Colored $\mathfrak{s l}(N)$ link homology via matrix factorizations

Hao Wu

George Washington University

Overview

The Reshetikhin-Turaev $\mathfrak{s l}(N)$ polynomial of links colored by wedge powers of the defining representation has been categorified via several different approaches.

I'll talk about the categorification using matrix factorizations, which is a direct generalization of the Khovanov-Rozansky homology.

I'll also also review deformations and applications of this categorification.

Abstract MOY graphs

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2 , the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

Abstract MOY graphs

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2 , the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

Abstract MOY graphs

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2 , the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.

Abstract MOY graphs

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2 , the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.
An abstract MOY graph Γ is said to be closed if it has no end points.

Abstract MOY graphs

An abstract MOY graph is an oriented graph with each edge colored by a non-negative integer such that, for every vertex v with valence at least 2 , the sum of the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point.

A vertex of valence greater than 1 is called an internal vertex.
An abstract MOY graph Γ is said to be closed if it has no end points.

An abstract MOY graph is called trivalent is all of its internal vertices have valence 3.

Embedded MOY graphs

An embedded MOY graph, or simply a MOY graph, Γ is an embedding of an abstract MOY graph into \mathbb{R}^{2} such that, through each vertex v of Γ, there is a straight line L_{v} so that all the edges entering v enter through one side of L_{v} and all edges leaving v leave through the other side of L_{v}.

Figure: An internal vertex of a MOY graph

Trivalent MOY graphs and their states

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ. Denote by $\mathrm{c}: E(\Gamma) \rightarrow \mathbb{N}$ the color function of Γ. That is, for every edge e of $\Gamma, c(e) \in \mathbb{N}$ is the color of e.

Trivalent MOY graphs and their states

or

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ. Denote by $\mathrm{c}: E(\Gamma) \rightarrow \mathbb{N}$ the color function of Γ. That is, for every edge e of $\Gamma, c(e) \in \mathbb{N}$ is the color of e.

Define $\mathcal{N}=\{-N+1,-N+3, \cdots, N-3, N-1\}$ and $\mathcal{P}(\mathcal{N})$ to be the set of subsets of \mathcal{N}.

Trivalent MOY graphs and their states

or

Let Γ be a closed trivalent MOY graph, and $E(\Gamma)$ the set of edges of Γ. Denote by $\mathrm{c}: E(\Gamma) \rightarrow \mathbb{N}$ the color function of Γ. That is, for every edge e of $\Gamma, c(e) \in \mathbb{N}$ is the color of e.

Define $\mathcal{N}=\{-N+1,-N+3, \cdots, N-3, N-1\}$ and $\mathcal{P}(\mathcal{N})$ to be the set of subsets of \mathcal{N}.

A state of Γ is a function $\sigma: E(\Gamma) \rightarrow \mathcal{P}(\mathcal{N})$ such that
(i) For every edge e of $\Gamma, \# \sigma(e)=c(e)$.
(ii) For every vertex v of Γ, as depicted above, we have $\sigma(e)=\sigma\left(e_{1}\right) \cup \sigma\left(e_{2}\right)$. (In particular, this implies that $\left.\sigma\left(e_{1}\right) \cap \sigma\left(e_{2}\right)=\emptyset.\right)$

Weight

or

For a state σ of Γ and a vertex v of Γ as depicted above, the weight of v with respect to σ is defined to be

$$
\mathrm{wt}(v ; \sigma)=q^{\frac{\mathrm{c}\left(e_{1}\right) \mathrm{c}\left(e_{2}\right)}{2}-\pi\left(\sigma\left(e_{1}\right), \sigma\left(e_{2}\right)\right)}
$$

where $\pi: \mathcal{P}(\mathcal{N}) \times \mathcal{P}(\mathcal{N}) \rightarrow \mathbb{Z}_{\geq 0}$ is define by
$\pi\left(A_{1}, A_{2}\right)=\#\left\{\left(a_{1}, a_{2}\right) \in A_{1} \times A_{2} \mid a_{1}>a_{2}\right\}$ for $A_{1}, A_{2} \in \mathcal{P}(\mathcal{N})$.

