Colored $\mathfrak{sl}(N)$ link homology via matrix factorizations

Hao Wu

George Washington University

Overview

The Reshetikhin-Turaev $\mathfrak{sl}(N)$ polynomial of links colored by wedge powers of the defining representation has been categorified via several different approaches.

I'll talk about the categorification using matrix factorizations, which is a direct generalization of the Khovanov-Rozansky homology.

I'll also also review deformations and applications of this categorification.

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2, the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2, the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2, the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2, the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.

An abstract MOY graph Γ is said to be closed if it has no end points.

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2, the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.

An abstract MOY graph Γ is said to be closed if it has no end points.

An abstract MOY graph is called trivalent is all of its internal vertices have valence 3.

Embedded MOY graphs

An embedded MOY graph, or simply a MOY graph, Γ is an embedding of an abstract MOY graph into \mathbb{R}^2 such that, through each vertex v of Γ , there is a straight line L_v so that all the edges entering v enter through one side of L_v and all edges leaving v leave through the other side of L_v .

Figure: An internal vertex of a MOY graph

Trivalent MOY graphs and their states

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ . Denote by $c: E(\Gamma) \to \mathbb{N}$ the color function of Γ . That is, for every edge e of Γ , $c(e) \in \mathbb{N}$ is the color of e.

Trivalent MOY graphs and their states

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ . Denote by $c: E(\Gamma) \to \mathbb{N}$ the color function of Γ . That is, for every edge e of Γ , $c(e) \in \mathbb{N}$ is the color of e.

Define $\mathcal{N} = \{-N+1, -N+3, \cdots, N-3, N-1\}$ and $\mathcal{P}(\mathcal{N})$ to be the set of subsets of \mathcal{N} .

Trivalent MOY graphs and their states

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ . Denote by $c: E(\Gamma) \to \mathbb{N}$ the color function of Γ . That is, for every edge e of Γ , $c(e) \in \mathbb{N}$ is the color of e.

Define $\mathcal{N} = \{-N+1, -N+3, \cdots, N-3, N-1\}$ and $\mathcal{P}(\mathcal{N})$ to be the set of subsets of \mathcal{N} .

A state of Γ is a function $\sigma : E(\Gamma) \to \mathcal{P}(\mathcal{N})$ such that

- (i) For every edge e of Γ , $\#\sigma(e)=\mathrm{c}(e)$.
- (ii) For every vertex v of Γ , as depicted above, we have $\sigma(e) = \sigma(e_1) \cup \sigma(e_2)$. (In particular, this implies that $\sigma(e_1) \cap \sigma(e_2) = \emptyset$.)

Weight

For a state σ of Γ and a vertex v of Γ as depicted above, the weight of v with respect to σ is defined to be

$$\operatorname{wt}(v;\sigma) = q^{\frac{\operatorname{c}(e_1)\operatorname{c}(e_2)}{2} - \pi(\sigma(e_1),\sigma(e_2))},$$

where $\pi: \mathcal{P}(\mathcal{N}) \times \mathcal{P}(\mathcal{N}) \to \mathbb{Z}_{\geq 0}$ is define by

$$\pi(A_1, A_2) = \#\{(a_1, a_2) \in A_1 \times A_2 \mid a_1 > a_2\} \text{ for } A_1, \ A_2 \in \mathcal{P}(\mathcal{N}).$$

Given a state σ of Γ ,

▶ replace each edge e of Γ by c(e) parallel edges, assign to each of these new edges a different element of $\sigma(e)$,

Given a state σ of Γ ,

- ▶ replace each edge e of Γ by c(e) parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- ▶ at every vertex, connect each pair of new edges assigned the same element of \mathcal{N} .

Given a state σ of Γ ,

- ▶ replace each edge e of Γ by c(e) parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- ▶ at every vertex, connect each pair of new edges assigned the same element of \mathcal{N} .

This changes Γ into a collection $\{C_1, \ldots, C_k\}$ of embedded oriented circles, each of which is assigned an element $\sigma(C_i)$ of \mathcal{N} .

Given a state σ of Γ ,

- ▶ replace each edge e of Γ by c(e) parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- ightharpoonup at every vertex, connect each pair of new edges assigned the same element of \mathcal{N} .

