{k} \boldsymbol{y}\right) \mid \boldsymbol{x}+i^{k} \boldsymbol{y}\right)$
- 297 Last part of proof of 12.2.1: replace y_{j} by x_{j}