Rotation number

Given a state σ of Γ,

- replace each edge e of Γ by $c(e)$ parallel edges, assign to each of these new edges a different element of $\sigma(e)$,

Rotation number

Given a state σ of Γ,

- replace each edge e of Γ by $c(e)$ parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- at every vertex, connect each pair of new edges assigned the same element of \mathcal{N}.

Rotation number

Given a state σ of Γ,

- replace each edge e of Γ by $c(e)$ parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- at every vertex, connect each pair of new edges assigned the same element of \mathcal{N}.

This changes Γ into a collection $\left\{C_{1}, \ldots, C_{k}\right\}$ of embedded oriented circles, each of which is assigned an element $\sigma\left(C_{i}\right)$ of \mathcal{N}.

Rotation number

Given a state σ of Γ,

- replace each edge e of Γ by $c(e)$ parallel edges, assign to each of these new edges a different element of $\sigma(e)$,
- at every vertex, connect each pair of new edges assigned the same element of \mathcal{N}.

This changes Γ into a collection $\left\{C_{1}, \ldots, C_{k}\right\}$ of embedded oriented circles, each of which is assigned an element $\sigma\left(C_{i}\right)$ of \mathcal{N}.

The rotation number $\operatorname{rot}(\sigma)$ of σ is then defined to be

$$
\operatorname{rot}(\sigma)=\sum_{i=1}^{k} \sigma\left(C_{i}\right) \operatorname{rot}\left(C_{i}\right)
$$

The $\mathfrak{s l}(N)$ MOY graph polynomial

The $\mathfrak{s l}(N)$ MOY polynomial of Γ is defined to be

$$
\langle\Gamma\rangle_{N}:=\sum_{\sigma}\left(\prod_{v} \mathrm{wt}(v ; \sigma)\right) q^{\mathrm{rot}(\sigma)}
$$

where σ runs through all states of Γ and v runs through all vertices of Γ.

MOY relations (1-4)

1. $\left\langle\bigcirc_{m}\right\rangle_{N}=\left[\begin{array}{c}N \\ m\end{array}\right]$, where \bigcirc_{m} is a circle colored by m.

2. $\left\langle{ }_{m+n}^{\sum_{m}^{m}}\right\rangle_{N}=\left[\begin{array}{c}N-m \\ n\end{array}\right] \cdot\langle \rangle_{N}^{m}$.

MOY relations (5-7)

MOY relations (5-7)

The above MOY relations uniquely determine the $\mathfrak{s l}(N)$ MOY graph polynomial.

Unnormalized colored Reshetikhin-Turaev $\mathfrak{s l}(N)$ polynomial

For a link diagram D colored by non-negative integers, define $\langle D\rangle_{N}$ by applying the following at every crossing of D.

Normalized colored Reshetikhin-Turaev $\mathfrak{s l}(N)$ polynomial

 For each crossing c of D, define the shifting factor $s(c)$ of c by$$
\begin{aligned}
& s(\overbrace{}^{m})= \begin{cases}(-1)^{-m} q^{m(N+1-m)} & \text { if } m=n, \\
1 & \text { if } m \neq n,\end{cases} \\
& s\left(\begin{array}{ll}
(-1)^{m} q^{-m(N+1-m)} & \text { if } m=n, \\
1 & \text { if } m \neq n .
\end{array}\right.
\end{aligned}
$$

The normalized Reshetikhin-Turaev $\mathfrak{s l}(N)$-polynomial $\mathrm{RT}_{D}(q)$ of D is

$$
\operatorname{RT}_{D}(q)=\langle D\rangle_{N} \cdot \prod_{c} s(c),
$$

where c runs through all crossings of D.