This changes Γ into a collection $\{C_1, \ldots, C_k\}$ of embedded oriented circles, each of which is assigned an element $\sigma(C_i)$ of \mathcal{N} .

The rotation number $rot(\sigma)$ of σ is then defined to be

$$\operatorname{rot}(\sigma) = \sum_{i=1}^k \sigma(C_i)\operatorname{rot}(C_i).$$

The $\mathfrak{sl}(N)$ MOY graph polynomial

The $\mathfrak{sl}(N)$ MOY polynomial of Γ is defined to be

$$\langle \Gamma \rangle_{N} := \sum_{\sigma} (\prod_{\nu} \operatorname{wt}(\nu; \sigma)) q^{\operatorname{rot}(\sigma)},$$

where σ runs through all states of Γ and ν runs through all vertices of Γ .

MOY relations (1–4)

1. $\langle \bigcirc_m \rangle_N = {N \brack m}$, where \bigcirc_m is a circle colored by m.

2.
$$\left\langle \begin{array}{c} i & j & k \\ j+k & \\ i+j+k & \\ \end{array} \right\rangle_{N} = \left\langle \begin{array}{c} i & j & k \\ i+j+k & \\ \end{array} \right\rangle_{N}$$
.

3.
$$\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle_{N} = \begin{bmatrix} \\ \\ \\ \end{array} \right] \cdot \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle_{N}$$

4.
$$\left\langle {}_{m+n}\right\rangle_{N} = {}_{n}^{N-m} \cdot \left\langle {}_{n}\right\rangle_{N}$$

MOY relations (5–7)

MOY relations (5-7)

The above MOY relations uniquely determine the $\mathfrak{sl}(N)$ MOY graph polynomial.

Unnormalized colored Reshetikhin-Turaev $\mathfrak{sl}(N)$ polynomial

For a link diagram D colored by non-negative integers, define $\langle D \rangle_N$ by applying the following at every crossing of D.

Normalized colored Reshetikhin-Turaev $\mathfrak{sl}(N)$ polynomial

For each crossing c of D, define the shifting factor s(c) of c by

$$s \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The normalized Reshetikhin-Turaev $\mathfrak{sl}(N)$ -polynomial $\mathrm{RT}_D(q)$ of D is

$$\mathrm{RT}_D(q) = \langle D \rangle_N \cdot \prod_{c} \mathsf{s}(c),$$

where c runs through all crossings of D.

Graded matrix factorizations

Fix an integer N > 0. Let R be a graded commutative unital \mathbb{C} -algebra, and w a homogeneous element of R with deg w = 2N + 2.

Graded matrix factorizations

Fix an integer N > 0. Let R be a graded commutative unital \mathbb{C} -algebra, and w a homogeneous element of R with deg w = 2N + 2.

A graded matrix factorization M over R with potential w is a collection of two graded free R-modules M_0 , M_1 and two homogeneous R-module homomorphisms $d_0: M_0 \to M_1$, $d_1: M_1 \to M_0$ of degree N+1, called differential maps, s.t.

$$d_1 \circ d_0 = w \cdot \mathrm{id}_{M_0}, \qquad d_0 \circ d_1 = w \cdot \mathrm{id}_{M_1}.$$

We usually write M as

$$M_0 \xrightarrow{d_0} M_1 \xrightarrow{d_1} M_0.$$

Koszul Matrix Factorizations

If $a_0, a_1 \in R$ are homogeneous s.t. $\deg a_0 + \deg a_1 = 2N + 2$, then denote by $(a_0, a_1)_R$ the graded matrix factorization

$$R \xrightarrow{a_0} R\{q^{N+1-\deg a_0}\} \xrightarrow{a_1} R,$$

which has potential a_0a_1 .

Koszul Matrix Factorizations

If $a_0, a_1 \in R$ are homogeneous s.t. $\deg a_0 + \deg a_1 = 2N + 2$, then denote by $(a_0, a_1)_R$ the graded matrix factorization

$$R \xrightarrow{a_0} R\{q^{N+1-\deg a_0}\} \xrightarrow{a_1} R,$$

which has potential a_0a_1 .

