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I I will introduce an sl(N)-homology associated to links colored
by integers, which generalizes the Khovanov-Rozansky
sl(N)-homology.

I The construction of this colored sl(N)-homology uses matrix
factorizations over rings of symmetric polynomials.

I I conjecture that this colored sl(N)-homology decategorifies to
the quantum sl(N)-polynomial of links colored by exterior
powers of the defining representation.
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Rings of Symmetric and Partially Symmetric Polynomials

I An alphabet is a set X = {x1, . . . , xm} of finitely many
indeterminants. Denote by Sym(X) the ring of symmetric
polynomials in X with complex coefficients. The grading on
Sym(X) is given by deg xj = 2.
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Rings of Symmetric and Partially Symmetric Polynomials

I An alphabet is a set X = {x1, . . . , xm} of finitely many
indeterminants. Denote by Sym(X) the ring of symmetric
polynomials in X with complex coefficients. The grading on
Sym(X) is given by deg xj = 2.

I Let X1, . . . , Xl be a collection of pairwise disjoint alphabets.
Denote by Sym(X1| · · · |Xl) the ring of polynomials in
X1 ∪ · · · ∪ Xl over C that are symmetric in each Xi , which is
naturally a Sym(X1 ∪ · · · ∪ Xl)-module. This is a free module
whose structure is known.
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Simple Symmetric Polynomials

For an alphabet X = {x1, . . . , xm},

I

elementary: Xk :=
∑

1≤i1<i2<···<ik≤m

xi1xi1 · · · xik ,

complete: hk(X) :=
∑

1≤i1≤i2≤···≤ik≤m

xi1xi1 · · · xik ,

power sum: pk(X) :=

m∑

i=1

xk
i .
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Simple Symmetric Polynomials

For an alphabet X = {x1, . . . , xm},

I

elementary: Xk :=
∑

1≤i1<i2<···<ik≤m

xi1xi1 · · · xik ,

complete: hk(X) :=
∑

1≤i1≤i2≤···≤ik≤m

xi1xi1 · · · xik ,

power sum: pk(X) :=

m∑

i=1

xk
i .

I

Sym(X) = C[X1, . . . ,Xm] = C[h1(X), . . . , hm(X)]

= C[p1(X), . . . , pm(X)]
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Cohomology of Complex Grassmannian

Denote by Gm,N the complex (m,N) Grassmannian. Let X and Y

be alphabets of m and N − m indeterminants.

I Usual cohomology:

H∗(Gm,N ; C) ∼= Sym(X)/(hN+1−m(X), hN+2−m(X), . . . , hN(X))

as graded C-algebras.
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Cohomology of Complex Grassmannian

Denote by Gm,N the complex (m,N) Grassmannian. Let X and Y

be alphabets of m and N − m indeterminants.

I Usual cohomology:

H∗(Gm,N ; C) ∼= Sym(X)/(hN+1−m(X), hN+2−m(X), . . . , hN(X))

as graded C-algebras.

I GL(N; C)-equivariant cohomology:

H∗
GL(N;C)(Gm,N ; C) ∼= Sym(X|Y)

as graded Sym(X ∪ Y)-algebras.
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Grading Shifts

Let M be a graded vector space. For j ∈ Z, define M{qj} to be M

with grading shifted by j , i.e. M{qj} = M as ungraded R-modules
and, for every homogeneous element m ∈ M,
degM{qj} m = j + degM m. More generally, let f (q) =

∑l
j=k ajq

j

be a Laurent polynomial whose coefficients are non-negative
integers. Define

M{f (q)} =

l⊕

j=k

(M{qj} ⊕ · · · ⊕ M{qj}
︸ ︷︷ ︸

aj−fold

).
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Quantum Integers

Quantum integers are a particular class of such Laurent
polynomials. We use the following definitions:

[j] :=
qj − q−j

q − q−1
,

[j]! := [1] · [2] · · · [j],
[
j

k

]

:=
[j]!

[k]! · [j − k]!
.

It is well known that
[
m + n

n

]

= q−mn
∑

λ=(λ1≥···≥λm): l(λ)≤m, λ1≤n

q2|λ|.
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Graded Matrix Factorizations

Fix an integer N > 0. Let R be a graded commutative unital
C-algebra, and w a homogeneous element of R with
deg w = 2N + 2.
A graded matrix factorization M over R with potential w is a
collection of two graded free R-modules M0, M1 and two
homogeneous R-module homomorphisms d0 : M0 → M1,
d1 : M1 → M0 of degree N + 1, called differential maps, s.t.

d1 ◦ d0 = w · idM0
, d0 ◦ d1 = w · idM1

.