Graded matrix factorizations

Fix an integer $N>0$. Let R be a graded commutative unital \mathbb{C}-algebra, and w a homogeneous element of R with $\operatorname{deg} w=2 N+2$.

Graded matrix factorizations

Fix an integer $N>0$. Let R be a graded commutative unital \mathbb{C}-algebra, and w a homogeneous element of R with $\operatorname{deg} w=2 N+2$.

A graded matrix factorization M over R with potential w is a collection of two graded free R-modules M_{0}, M_{1} and two homogeneous R-module homomorphisms $d_{0}: M_{0} \rightarrow M_{1}$, $d_{1}: M_{1} \rightarrow M_{0}$ of degree $N+1$, called differential maps, s.t.

$$
d_{1} \circ d_{0}=w \cdot \operatorname{id}_{M_{0}}, \quad d_{0} \circ d_{1}=w \cdot \operatorname{id}_{M_{1}} .
$$

We usually write M as

$$
M_{0} \xrightarrow{d_{0}} M_{1} \xrightarrow{d_{1}} M_{0} .
$$

Koszul Matrix Factorizations

If $a_{0}, a_{1} \in R$ are homogeneous s.t. deg $a_{0}+\operatorname{deg} a_{1}=2 N+2$, then denote by $\left(a_{0}, a_{1}\right)_{R}$ the graded matrix factorization

$$
R \xrightarrow{a_{0}} R\left\{q^{N+1-\operatorname{deg} a_{0}}\right\} \xrightarrow{a_{1}} R,
$$

which has potential $a_{0} a_{1}$.

Koszul Matrix Factorizations

If $a_{0}, a_{1} \in R$ are homogeneous s.t. deg $a_{0}+\operatorname{deg} a_{1}=2 N+2$, then denote by $\left(a_{0}, a_{1}\right)_{R}$ the graded matrix factorization

$$
R \xrightarrow{a_{0}} R\left\{q^{N+1-\operatorname{deg} a_{0}}\right\} \xrightarrow{a_{1}} R,
$$

which has potential $a_{0} a_{1}$.
If $a_{1,0}, a_{1,1}, \ldots, a_{k, 0}, a_{k, 1} \in R$ are homogeneous with $\operatorname{deg} a_{j, 0}+\operatorname{deg} a_{j, 1}=2 N+2$, then define

$$
\left(\begin{array}{cc}
a_{1,0}, & a_{1,1} \\
a_{2,0}, & a_{2,1} \\
\cdots & \cdots \\
a_{k, 0}, & a_{k, 1}
\end{array}\right)_{R}
$$

to be the tenser product

$$
\left(a_{1,0}, a_{1,1}\right)_{R} \otimes_{R}\left(a_{2,0}, a_{2,1}\right)_{R} \otimes_{R} \cdots \otimes_{R}\left(a_{k, 0}, a_{k, 1}\right)_{R}
$$

which is a graded matrix factorization with potential $\sum_{j=1}^{k} a_{j, 0} \cdot a_{j, 1}$.

Symmetric polynomials

An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminates.

Symmetric polynomials

An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminates.
$\operatorname{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

Symmetric polynomials

An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminates.
$\operatorname{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on $\operatorname{Sym}(\mathbb{X})$ is given by $\operatorname{deg} x_{j}=2$.

Symmetric polynomials

An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminates.
$\operatorname{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on $\operatorname{Sym}(\mathbb{X})$ is given by $\operatorname{deg} x_{j}=2$.

$$
\begin{aligned}
\text { elementary: } & X_{k}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\
\text { complete: } & h_{k}(\mathbb{X}):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq m} x_{i_{1} x_{i_{1}} \cdots x_{i_{k}},} \\
\text { power sum: } & p_{k}(\mathbb{X}):=\sum_{i=1}^{m} x_{i}^{k} .
\end{aligned}
$$

Symmetric polynomials

An alphabet is a set $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ of finitely many indeterminates.
$\operatorname{Sym}(\mathbb{X})$ is the ring of symmetric polynomials in \mathbb{X} with complex coefficients.