If $a_{1,0}, a_{1,1}, \dots, a_{k,0}, a_{k,1} \in R$ are homogeneous with deg $a_{i,0} + \deg a_{i,1} = 2N + 2$, then define

$$\begin{pmatrix} a_{1,0}, & a_{1,1} \\ a_{2,0}, & a_{2,1} \\ \dots & \dots \\ a_{k,0}, & a_{k,1} \end{pmatrix}_{R}$$

to be the tenser product

$$(a_{1,0}, a_{1,1})_R \otimes_R (a_{2,0}, a_{2,1})_R \otimes_R \cdots \otimes_R (a_{k,0}, a_{k,1})_R$$

which is a graded matrix factorization with potential

$$\sum_{i=1}^{k} a_{j,0} \cdot a_{j,1}.$$

An alphabet is a set $\mathbb{X} = \{x_1, \dots, x_m\}$ of finitely many indeterminates.

An alphabet is a set $\mathbb{X} = \{x_1, \dots, x_m\}$ of finitely many indeterminates.

 $\mathrm{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

An alphabet is a set $\mathbb{X} = \{x_1, \dots, x_m\}$ of finitely many indeterminates.

 $\operatorname{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on Sym(X) is given by $deg x_j = 2$.

An alphabet is a set $\mathbb{X} = \{x_1, \dots, x_m\}$ of finitely many indeterminates.

 $\mathrm{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on Sym(X) is given by $deg x_j = 2$.

elementary:
$$X_k := \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq m} x_{i_1} x_{i_1} \cdots x_{i_k},$$
 complete:
$$h_k(\mathbb{X}) := \sum_{1 \leq i_1 \leq i_2 \leq \dots \leq i_k \leq m} x_{i_1} x_{i_1} \cdots x_{i_k},$$
 power sum:
$$p_k(\mathbb{X}) := \sum_{i=1}^m x_i^k.$$

An alphabet is a set $\mathbb{X} = \{x_1, \dots, x_m\}$ of finitely many indeterminates.

 $\mathrm{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on Sym(X) is given by $deg x_i = 2$.

elementary:
$$X_k := \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq m} x_{i_1} x_{i_1} \cdots x_{i_k},$$
 complete:
$$h_k(\mathbb{X}) := \sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_k \leq m} x_{i_1} x_{i_1} \cdots x_{i_k},$$
 power sum:
$$p_k(\mathbb{X}) := \sum_{m=1}^{m} x_i^k.$$

$$\operatorname{Sym}(\mathbb{X}) = \mathbb{C}[X_1, \dots, X_m] = \mathbb{C}[h_1(\mathbb{X}), \dots, h_m(\mathbb{X})]$$
$$= \mathbb{C}[p_1(\mathbb{X}), \dots, p_m(\mathbb{X})]$$

Let X_1, \ldots, X_l be a collection of pairwise disjoint alphabets.

Let X_1, \ldots, X_l be a collection of pairwise disjoint alphabets.

Denote by $\operatorname{Sym}(\mathbb{X}_1|\cdots|\mathbb{X}_I)$ the ring of polynomials in $\mathbb{X}_1\cup\cdots\cup\mathbb{X}_I$ over $\mathbb C$ that are symmetric in each \mathbb{X}_i .

Let X_1, \ldots, X_l be a collection of pairwise disjoint alphabets.

Denote by $\mathrm{Sym}(\mathbb{X}_1|\cdots|\mathbb{X}_I)$ the ring of polynomials in $\mathbb{X}_1\cup\cdots\cup\mathbb{X}_I$ over \mathbb{C} that are symmetric in each \mathbb{X}_i .

 $\mathrm{Sym}(\mathbb{X}_1|\cdots|\mathbb{X}_I) \text{ is naturally a } \mathrm{Sym}(\mathbb{X}_1\cup\cdots\cup\mathbb{X}_I)\text{-module}.$

Let X_1, \ldots, X_l be a collection of pairwise disjoint alphabets.

Denote by $\operatorname{Sym}(\mathbb{X}_1|\cdots|\mathbb{X}_I)$ the ring of polynomials in $\mathbb{X}_1\cup\cdots\cup\mathbb{X}_I$ over \mathbb{C} that are symmetric in each \mathbb{X}_i .

