Errata for Principles of Analysis

5/28/2019

• 47 The line in middle of page

$$\sigma(\mathfrak{O}_1 \times \cdots \times \mathfrak{O}_k) = \sigma(\mathfrak{O}_1) \times \cdots \times \sigma(\mathfrak{O}_k) = \mathfrak{B}(\mathbb{R}^{d_1}) \otimes \cdots \otimes \mathfrak{B}(\mathbb{R}^{d_k}).$$

should read

$$\sigma(\mathfrak{O}_1 \times \cdots \times \mathfrak{O}_k) = \sigma(\mathfrak{O}_1) \otimes \cdots \otimes \sigma(\mathfrak{O}_k) = \mathfrak{B}(\mathbb{R}^{d_1}) \otimes \cdots \otimes \mathfrak{B}(\mathbb{R}^{d_k}).$$

• **65** In line 7 from the top, the sentence beginning "Then the collection" should be replaced by the following:

If $H^{\varepsilon} \subseteq H$ is a closed interval with $\lambda(H^{\varepsilon}) > \lambda(H) - \varepsilon$, then the collection of intervals int H_i^{ε} is an open covering of H^{ε} , so there exists an $m \in \mathbb{N}$ such that

$$H^{\varepsilon} \subseteq \operatorname{int} H_1^{\varepsilon} \cup \cdots \cup \operatorname{int} H_m^{\varepsilon} \subseteq H_1^{\varepsilon} \cup \cdots \cup H_m^{\varepsilon}.$$

- 65 In Exercise 1.72, \mathbb{R} should be replaced by \mathbb{R}^d .
- 77 Line 5 from top should read

$$\mathcal{F} := \Big\{ E \subseteq X : T_i^{-1}(E) \in \bigcap_{i \in \mathfrak{I}} \mathcal{F}_i \Big\}.$$

- 79 To Proposition 2.2.2 add the sentence: Let μ be a measure on \mathcal{F} .
- 84 Theorem 2.3.3 should begin: Let (X, \mathcal{F}, μ) be a measure space.
- 97 Line 14 from top: delete "the".
- 98 Replace Exercise 3.11 with the following:
- Let $f \ge 0$ be Lebesgue integrable on \mathbb{R}^d and suppose that f is not zero a.e. Prove that the series $\sum_{n=1}^{\infty} n^{-p} f(nx)$ converges a.e. to an integrable function on \mathbb{R}^d iff p > 1 d.
- 107 In last line of Exercise 3.36, switch lower and upper integrals and delete $d\lambda$ in the notation.
- 111 Replace Ex. 3.57 by the following: Let $f_n : X \to [0, \infty)$ be integrable, $f_{n+1} \leq f_n$ a.e. for all n, and $f_n \to 0$ on X. Show that $\sum_n (-1)^{n+1} f_n$ is integrable and that

$$\int \left(\sum_{n} (-1)^{n+1} f_n\right) d\mu = \sum_{n} (-1)^{n+1} \int f_n \, d\mu.$$

- 124 In line one of the proof of 4,1,2, the word "holds" should be replaced by the phrase "is zero".
- 130 In line 9 of proof of 4.2.2, $\lambda(U_k \setminus C_k)$ should be $\lambda^d(U_k \setminus C_k)$.
- 130 In line 8 of proof of 4.2.3, $2M^p$ should be $(2M)^p$.
- 131 Last sentence of the statement of Theorem 4.3.1 should read: In particular, $f_n \xrightarrow{L^{\infty}} f$ implies that $f_n \xrightarrow{a.u.} f$.
- 142 Exercise 5.3. Last equation should read $\mu^{-}(E) = -\mu(E \cap Q^{c})$.