We usually write M as

M0
d0−→ M1

d1−→ M0.
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Koszul Matrix Factorizations

If a0, a1 ∈ R are homogeneous s.t. deg a0 + deg a1 = 2N + 2, then
denote by (a0, a1)R the graded matrix factorization

R
a0−→ R{qN+1−deg a0}

a1−→ R ,

which has potential a0a1.
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Koszul Matrix Factorizations (cont’d)

More generally, if a1,0, a1,1, . . . , ak,0, ak,1 ∈ R are homogeneous
with deg aj ,0 + deg aj ,1 = 2N + 2, then define







a1,0, a1,1

a2,0, a2,1

. . . . . .
ak,0, ak,1







R

to be the tenser product

(a1,0, a1,1)R ⊗R (a2,0, a2,1)R ⊗R · · · ⊗R (ak,0, ak,1)R ,

which is a graded matrix factorization with potential
∑k

j=1 aj ,0 · aj ,1.
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The Categories HMFR ,w and hmfR ,w

If M,M ′ are both graded matrix factorizations over R with
potential w , then HomR(M,M ′) is a graded Z2-chain complex of
R-modules. Its homology, HomHMF(M,M ′), is the R-module of
homotopy classes of morphisms of matrix factorizations from M to
M ′. Denote by Homhmf the C-subspace of HomHMF(M,M ′) of
homogenous elements of bi-degree (0, 0).

Category Objects Morphisms
HMFR,w all homotopically finite graded matrix HomHMF

factorizations over R of potential w

with quantum gradings bounded below
hmfR,w same as above Homhmf
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The Krull-Schmidt Property

An additive category C is called Krull-Schmidt if

I every object of C is isomorphic to a finite direct sum
A1 ⊕ · · · ⊕ An of indecomposible objects of C;

I and, if A1 ⊕ · · · ⊕ An
∼= A′

1 ⊕ · · · ⊕ A′
l , where

A1, . . . An,A
′
1, . . . ,A

′
l are indecomposible objects of C, then

n = l and there is a permutation σ of {1, . . . , n} such that
Ai

∼= A′
σ(i) for i = 1, . . . , n.

Theorem (Khovanov-Rozansky)

If R is a polynomial ring with homogeneous indeterminants of

positive gradings and w is a homogeneous element of R with

deg w = 2N + 2, then hmfR,w and hChb(hmfR,w ) are both

Krull-Schmidt, where hChb(hmfR,w ) is the homotopy category of

bounded chain complexes over hmfR,w .
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MOY Graphs

An (embedded) MOY graph is an oriented plane graph with each
edge colored by a non-negative integer such that

I for every vertex v with valence at least 2, the sum of integers
coloring the edges entering v is equal to the sum of integers
coloring the edges leaving v ,

I through each such vertex v of Γ, there is a straight line Lv so
that all the edges entering v enter through one side of Lv and
all edges leaving v leave through the other side of Lv .
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Markings

A marking of an MOY graph Γ consists the following:

1. A finite collection of marked points on Γ such that
I every edge of Γ has at least one marked point;
I all the end points (vertices of valence 1) are marked;
I none of the interior vertices (vertices of valence at least 2) is

marked.

2. An assignment of pairwise disjoint alphabets to the marked
points such that the alphabet associated to a marked point on
an edge of color m has m indeterminants.
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The Matrix Factorization Associated to a Vertex

I

i1

X1

K

i2

X2 · · ·

�

ik

Xk

v m := i1 + i2 + · · · + ik = j1 + j2 + · · · + jl

�
j1

Y1

�
j2

Y2

· · ·I jl

Yl

Let X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yl . Denote by Xj and
Yj the j-th elementary symmetric polynomials in X and Y.

C (v) :=







U1 X1 − Y1

U2 X2 − Y2

. . . . . .
Um Xm − Ym







Sym(X1|...|Xk |Y1|...|Yl )

{q−
∑

1≤s<t≤k is it},

where Uj is homogeneous of degree 2N + 2 − 2j and
∑m

j=1(Xj − Yj)Uj = pN+1(X) − pN+1(Y).
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Decompositions (I & II)

(I) C (

6
6

6

?

m

m

m+n

n

) ' C (
6
m

){
[
N−m

n

]
} 〈n〉.