 $\operatorname{Sym}(\mathbb{X}_1|\cdots|\mathbb{X}_l)$ is naturally a $\operatorname{Sym}(\mathbb{X}_1\cup\cdots\cup\mathbb{X}_l)$ -module.

This is a graded-free module whose structure is known.

Markings of MOY graphs

A marking of an MOY graph Γ consists the following:

- 1. A finite collection of marked points on Γ such that
 - every edge of Γ has at least one marked point;
 - all the end points (vertices of valence 1) are marked;
 - none of the internal vertices (vertices of valence at least 2) is marked.

Markings of MOY graphs

A marking of an MOY graph Γ consists the following:

- 1. A finite collection of marked points on Γ such that
 - every edge of Γ has at least one marked point;
 - all the end points (vertices of valence 1) are marked;
 - none of the internal vertices (vertices of valence at least 2) is marked.
- 2. An assignment of pairwise disjoint alphabets to the marked points such that the alphabet associated to a marked point on an edge of color *m* has *m* independent indeterminates.

Matrix factorization associated to a vertex

Matrix factorization associated to a vertex

Define $R = \operatorname{Sym}(\mathbb{X}_1 | \dots | \mathbb{X}_k | \mathbb{Y}_1 | \dots | \mathbb{Y}_l)$. Write $\mathbb{X} = \mathbb{X}_1 \cup \dots \cup \mathbb{X}_k$, $\mathbb{Y} = \mathbb{Y}_1 \cup \dots \cup \mathbb{Y}_l$. Denote by X_j and Y_j the j-th elementary symmetric polynomial in \mathbb{X} and \mathbb{Y} .

Matrix factorization associated to a vertex

Define $R = \operatorname{Sym}(\mathbb{X}_1|\dots|\mathbb{X}_k|\mathbb{Y}_1|\dots|\mathbb{Y}_l)$. Write $\mathbb{X} = \mathbb{X}_1 \cup \dots \cup \mathbb{X}_k$, $\mathbb{Y} = \mathbb{Y}_1 \cup \dots \cup \mathbb{Y}_l$. Denote by X_j and Y_j the j-th elementary symmetric polynomial in \mathbb{X} and \mathbb{Y} .

$$C_{N}(v) = \begin{pmatrix} U_{1} & X_{1} - Y_{1} \\ U_{2} & X_{2} - Y_{2} \\ \dots & \dots \\ U_{m} & X_{m} - Y_{m} \end{pmatrix}_{R} \{q^{-\sum_{1 \leq s < t \leq k} i_{s} i_{t}}\},$$

where U_j is homogeneous of degree 2N+2-2j and the potential is $\sum_{j=1}^{m} (X_j - Y_j) U_j = p_{N+1}(\mathbb{X}) - p_{N+1}(\mathbb{Y})$.

$$C_N(\Gamma) := \bigotimes_{\nu} C_N(\nu),$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

$$C_N(\Gamma) := \bigotimes_{\nu} C_N(\nu),$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Here, the tensor product is done over the common end points.

$$C_N(\Gamma) := \bigotimes_{\nu} C_N(\nu),$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Here, the tensor product is done over the common end points.

More precisely, for two sub-MOY graphs Γ_1 and Γ_2 of Γ intersecting only at (some of) their open end points, let $\mathbb{W}_1, \ldots, \mathbb{W}_n$ be the alphabets associated to these common end points. Then, in the above tensor product, $C_N(\Gamma_1) \otimes C_N(\Gamma_2)$ is the tensor product $C_N(\Gamma_1) \otimes_{\operatorname{Sym}(\mathbb{W}_1|\ldots|\mathbb{W}_n)} C_N(\Gamma_2)$.

$$C_N(\Gamma) := \bigotimes_{\nu} C_N(\nu),$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Here, the tensor product is done over the common end points.

More precisely, for two sub-MOY graphs Γ_1 and Γ_2 of Γ intersecting only at (some of) their open end points, let $\mathbb{W}_1, \ldots, \mathbb{W}_n$ be the alphabets associated to these common end points. Then, in the above tensor product, $C_N(\Gamma_1) \otimes C_N(\Gamma_2)$ is the tensor product $C_N(\Gamma_1) \otimes_{\operatorname{Sym}(\mathbb{W}_1|\ldots|\mathbb{W}_n)} C_N(\Gamma_2)$.

