A colored $\mathfrak{s l}(N)$-homology for links in S^{3}

Hao Wu

The George Washington University

Overview

Algebraic Background
Symmetric Polynomials
Matrix Factorizations
MOY Graphs and Their Matrix Factorizations
Definition
Decompositions
Colored Link Homology
Definition
Invariance
Open Problems and More

- I will introduce an $\mathfrak{s l}(N)$-homology associated to links colored by integers, which generalizes the Khovanov-Rozansky $\mathfrak{s l}(N)$-homology.
- The construction of this colored $\mathfrak{s l}(N)$-homology uses matrix factorizations over rings of symmetric polynomials.
- I conjecture that this colored $\mathfrak{s l}(N)$-homology decategorifies to the quantum $\mathfrak{s l}(N)$-polynomial of links colored by exterior powers of the defining representation.

Rings of Symmetric and Partially Symmetric Polynomials

- An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminants. Denote by $\operatorname{Sym}(\mathbb{X})$ the ring of symmetric polynomials in \mathbb{X} with complex coefficients. The grading on $\operatorname{Sym}(\mathbb{X})$ is given by $\operatorname{deg} x_{j}=2$.

Rings of Symmetric and Partially Symmetric Polynomials

- An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminants. Denote by $\operatorname{Sym}(\mathbb{X})$ the ring of symmetric polynomials in \mathbb{X} with complex coefficients. The grading on $\operatorname{Sym}(\mathbb{X})$ is given by $\operatorname{deg} x_{j}=2$.
- Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{/}$be a collection of pairwise disjoint alphabets. Denote by $\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ the ring of polynomials in $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}$, over \mathbb{C} that are symmetric in each \mathbb{X}_{i}, which is naturally a $\operatorname{Sym}\left(\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{l}\right)$-module. This is a free module whose structure is known.

Simple Symmetric Polynomials

For an alphabet $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$,
$\begin{array}{rlrl}\text { elementary: } & X_{k}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\ \text { complete: } & & h_{k}(\mathbb{X}):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq m} x_{i_{1} x_{i_{1}} \cdots x_{i_{k}},} & \\ \text { power sum: } & & p_{k}(\mathbb{X}):=\sum_{i=1}^{m} x_{i}^{k} .\end{array}$

Simple Symmetric Polynomials

For an alphabet $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$,

$$
\begin{array}{ll}
\text { elementary: } & X_{k}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\
\text { complete: } & h_{k}(\mathbb{X}):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\
\text { power sum: } & p_{k}(\mathbb{X}):=\sum_{i=1}^{m} x_{i}^{k} \\
\operatorname{Sym}(\mathbb{X})= & \mathbb{C}\left[X_{1}, \ldots, X_{m}\right]=\mathbb{C}\left[h_{1}(\mathbb{X}), \ldots, h_{m}(\mathbb{X})\right] \\
& =\mathbb{C}\left[p_{1}(\mathbb{X}), \ldots, p_{m}(\mathbb{X})\right]
\end{array}
$$

Cohomology of Complex Grassmannian

Denote by $G_{m, N}$ the complex (m, N) Grassmannian. Let \mathbb{X} and \mathbb{Y} be alphabets of m and $N-m$ indeterminants.

- Usual cohomology:
$H^{*}\left(G_{m, N} ; \mathbb{C}\right) \cong \operatorname{Sym}(\mathbb{X}) /\left(h_{N+1-m}(\mathbb{X}), h_{N+2-m}(\mathbb{X}), \ldots, h_{N}(\mathbb{X})\right)$
as graded \mathbb{C}-algebras.

Cohomology of Complex Grassmannian

Denote by $G_{m, N}$ the complex (m, N) Grassmannian. Let \mathbb{X} and \mathbb{Y} be alphabets of m and $N-m$ indeterminants.

- Usual cohomology:

$$
H^{*}\left(G_{m, N} ; \mathbb{C}\right) \cong \operatorname{Sym}(\mathbb{X}) /\left(h_{N+1-m}(\mathbb{X}), h_{N+2-m}(\mathbb{X}), \ldots, h_{N}(\mathbb{X})\right)
$$

as graded \mathbb{C}-algebras.

- $G L(N ; \mathbb{C})$-equivariant cohomology:

$$
H_{G L(N ; \mathbb{C})}^{*}\left(G_{m, N} ; \mathbb{C}\right) \cong \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y})
$$

as graded $\operatorname{Sym}(\mathbb{X} \cup \mathbb{Y})$-algebras.