(II) C (

6

6
6 6

m+n

m+n

nm ) ' C (
6
m+n

){
[
m+n

n

]
}.
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Decompositions (III & IV)

(III) C (

�
-6

R

�
?

I 	

1

1

1

m

m

m

m+1

m+1

) ' C ( 6

?
1 m) ⊕ C (

�R
?

I	

1

1

m

m

m−1 ){[N − m − 1]} 〈1〉.

(IV) C (

6

6
6

-
6

�
6

6

1

l

l+n

m+l−1

m

m−n

l+n−1

n
) ' C (

6

6

6

6
�

1 m+l−1

l m

l−1
){

[
m−1

n

]
} ⊕ C (

�]

6

] �

1 m+l−1

l m

m+l
){

[
m−1
n−1

]
}.
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Decompositions (V)

(V) C (

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m+l

n+l

m+l−k ) '
⊕m

j=max{m−n,0} C (

6

6

6

6

6

6�

-
n

m

m−j

j

n+j−m

m+l

n+l

n+l+j ){
[

l
k−j

]
}.

l = 0 ⇒ C(

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m

n

m−k ) ' C(

6

6

6

6

6

6�

-
n

m

m−k

k

n+k−m

m

n

n+k ).

l = 1 ⇒ C(

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m+1

n+1

m+1−k ) ' C(

6

6

6

6

6

6�

-
n

m

m−k

k

n+k−m

m+1

n+1

n+1+k) ⊕ C(

6

6

6

6

6

6�

-
n

m

m−k+1

k−1

n+k−1−m

m+1

n+1

n+k ).
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Marking of Colored Link Diagrams

Recall that N is a fixed positive integer. (It is the “N” in “sl(N)”.)
Given a diagram D of a link whose components are colored by
integers ∈ {1, . . . ,N}. A marking of D consists the following:

1. A finite collection of marked points on D such that
I every arc between two crossings has at least one marked point;
I none of the crossings is marked.

2. An assignment of pairwise disjoint alphabets to the marked
points such that the alphabet associated to a marked point on
an arc of color m has m indeterminants.
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The Chain Complex of a Colored Crossing

Assume n ≥ m and temporarily forget the quantum grading shifts.

C ( �I
m n

) should be an object of hChb(HMF) of the form

0 → C (

�I

I�
6

n m

m n

n+1)
d+
m

−−→ · · ·
d+
k+1

−−−→ C (

6
6
6

6
6
6

�
-

n

m

n+k

k
m

n

m−k )
d+
k

−−→ C (

6
6
6

6
6
6

�
-

n

m

n+k−1

k−1
m

n

m−k+1)
d+
k−1

−−−−→ · · ·
d+
1

−−→ C (

6

6

6

6-
m n

n m

n−m ) → 0,

where d+
k is homogeneous of quantum degree 1.

If we assume d+
k is not homotopic to 0, then there is a unique

chain complex of this form. (If m = n = 1, then this chain
complex is isomorphic to that defined by Khovanov and Rozansky.)
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The Chain Complex of a Colored Crossing (cont’d)

I The lowest quantum grading of

HomHMF(C (

6
6
6

6
6
6

�
-

n

m

n+k

k
m

n

m−k),C (

6
6
6

6
6
6

�
-

n

m

n+k−1

k−1
m

n

m−k+1))

is 1 and the space of homogeneous elements of quantum
degree 1 is 1-dimensional.
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The Chain Complex of a Colored Crossing (cont’d)

I The lowest quantum grading of

HomHMF(C (

6
6
6

6
6
6

�
-

n

m

n+k

k
m

n

m−k),C (

6
6
6

6
6
6

�
-

n

m

n+k−1

k−1
m

n

m−k+1))

is 1 and the space of homogeneous elements of quantum
degree 1 is 1-dimensional.