 $C_N(\Gamma)$ has a \mathbb{Z}_2 -grading and a quantum grading.

Homological MOY relations (1-4)

1. $C_N(\bigcirc_m) \simeq \mathbb{C}\{{N \brack m}\}$, where \bigcirc_m is a circle colored by m.

2.
$$C_N(\underbrace{j+k}_{i+j+k}) \simeq C_N(\underbrace{i+j}_{i+j+k})$$
.

3. $C_N(\underbrace{m+n}_{m+n}) \simeq C_N(\underbrace{m+n}_{m+n}) \left\{ \begin{bmatrix} m+n \\ n \end{bmatrix} \right\}$.

Homological MOY relations (5-7)

Homological MOY relations (5-7)

The above imply that the graded dimension of $C_N(\Gamma)$ is the $\mathfrak{sl}(N)$ MOY graph polynomial of Γ .

The chain complex of a colored crossing

Assume $n \ge m$ and temporarily forget the quantum grading shifts.

where d_k^+ is homogeneous of quantum degree 1.

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of

$$\operatorname{Hom}_{\operatorname{HMF}}(C_{N}({\scriptstyle n+k \atop n}, {\scriptstyle n-k \atop k}), C_{N}({\scriptstyle n+k-1 \atop n}, {\scriptstyle n-k+1 \atop k-1 \atop m}))$$

is 1 and the space of homogeneous elements of quantum degree 1 is 1-dimensional. So d_k^+ exists and is unique up to homotopy and scaling.

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of

$$\operatorname{Hom}_{\operatorname{HMF}}(C_N({\scriptstyle n+k} \xrightarrow{\scriptstyle n-k \atop n}), C_N({\scriptstyle n+k-1} \xrightarrow{\scriptstyle n-k-1 \atop n}))$$

is 1 and the space of homogeneous elements of quantum degree 1 is 1-dimensional. So d_k^+ exists and is unique up to homotopy and scaling.

The lowest quantum grading of

$$\operatorname{Hom}_{\operatorname{HMF}}(C_N(_{n+k}), C_N(_{n+k-2}), C_N(_{n+k-2}))$$

is 4. So $d_{k-1}^+ \circ d_k^+ \simeq 0$.

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of

$$\operatorname{Hom}_{\operatorname{HMF}}(C_{N}({\scriptstyle n+k \atop n}, C_{N}({\scriptstyle n+k-1 \atop n}, C_{N}({\scriptstyle n+k-1$$

is 1 and the space of homogeneous elements of quantum degree 1 is 1-dimensional. So d_k^+ exists and is unique up to homotopy and scaling.

The lowest quantum grading of

$$\operatorname{Hom}_{\operatorname{HMF}}(C_N({\scriptstyle n+k}), C_N({\scriptstyle n+k-2}), C_N({\scriptstyle n+k-2}))$$

is 4. So $d_{k-1}^+ \circ d_k^+ \simeq 0$.

Thus, the chain complex $C_N(\stackrel{n}{\searrow})$ exists and is unique up to chain isomorphism (if we require $d_k^+ \not\simeq 0$.)

Invariance: fork sliding

Lemma

Invariance: Reidemeister moves

Invariance: Reidemeister moves

Invariance: Reidemeister moves

The invariance under Reidemeister moves II_b and III follows similarly. Reidemeister move I requires an extra lemma.

Equivariant homology

Consider the polynomial

$$f(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} B_k X^{N+1-k},$$

where B_k is a homogeneous indeterminate of degree 2k.

For an alphabet $\mathbb{X} = \{x_1, \dots, x_m\}$, define

$$f(\mathbb{X}) = \sum_{i=1}^{m} f(x_i) = p_{N+1}(\mathbb{X}) + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} B_k p_{N+1-k}(\mathbb{X}).$$

We can repeat the above construction using f(X) instead of $p_{N+1}(X)$ and get an equivariant colored $\mathfrak{sl}(N)$ link homology.

$$C_f(v) = \begin{pmatrix} U_1 & X_1 - Y_1 \\ U_2 & X_2 - Y_2 \\ \dots & \dots \\ U_m & X_m - Y_m \end{pmatrix}_{R[B_1, \dots, B_N]} \{q^{-\sum_{1 \leq s < t \leq k} i_s i_t}\},$$

where U_j is homogeneous of degree 2N+2-2j and the potential is $\sum_{i=1}^{m} (X_i - Y_j) U_j = f(\mathbb{X}) - f(\mathbb{Y})$.