Grading Shifts

Let M be a graded vector space. For $j \in \mathbb{Z}$, define $M\left\{q^{j}\right\}$ to be M with grading shifted by j, i.e. $M\left\{q^{j}\right\}=M$ as ungraded R-modules and, for every homogeneous element $m \in M$, $\operatorname{deg}_{M\left\{q^{j}\right\}} m=j+\operatorname{deg}_{M} m$. More generally, let $f(q)=\sum_{j=k}^{l} a_{j} q^{j}$ be a Laurent polynomial whose coefficients are non-negative integers. Define

$$
M\{f(q)\}=\bigoplus_{j=k}^{\prime}(\underbrace{M\left\{q^{j}\right\} \oplus \cdots \oplus M\left\{q^{j}\right\}}_{a_{j}-\text { fold }})
$$

Quantum Integers

Quantum integers are a particular class of such Laurent polynomials. We use the following definitions:

$$
[j]:=\frac{q^{j}-q^{-j}}{q-q^{-1}},
$$

$$
\begin{aligned}
& {[j]!:=[1] \cdot[2] \cdots[j],} \\
& {\left[\begin{array}{l}
j \\
k
\end{array}\right]:=\frac{[j]!}{[k]!\cdot[j-k]!} .}
\end{aligned}
$$

It is well known that

$$
\left[\begin{array}{c}
m+n \\
n
\end{array}\right]=q^{-m n} \sum_{\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{m}\right): l(\lambda) \leq m, \lambda_{1} \leq n} q^{2|\lambda|}
$$

Graded Matrix Factorizations

Fix an integer $N>0$. Let R be a graded commutative unital \mathbb{C}-algebra, and w a homogeneous element of R with $\operatorname{deg} w=2 N+2$.
A graded matrix factorization M over R with potential w is a collection of two graded free R-modules M_{0}, M_{1} and two homogeneous R-module homomorphisms $d_{0}: M_{0} \rightarrow M_{1}$, $d_{1}: M_{1} \rightarrow M_{0}$ of degree $N+1$, called differential maps, s.t.

$$
d_{1} \circ d_{0}=w \cdot \mathrm{id}_{M_{0}}, \quad d_{0} \circ d_{1}=w \cdot \mathrm{id}_{M_{1}}
$$

We usually write M as

$$
M_{0} \xrightarrow{d_{0}} M_{1} \xrightarrow{d_{1}} M_{0} .
$$

Koszul Matrix Factorizations

If $a_{0}, a_{1} \in R$ are homogeneous s.t. deg $a_{0}+\operatorname{deg} a_{1}=2 N+2$, then denote by $\left(a_{0}, a_{1}\right)_{R}$ the graded matrix factorization

$$
R \xrightarrow{a_{0}} R\left\{q^{N+1-\operatorname{deg} a_{0}}\right\} \xrightarrow{a_{1}} R,
$$

which has potential $a_{0} a_{1}$.

Koszul Matrix Factorizations (cont'd)

More generally, if $a_{1,0}, a_{1,1}, \ldots, a_{k, 0}, a_{k, 1} \in R$ are homogeneous with deg $a_{j, 0}+\operatorname{deg} a_{j, 1}=2 N+2$, then define

$$
\left(\begin{array}{cc}
a_{1,0}, & a_{1,1} \\
a_{2,0}, & a_{2,1} \\
\cdots & \cdots \\
a_{k, 0}, & a_{k, 1}
\end{array}\right)_{R}
$$

to be the tenser product

$$
\left(a_{1,0}, a_{1,1}\right)_{R} \otimes_{R}\left(a_{2,0}, a_{2,1}\right)_{R} \otimes_{R} \cdots \otimes_{R}\left(a_{k, 0}, a_{k, 1}\right)_{R}
$$

which is a graded matrix factorization with potential $\sum_{j=1}^{k} a_{j, 0} \cdot a_{j, 1}$.

The Categories $\mathrm{HMF}_{R, w}$ and $\operatorname{hmf}_{R, w}$

If M, M^{\prime} are both graded matrix factorizations over R with potential w, then $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ is a graded \mathbb{Z}_{2}-chain complex of R-modules. Its homology, $\operatorname{Hom}_{\mathrm{HMF}}\left(M, M^{\prime}\right)$, is the R-module of homotopy classes of morphisms of matrix factorizations from M to M^{\prime}. Denote by $\operatorname{Hom}_{\mathrm{hmf}}$ the \mathbb{C}-subspace of $\operatorname{Hom}_{\mathrm{HMF}}\left(M, M^{\prime}\right)$ of homogenous elements of bi-degree $(0,0)$.

Category	Objects	Morphisms
HMF $_{R, w}$	all homotopically finite graded matrix factorizations over R of potential w with quantum gradings bounded below	Hom
hmf $_{R, w}$	same as above	Hom $_{\text {hmf }}$

The Krull-Schmidt Property

An additive category \mathcal{C} is called Krull-Schmidt if

- every object of \mathcal{C} is isomorphic to a finite direct sum $A_{1} \oplus \cdots \oplus A_{n}$ of indecomposible objects of \mathcal{C};
- and, if $A_{1} \oplus \cdots \oplus A_{n} \cong A_{1}^{\prime} \oplus \cdots \oplus A_{l}^{\prime}$, where $A_{1}, \ldots A_{n}, A_{1}^{\prime}, \ldots, A_{l}^{\prime}$ are indecomposible objects of \mathcal{C}, then $n=I$ and there is a permutation σ of $\{1, \ldots, n\}$ such that $A_{i} \cong A_{\sigma(i)}^{\prime}$ for $i=1, \ldots, n$.