The grading on $\operatorname{Sym}(\mathbb{X})$ is given by $\operatorname{deg} x_{j}=2$.

$$
\begin{array}{ll}
\text { elementary: } & X_{k}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\
\text { complete: } & h_{k}(\mathbb{X}):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq m} x_{i_{1}} x_{i_{1}} \cdots x_{i_{k}}, \\
\text { power sum: } & p_{k}(\mathbb{X}):=\sum_{i=1}^{m} x_{i}^{k} \\
& \begin{aligned}
\operatorname{Sym}(\mathbb{X}) & =\mathbb{C}\left[X_{1}, \ldots, X_{m}\right]=\mathbb{C}\left[h_{1}(\mathbb{X}), \ldots, h_{m}(\mathbb{X})\right] \\
& =\mathbb{C}\left[p_{1}(\mathbb{X}), \ldots, p_{m}(\mathbb{X})\right]
\end{aligned}
\end{array}
$$

Symmetric polynomials (cont'd)

Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{/}$be a collection of pairwise disjoint alphabets.

Symmetric polynomials (cont'd)

Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{/}$be a collection of pairwise disjoint alphabets.

Denote by $\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ the ring of polynomials in $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X} /$ over \mathbb{C} that are symmetric in each \mathbb{X}_{i}.

Symmetric polynomials (cont'd)

Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{/}$be a collection of pairwise disjoint alphabets.

Denote by $\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ the ring of polynomials in $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X} /$ over \mathbb{C} that are symmetric in each \mathbb{X}_{i}.
$\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ is naturally a $\operatorname{Sym}\left(\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{l}\right)$-module.

Symmetric polynomials (cont'd)

Let $\mathbb{X}_{1}, \ldots, \mathbb{X}_{/}$be a collection of pairwise disjoint alphabets.

Denote by $\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ the ring of polynomials in $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X} /$ over \mathbb{C} that are symmetric in each \mathbb{X}_{i}.
$\operatorname{Sym}\left(\mathbb{X}_{1}|\cdots| \mathbb{X}_{l}\right)$ is naturally a $\operatorname{Sym}\left(\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{l}\right)$-module.

This is a graded-free module whose structure is known.

Markings of MOY graphs

A marking of an MOY graph 「 consists the following:

1. A finite collection of marked points on 「 such that

- every edge of Γ has at least one marked point;
- all the end points (vertices of valence 1) are marked;
- none of the internal vertices (vertices of valence at least 2) is marked.

Markings of MOY graphs

A marking of an MOY graph 「 consists the following:

1. A finite collection of marked points on 「 such that

- every edge of Γ has at least one marked point;
- all the end points (vertices of valence 1) are marked;
- none of the internal vertices (vertices of valence at least 2) is marked.

2. An assignment of pairwise disjoint alphabets to the marked points such that the alphabet associated to a marked point on an edge of color m has m independent indeterminates.

Matrix factorization associated to a vertex

Matrix factorization associated to a vertex

Define $R=\operatorname{Sym}\left(\mathbb{X}_{1}|\ldots| \mathbb{X}_{k}\left|\mathbb{Y}_{1}\right| \ldots \mid \mathbb{Y}_{l}\right)$. Write $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{k}$, $\mathbb{Y}=\mathbb{Y}_{1} \cup \cdots \cup \mathbb{Y}_{/}$. Denote by X_{j} and Y_{j} the j-th elementary symmetric polynomial in \mathbb{X} and \mathbb{Y}.