- 142 Exercise 5.4. Add the hypothesis $\{x\} \in \mathcal{F}$.
- 150 Second sentence in argument of Case I: Change \mathfrak{F} to \mathcal{F} .
- 151 Second sentence in argument of Case II: Change \mathcal{F} to \mathcal{F} .
- 161 In the proof of 5.5.4, line 7, the inequality should be $V_{\mathcal{P}}(f) \leq V_{\Omega}(f) + V_{\mathcal{R}}(f) + |f(x_{k+1}) f(x_k)| \leq T(x) + V_{(x,y]}(f)$. Also in line 9, the inequality should read $V_{\Omega}(f) + V_{\mathcal{R}}(f) \leq T(y)$.
- 161 In the statement of 5.5.6, add the hypothesis that f be real-valued.
- 164 Second to last sentence on page should read: Since m such sums comprise $V_{\Omega}(f)$, $V_{\mathcal{P}}(f) \leq V_{\Omega}(f) \leq m \leq 1 + 2\ell/\delta$, the last inequality by (†).
- 208 The definition of C'_1 should read $C'_1 := \{f \in \mathcal{X}' : ||f|| \le 1\}.$
- 209 Switch 1/p and 1/q in the last expression of Exercise 8.42.
- 218 The definition of positive homogeneity should read $p(tx) = tp(x), t \ge 0$.
- 221 In the definition of bidual, replace $\boldsymbol{x} = (x_n)$ in line 3 by \boldsymbol{x} .
- 223 Last line of 8.62 proof: "function" should read "functions".
- 228 In the last sentence of Ex 8.71, remove the phrase "and \mathcal{Y} ".
- 243 In the statement of Proposition 9.1.4 remove the word "balanced". Also, at the end of the statement, add the sentence, "If U is balanced, then p_U is a seminorm."
- 243 Replace the beginning of line 5 of the proof of Proposition 9.1.4 by "For homogeneity, let $c \in \mathbb{F}$, $c \neq 0$. If U is balanced, then $c^{-1}U = |c^{-1}|U$, hence". Replace line 8 by "Therefore, p_U is a Minkowski functional and a seminorm if U is balanced." Replace the last line of the proof by "By convexity, $x = t x/t + (1-t)0 \in U$ ".
- 259 In line 6, write " $y(1) = \operatorname{sgn} x_{n_1}$ and" before the equality $y(j) = \operatorname{sgn} x_{n_k}$.
- 261 In Ex. 10.5, replace $\sup ||f_n||_{\infty}$ in (a) by $\sup ||f_n||_{p}$.
- 263 In first line of proof of 10.2.5 replace "sequence" by "bounded sequence".
- 274 In second line of proof of 11.1.3 replace $||t\boldsymbol{x} + \alpha \boldsymbol{y}||$ by $||t\boldsymbol{x} + \alpha \boldsymbol{y}||^2$.
- 284 Third line from bottom: replace F_{τ} by $F_{\mathcal{T}}$.
- 286 Replace Ex. 11.25 by the following: Let (X, \mathcal{F}, μ) be σ -finite, $\phi \in L^{\infty}(\mu)$, and let $M_{\phi}f := f\phi$ on $L^{2}(\mu)$. Show that the orthogonal decomposition $(\operatorname{clran} M_{\phi}) \oplus (\operatorname{clran} M_{\phi})^{\perp}$ takes the form $f \mapsto f\phi + f(1 - \phi)$ iff $\phi = \mathbf{1}_{E}$ for some $E \in \mathcal{F}$. Show that in this case ran M_{ϕ} is closed.
- 290 Sixth line from bottom: replace "all with |c| = 1" by "all c with |c| = 1"
- 291 Bottom line: replace $(\boldsymbol{x} \mid T_n \boldsymbol{y}) = (T_n \boldsymbol{x} \mid \boldsymbol{y}) = \frac{1}{4} \sum_{k=1}^4 i^k (T_n \boldsymbol{x} + i^k \boldsymbol{y} \mid T_n \boldsymbol{x} + i^k \boldsymbol{y})$ by $(\boldsymbol{x} \mid T_n \boldsymbol{y}) = (\sqrt{T_n} \boldsymbol{x} \mid \sqrt{T_n} \boldsymbol{y}) = \frac{1}{4} \sum_{k=1}^4 i^k (T_n (\boldsymbol{x} + i^k \boldsymbol{y}) \mid \boldsymbol{x} + i^k \boldsymbol{y})$
- 297 Last part of proof of 12.2.1: replace y_j by x_j