Theorem (Khovanov-Rozansky)
If R is a polynomial ring with homogeneous indeterminants of positive gradings and w is a homogeneous element of R with $\operatorname{deg} w=2 N+2$, then $\mathrm{hmf}_{R, w}$ and $\mathrm{hCh}^{\mathrm{b}}\left(\mathrm{hmf}_{R, w}\right)$ are both Krull-Schmidt, where $\mathrm{hCh}{ }^{\mathrm{b}}\left(\operatorname{hmf}_{R, w}\right)$ is the homotopy category of bounded chain complexes over $\operatorname{hmf}_{R, w}$.

MOY Graphs

An (embedded) MOY graph is an oriented plane graph with each edge colored by a non-negative integer such that

- for every vertex v with valence at least 2 , the sum of integers coloring the edges entering v is equal to the sum of integers coloring the edges leaving v,
- through each such vertex v of Γ, there is a straight line L_{v} so that all the edges entering v enter through one side of L_{v} and all edges leaving v leave through the other side of L_{v}.

Markings

A marking of an MOY graph 「 consists the following: 1. A finite collection of marked points on 「 such that

- every edge of Γ has at least one marked point;
- all the end points (vertices of valence 1) are marked;
- none of the interior vertices (vertices of valence at least 2) is marked.

2. An assignment of pairwise disjoint alphabets to the marked points such that the alphabet associated to a marked point on an edge of color m has m indeterminants.

The Matrix Factorization Associated to a Vertex

Let $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{k}$ and $\mathbb{Y}=\mathbb{Y}_{1} \cup \cdots \cup \mathbb{Y}_{\prime}$. Denote by X_{j} and Y_{j} the j-th elementary symmetric polynomials in \mathbb{X} and \mathbb{Y}.

$$
C(v):=\left(\begin{array}{cc}
U_{1} & X_{1}-Y_{1} \\
U_{2} & X_{2}-Y_{2} \\
\ldots & \ldots \\
U_{m} & X_{m}-Y_{m}
\end{array}\right)_{\operatorname{Sym}\left(\mathbb{X}_{1}|\ldots| \mathbb{X}_{k}\left|\mathbb{Y}_{1}\right| \ldots \mid \mathbb{Y}_{1}\right)}\left\{q^{-\sum_{1 \leq s<t \leq k} i_{s} i_{t}}\right\}
$$

where U_{j} is homogeneous of degree $2 N+2-2 j$ and $\sum_{j=1}^{m}\left(X_{j}-Y_{j}\right) U_{j}=p_{N+1}(\mathbb{X})-p_{N+1}(\mathbb{Y})$.

Decompositions (I \& II)

(I) $C\left(\begin{array}{c}m+n \\ \uparrow_{m}^{m} \\ n\end{array}\right) \simeq C\left(\left.\right|^{m}\right)\left\{\left[\begin{array}{c}N-m \\ n\end{array}\right]\right\}\langle n\rangle$.
(II) $C\left({ }_{m} \bigcup_{\neq m+n}^{f_{m+n}}\right) \simeq C\left(\left.\right|^{\not m+n}\right)\left\{\left[\begin{array}{c}m+n \\ n\end{array}\right]\right\}$.

Decompositions (III \& IV)

Decompositions (V)

Marking of Colored Link Diagrams

Recall that N is a fixed positive integer. (It is the " N " in " $\mathfrak{s l}(N)$ ".) Given a diagram D of a link whose components are colored by integers $\in\{1, \ldots, N\}$. A marking of D consists the following:

1. A finite collection of marked points on D such that

- every arc between two crossings has at least one marked point;
- none of the crossings is marked.

2. An assignment of pairwise disjoint alphabets to the marked points such that the alphabet associated to a marked point on an arc of color m has m indeterminants.

The Chain Complex of a Colored Crossing

Assume $n \geq m$ and temporarily forget the quantum grading shifts.
$C\left(\pi^{m /}\right)$ should be an object of $\mathrm{hCh}^{\mathrm{b}}(\mathrm{HMF})$ of the form

where d_{k}^{+}is homogeneous of quantum degree 1 .
If we assume d_{k}^{+}is not homotopic to 0 , then there is a unique chain complex of this form. (If $m=n=1$, then this chain complex is isomorphic to that defined by Khovanov and Rozansky.)