The quotient map $\pi_0 : \mathbb{C}[B_1, \dots, B_N] \to \mathbb{C}$ given by $\pi_0(B_k) = 0$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\ldots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{\varpi_0}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),\rho_{N+1}(\mathbb{X})-\rho_{N+1}(\mathbb{Y})}.$$

The quotient map $\pi_0 : \mathbb{C}[B_1, \dots, B_N] \to \mathbb{C}$ given by $\pi_0(B_k) = 0$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\dots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{\varpi_0}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),\rho_{N+1}(\mathbb{X})-\rho_{N+1}(\mathbb{Y})}.$$

Krasner made the observation that, for any morphism ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})},\ \psi$ is a homotopy equivalence if and only if $\varpi_0(\psi)$ is a homotopy equivalence.

The quotient map $\pi_0 : \mathbb{C}[B_1, \dots, B_N] \to \mathbb{C}$ given by $\pi_0(B_k) = 0$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\ldots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{\varpi_0}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),\rho_{N+1}(\mathbb{X})-\rho_{N+1}(\mathbb{Y})}.$$

Krasner made the observation that, for any morphism ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})},\ \psi$ is a homotopy equivalence if and only if $\varpi_0(\psi)$ is a homotopy equivalence.

This observation allows one to easily prove the invariance of the equivariant colored $\mathfrak{sl}(N)$ link homology using the proof of the invariance of the colored $\mathfrak{sl}(N)$ link homology.

The quotient map $\pi: \mathbb{C}[B_1,\ldots,B_N] \to \mathbb{C}$ given by $\pi(B_k) = b_k \in \mathbb{C}$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{-\varpi}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),P(\mathbb{X})-P(\mathbb{Y})},$$

where
$$P(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} b_k X^{N+1-k}$$
.

The quotient map $\pi: \mathbb{C}[B_1,\ldots,B_N] \to \mathbb{C}$ given by $\pi(B_k) = b_k \in \mathbb{C}$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{-\varpi}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),P(\mathbb{X})-P(\mathbb{Y})},$$

where
$$P(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} b_k X^{N+1-k}$$
.

 $\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}.$

The quotient map $\pi: \mathbb{C}[B_1,\ldots,B_N] \to \mathbb{C}$ given by $\pi(B_k) = b_k \in \mathbb{C}$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\ldots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{-\varpi}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),P(\mathbb{X})-P(\mathbb{Y})},$$

where
$$P(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} b_k X^{N+1-k}$$
.

 $\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}.$

This allows one to define a deformed colored $\mathfrak{sl}(N)$ link homology H_P .

The quotient map $\pi: \mathbb{C}[B_1,\ldots,B_N] \to \mathbb{C}$ given by $\pi(B_k) = b_k \in \mathbb{C}$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\ldots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{-\varpi}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),P(\mathbb{X})-P(\mathbb{Y})},$$

where
$$P(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} b_k X^{N+1-k}$$
.

 $\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}$.

This allows one to define a deformed colored $\mathfrak{sl}(N)$ link homology H_P .

 H_P comes with a homological grading and a quantum filtration.

The quotient map $\pi: \mathbb{C}[B_1,\ldots,B_N] \to \mathbb{C}$ given by $\pi(B_k) = b_k \in \mathbb{C}$ induces a functor

$$\mathrm{hmf}_{\mathbb{C}[B_1,\ldots,B_N]\otimes\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}\xrightarrow{-\varpi}\mathrm{hmf}_{\mathrm{Sym}(\mathbb{X}|\mathbb{Y}),P(\mathbb{X})-P(\mathbb{Y})},$$

where
$$P(X) = X^{N+1} + \sum_{k=1}^{N} (-1)^k \frac{N+1}{N+1-k} b_k X^{N+1-k}$$
.