I The lowest quantum grading of

HomHMF(C (

6
6
6

6
6
6

�
-

n

m

n+k

k
m

n

m−k),C (

6
6
6

6
6
6

�
-

n

m

n+k−2

k−2
m

n

m−k+2)) is 4.
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Fork Sliding

Lemma

C (
6

�I

-

m l

m+l

n

) ' C (
6

�I -m l

m+l

n ).
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Reidemeister Moves – Main Theorem

Theorem
The Z2 ⊕ Z ⊕ Z-graded colored sl(N)-homology is invariant under

Reidemeister moves.
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Proof

n

OO

m

OO

m

OO

n

OO

m
OO

1
__

m−1

??

n
OO

n−1

__

1

??

m

OO

n

OO

m
OO

n
OO

m−1 n−1

OOOOOO

1

OO

1

n

OO

m

OO

m
OO

1

__

m−1

??

m

OO

n
OO

n−1

__

1

??

n

OO
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Open Problems

I Is the Z2-grading concentrated?
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Open Problems

I Is the Z2-grading concentrated?
I Is the Euler characteristic equal to the corresponding colored

sl(N)-polynomial? (MOY equations do not completely determine the
colored graphic sl(N)-polynomial.)
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Open Problems

I Is the Z2-grading concentrated?
I Is the Euler characteristic equal to the corresponding colored

sl(N)-polynomial? (MOY equations do not completely determine the
colored graphic sl(N)-polynomial.)

I Functorality? (Khovanov and Rozansky’s proof should carry over. But

the algebra looks much harder.)
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Generalizations

I Lee-Gornik deformation. (Definition and invariance look easy. The
Lee-Gornik basis is hard to construct. We can probably still get colored
sl(N)-Rasmussen invariants and genus bounds.)
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Generalizations

I Lee-Gornik deformation. (Definition and invariance look easy. The
Lee-Gornik basis is hard to construct. We can probably still get colored
sl(N)-Rasmussen invariants and genus bounds.)

I Categorification of the colored sl(N)-polynomial of links
colored by general representations of sl(N). (Probably do not
carry any more topological information.)
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Generalizations

I Lee-Gornik deformation. (Definition and invariance look easy. The
Lee-Gornik basis is hard to construct. We can probably still get colored
sl(N)-Rasmussen invariants and genus bounds.)

I Categorification of the colored sl(N)-polynomial of links
colored by general representations of sl(N). (Probably do not
carry any more topological information.)

I Categorification of the sl(N)-invariant for 3-manifolds. (Holy

Grail?)
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Related Research

I Yonezawa used simpler algebra to construct a weaker
invariant. (Poincaré polynomial of the colored sl(N)-homology.)
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Related Research

I Yonezawa used simpler algebra to construct a weaker
invariant. (Poincaré polynomial of the colored sl(N)-homology.)

I Cautis and Kamnitzer’s work based on derived category of
coherent sheaves on certain flag-like varieties. (Should generalize
to colored situation and give an isomorphic homology?)
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Related Research

I Yonezawa used simpler algebra to construct a weaker
invariant. (Poincaré polynomial of the colored sl(N)-homology.)

I Cautis and Kamnitzer’s work based on derived category of
coherent sheaves on certain flag-like varieties. (Should generalize
to colored situation and give an isomorphic homology?)

I Webster and Williamson’s colored HOMFLY-PT homology via
the equivariant cohomology of general linear groups and
related spaces. (Connected by a generalized Rasmussen spectral
sequence?)

Hao Wu A colored sl(N)-homology for links in S3



Overview
Algebraic Background

MOY Graphs and Their Matrix Factorizations
Colored Link Homology

Definition
Invariance
Open Problems and More

Related Research

I Yonezawa used simpler algebra to construct a weaker
invariant. (Poincaré polynomial of the colored sl(N)-homology.)

I Cautis and Kamnitzer’s work based on derived category of
coherent sheaves on certain flag-like varieties. (Should generalize
to colored situation and give an isomorphic homology?)

I Webster and Williamson’s colored HOMFLY-PT homology via
the equivariant cohomology of general linear groups and
related spaces. (Connected by a generalized Rasmussen spectral
sequence?)

I Kronheimer and Mrowka’s SU(n)-homology based on
instanton gauge theory. (Has a colored version. Connected by a
spectral sequence?)
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Related Research

I Yonezawa used simpler algebra to construct a weaker
invariant. (Poincaré polynomial of the colored sl(N)-homology.)

I Cautis and Kamnitzer’s work based on derived category of
coherent sheaves on certain flag-like varieties. (Should generalize
to colored situation and give an isomorphic homology?)

I Webster and Williamson’s colored HOMFLY-PT homology via
the equivariant cohomology of general linear groups and
related spaces. (Connected by a generalized Rasmussen spectral
sequence?)

I Kronheimer and Mrowka’s SU(n)-homology based on
instanton gauge theory. (Has a colored version. Connected by a
spectral sequence?)

I Webster’s categorify’em all approach.
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