The Chain Complex of a Colored Crossing (cont'd)

- The lowest quantum grading of
is 1 and the space of homogeneous elements of quantum degree 1 is 1 -dimensional.

The Chain Complex of a Colored Crossing (cont'd)

- The lowest quantum grading of
is 1 and the space of homogeneous elements of quantum degree 1 is 1 -dimensional.
- The lowest quantum grading of

Fork Sliding

Lemma

Reidemeister Moves - Main Theorem

Theorem
The $\mathbb{Z}_{2} \oplus \mathbb{Z} \oplus \mathbb{Z}$-graded colored $\mathfrak{s l}(N)$-homology is invariant under Reidemeister moves.

Proof

Open Problems

- Is the \mathbb{Z}_{2}-grading concentrated?

Open Problems

- Is the \mathbb{Z}_{2}-grading concentrated?
- Is the Euler characteristic equal to the corresponding colored $\mathfrak{s l}(N)$-polynomial? (MOY equations do not completely determine the colored graphic $\mathfrak{s l}(N)$-polynomial.)

Open Problems

- Is the \mathbb{Z}_{2}-grading concentrated?
- Is the Euler characteristic equal to the corresponding colored $\mathfrak{s l}(N)$-polynomial? (MOY equations do not completely determine the colored graphic $\mathfrak{s l}(N)$-polynomial.)
- Functorality? (Khovanov and Rozansky's proof should carry over. But the algebra looks much harder.)

Generalizations

- Lee-Gornik deformation. (Definition and invariance look easy. The Lee-Gornik basis is hard to construct. We can probably still get colored $\mathfrak{s l}(N)$-Rasmussen invariants and genus bounds.)

Generalizations

- Lee-Gornik deformation. (Definition and invariance look easy. The Lee-Gornik basis is hard to construct. We can probably still get colored $\mathfrak{s l}(N)$-Rasmussen invariants and genus bounds.)
- Categorification of the colored $\mathfrak{s l}(N)$-polynomial of links colored by general representations of $\mathfrak{s l}(N)$. (Probably do not carry any more topological information.)

Generalizations

- Lee-Gornik deformation. (Definition and invariance look easy. The Lee-Gornik basis is hard to construct. We can probably still get colored $\mathfrak{s l}(N)$-Rasmussen invariants and genus bounds.)
- Categorification of the colored $\mathfrak{s l}(N)$-polynomial of links colored by general representations of $\mathfrak{s l}(N)$. (Probably do not carry any more topological information.)
- Categorification of the $\mathfrak{s l}(N)$-invariant for 3-manifolds. (Holy Grail?)

Related Research

- Yonezawa used simpler algebra to construct a weaker invariant. (Poincaré polynomial of the colored $\mathfrak{s l}(N)$-homology.)

Related Research

- Yonezawa used simpler algebra to construct a weaker invariant. (Poincaré polynomial of the colored $\mathfrak{s l}(N)$-homology.)
- Cautis and Kamnitzer's work based on derived category of coherent sheaves on certain flag-like varieties. (Should generalize to colored situation and give an isomorphic homology?)

Related Research

- Yonezawa used simpler algebra to construct a weaker invariant. (Poincaré polynomial of the colored $\mathfrak{s l}(N)$-homology.)
- Cautis and Kamnitzer's work based on derived category of coherent sheaves on certain flag-like varieties. (Should generalize to colored situation and give an isomorphic homology?)
- Webster and Williamson's colored HOMFLY-PT homology via the equivariant cohomology of general linear groups and related spaces. (Connected by a generalized Rasmussen spectral sequence?)

Related Research

- Yonezawa used simpler algebra to construct a weaker invariant. (Poincaré polynomial of the colored $\mathfrak{s l}(N)$-homology.)
- Cautis and Kamnitzer's work based on derived category of coherent sheaves on certain flag-like varieties. (Should generalize to colored situation and give an isomorphic homology?)
- Webster and Williamson's colored HOMFLY-PT homology via the equivariant cohomology of general linear groups and related spaces. (Connected by a generalized Rasmussen spectral sequence?)
- Kronheimer and Mrowka's SU(n)-homology based on instanton gauge theory. (Has a colored version. Connected by a spectral sequence?)

Related Research

- Yonezawa used simpler algebra to construct a weaker invariant. (Poincaré polynomial of the colored $\mathfrak{s l}(N)$-homology.)
- Cautis and Kamnitzer's work based on derived category of coherent sheaves on certain flag-like varieties. (Should generalize to colored situation and give an isomorphic homology?)
- Webster and Williamson's colored HOMFLY-PT homology via the equivariant cohomology of general linear groups and related spaces. (Connected by a generalized Rasmussen spectral sequence?)
- Kronheimer and Mrowka's SU(n)-homology based on instanton gauge theory. (Has a colored version. Connected by a spectral sequence?)
- Webster's categorify'em all approach.