 $\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\mathrm{hmf}_{\mathbb{C}[B_1,...,B_N]\otimes \mathrm{Sym}(\mathbb{X}|\mathbb{Y}),f(\mathbb{X})-f(\mathbb{Y})}$.

This allows one to define a deformed colored $\mathfrak{sl}(N)$ link homology H_P .

 H_P comes with a homological grading and a quantum filtration.

This quantum filtration induces a spectral sequence converging to H_P with E_2 -page isomorphic to the (undeformed) colored $\mathfrak{sl}(N)$ link homology.

Generic deformed homology

We say that P(X) is generic if

$$P'(X) = (N+1)(X^N + \sum_{k=1}^{N} (-1)^k b_k X^{N-k})$$

has N distinct roots in \mathbb{C} .

Generic deformed homology

We say that P(X) is generic if

$$P'(X) = (N+1)(X^N + \sum_{k=1}^{N} (-1)^k b_k X^{N-k})$$

has N distinct roots in \mathbb{C} .

For a generic P, denote by Σ the set of roots of P'. For a colored link L, a state of L is a function

$$\psi$$
: {components of L } $\rightarrow \mathcal{P}(\Sigma)$,

such that $\#\psi(K)$ = the color of K.

Generic deformed homology

We say that P(X) is generic if

$$P'(X) = (N+1)(X^N + \sum_{k=1}^{N} (-1)^k b_k X^{N-k})$$

has N distinct roots in \mathbb{C} .

For a generic P, denote by Σ the set of roots of P'. For a colored link L, a state of L is a function

$$\psi$$
: {components of L } $\to \mathcal{P}(\Sigma)$,

such that $\#\psi(K)$ = the color of K.

Theorem

$$H_P(L) = \bigoplus_{\psi \in \mathcal{S}_P(L)} \mathbb{C} \cdot v_{\psi},$$

where $v_{\psi} \neq 0$ and the decomposition preserves the homological grading.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Theorem

▶ $|s_P^{(m)}(K)| \le 2m(N-m)g_*(K)$, where $g_*(K)$ is the smooth slice genus of K.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Theorem

- ▶ $|s_P^{(m)}(K)| \le 2m(N-m)g_*(K)$, where $g_*(K)$ is the smooth slice genus of K.
- ▶ $s_P^{(m)}(K) \ge m(N-m)(\overline{SL}(K)+1)$, where $\overline{SL}(K)$ is the maximal self linking number of K.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Theorem

- ▶ $|s_P^{(m)}(K)| \le 2m(N-m)g_*(K)$, where $g_*(K)$ is the smooth slice genus of K.
- ▶ $s_P^{(m)}(K) \ge m(N-m)(\overline{SL}(K)+1)$, where $\overline{SL}(K)$ is the maximal self linking number of K.
- $ightharpoonup s_P^{(m)}(K) = 0$ if K is amphicheiral.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Theorem

- ▶ $|s_P^{(m)}(K)| \le 2m(N-m)g_*(K)$, where $g_*(K)$ is the smooth slice genus of K.
- ▶ $s_P^{(m)}(K) \ge m(N-m)(\overline{SL}(K)+1)$, where $\overline{SL}(K)$ is the maximal self linking number of K.
- $ightharpoonup s_P^{(m)}(K) = 0$ if K is amphicheiral.

Corollary

▶ A knot K is chiral if $\overline{SL}(K) \ge 0$.

Let P be generic. For a knot K, the m-colored $\mathfrak{sl}(N)$ Rasmussen invariant of K is

$$s_P^{(m)}(K) = \frac{1}{2}(\max \deg_q H_P(K^{(m)}) + \min \deg_q H_P(K^{(m)})),$$

where $K^{(m)}$ is K colored by m.

Theorem

- ▶ $|s_P^{(m)}(K)| \le 2m(N-m)g_*(K)$, where $g_*(K)$ is the smooth slice genus of K.
- ▶ $s_P^{(m)}(K) \ge m(N-m)(\overline{SL}(K)+1)$, where $\overline{SL}(K)$ is the maximal self linking number of K.
- $ightharpoonup s_P^{(m)}(K)=0$ if K is amphicheiral.

Corollary

- A knot K is chiral if $\overline{SL}(K) \ge 0$.
- Quasipositive amphicheiral knots are smoothly slice.

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ , the color of e is c(e).

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ , the color of e is c(e).

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ .

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ , the color of e is c(e).

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ .

Denote by $\mathcal{L}(\Gamma)$ the set of all labellings of Γ . For every $f \in \mathcal{L}(\Gamma)$, denote by Γ_f the MOY graph obtained by re-coloring the underlying oriented trivalent graph of Γ using f.

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ , the color of e is c(e).

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ .

Denote by $\mathcal{L}(\Gamma)$ the set of all labellings of Γ . For every $f \in \mathcal{L}(\Gamma)$, denote by Γ_f the MOY graph obtained by re-coloring the underlying oriented trivalent graph of Γ using f.

For every $f \in \mathcal{L}(\Gamma)$, define a function \overline{f} on $E(\Gamma)$ by $\overline{f}(e) = c(e) - f(e)$ for every edge e of Γ . It is easy to see that $\overline{f} \in \mathcal{L}(\Gamma)$.

A composition product

Let Γ be an MOY graph. For any positive integers M and N,

$$\langle \Gamma \rangle_{M+N} = \sum_{f \in \mathcal{L}(\Gamma)} q^{\sigma_{M,N}(\Gamma,f)} \cdot \langle \Gamma_f \rangle_M \cdot \langle \Gamma_{\overline{f}} \rangle_N.$$

A composition product

Let Γ be an MOY graph. For any positive integers M and N,

$$\langle \Gamma \rangle_{M+N} = \sum_{f \in \mathcal{L}(\Gamma)} q^{\sigma_{M,N}(\Gamma,f)} \cdot \langle \Gamma_f \rangle_M \cdot \langle \Gamma_{\overline{f}} \rangle_N.$$

This composition product is equivalent to the state sum formula of the $\mathfrak{sl}(N)$ MOY graph polynomial.

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,

$$w-b \leq \liminf_{N \to \infty} \frac{\min \deg_q H_N(B^{(m)})}{m(N-m)} \leq \limsup_{N \to \infty} \frac{\max \deg_q H_N(B^{(m)})}{m(N-m)} \leq w+b,$$

where $B^{(m)}$ is B colored by m.

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,

$$w-b \leq \liminf_{N \to \infty} \frac{\min \deg_q H_N(B^{(m)})}{m(N-m)} \leq \limsup_{N \to \infty} \frac{\max \deg_q H_N(B^{(m)})}{m(N-m)} \leq w+b,$$

where $B^{(m)}$ is B colored by m.

More generally, for any two sequences $\{m_k\}$ and $\{N_k\}$ of positive integers satisfying $\lim_{k\to\infty}\frac{1}{N_k}=\lim_{k\to\infty}\frac{m_k}{N_k}=0$,

$$w-b \leq \liminf_{k \to +\infty} \frac{\min \deg_q H_{N_k}(B^{(m_k)})}{m_k(N_k - m_k)} \leq \limsup_{k \to +\infty} \frac{\min \deg_q H_{N_k}(B^{(m_k)})}{m_k(N_k - m_k)} \leq w+b.$$

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,

$$w-b \leq \liminf_{N \to \infty} \frac{\min \deg_q H_N(B^{(m)})}{m(N-m)} \leq \limsup_{N \to \infty} \frac{\max \deg_q H_N(B^{(m)})}{m(N-m)} \leq w+b,$$

where $B^{(m)}$ is B colored by m.

More generally, for any two sequences $\{m_k\}$ and $\{N_k\}$ of positive integers satisfying $\lim_{k\to\infty}\frac{1}{N_k}=\lim_{k\to\infty}\frac{m_k}{N_k}=0$,

$$w-b \leq \liminf_{k \to +\infty} \frac{\min \deg_q H_{N_k}(B^{(m_k)})}{m_k(N_k - m_k)} \leq \limsup_{k \to +\infty} \frac{\min \deg_q H_{N_k}(B^{(m_k)})}{m_k(N_k - m_k)} \leq w+b.$$

When m = 1, the above inequalities imply the original MFW inequality.