Matrix factorization associated to a vertex

Define $R=\operatorname{Sym}\left(\mathbb{X}_{1}|\ldots| \mathbb{X}_{k}\left|\mathbb{Y}_{1}\right| \ldots \mid \mathbb{Y}_{l}\right)$. Write $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{k}$, $\mathbb{Y}=\mathbb{Y}_{1} \cup \cdots \cup \mathbb{Y}_{/}$. Denote by X_{j} and Y_{j} the j-th elementary symmetric polynomial in \mathbb{X} and \mathbb{Y}.

$$
C_{N}(v)=\left(\begin{array}{cc}
U_{1} & X_{1}-Y_{1} \\
U_{2} & X_{2}-Y_{2} \\
\cdots & \cdots \\
U_{m} & X_{m}-Y_{m}
\end{array}\right)_{R}\left\{q^{-\sum_{1 \leq s<t \leq k} i_{s} i_{t}}\right\}
$$

where U_{j} is homogeneous of degree $2 N+2-2 j$ and the potential is $\sum_{j=1}^{m}\left(X_{j}-Y_{j}\right) U_{j}=p_{N+1}(\mathbb{X})-p_{N+1}(\mathbb{Y})$.

Matrix factorization associated to a MOY graph

$$
c_{N}(\Gamma):=\bigotimes_{v} c_{N}(v),
$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Matrix factorization associated to a MOY graph

$$
C_{N}(\Gamma):=\bigotimes_{v} C_{N}(v)
$$

where v runs through all the interior vertices of Γ (including those additional 2 -valent vertices.)

Here, the tensor product is done over the common end points.

Matrix factorization associated to a MOY graph

$$
C_{N}(\Gamma):=\bigotimes_{v} C_{N}(v)
$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Here, the tensor product is done over the common end points.
More precisely, for two sub-MOY graphs Γ_{1} and Γ_{2} of Γ intersecting only at (some of) their open end points, let $\mathbb{W}_{1}, \ldots, \mathbb{W}_{n}$ be the alphabets associated to these common end points. Then, in the above tensor product, $C_{N}\left(\Gamma_{1}\right) \otimes C_{N}\left(\Gamma_{2}\right)$ is the tensor product $C_{N}\left(\Gamma_{1}\right) \otimes_{\operatorname{Sym}\left(\mathbb{W}_{1}|\ldots| \mathbb{W}_{n}\right)} C_{N}\left(\Gamma_{2}\right)$.

Matrix factorization associated to a MOY graph

$$
C_{N}(\Gamma):=\bigotimes_{v} C_{N}(v)
$$

where v runs through all the interior vertices of Γ (including those additional 2-valent vertices.)

Here, the tensor product is done over the common end points.
More precisely, for two sub-MOY graphs Γ_{1} and Γ_{2} of Γ intersecting only at (some of) their open end points, let $\mathbb{W}_{1}, \ldots, \mathbb{W}_{n}$ be the alphabets associated to these common end points. Then, in the above tensor product, $C_{N}\left(\Gamma_{1}\right) \otimes C_{N}\left(\Gamma_{2}\right)$ is the tensor product $C_{N}\left(\Gamma_{1}\right) \otimes_{\operatorname{Sym}\left(\mathbb{W}_{1}|\ldots| \mathbb{W}_{n}\right)} C_{N}\left(\Gamma_{2}\right)$.
$C_{N}(\Gamma)$ has a \mathbb{Z}_{2}-grading and a quantum grading.

Homological MOY relations (1-4)

1. $C_{N}\left(\bigcirc_{m}\right) \simeq \mathbb{C}\left\{\left[\begin{array}{c}N \\ m\end{array}\right]\right\}$, where \bigcirc_{m} is a circle colored by m.

Homological MOY relations (5-7)

Homological MOY relations (5-7)

The above imply that the graded dimension of $C_{N}(\Gamma)$ is the $\mathfrak{s l}(N)$ MOY graph polynomial of Γ.

The chain complex of a colored crossing

Assume $n \geq m$ and temporarily forget the quantum grading shifts.

where d_{k}^{+}is homogeneous of quantum degree 1 .

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of
is 1 and the space of homogeneous elements of quantum degree 1 is 1 -dimensional. So d_{k}^{+}exists and is unique up to homotopy and scaling.

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of
is 1 and the space of homogeneous elements of quantum degree 1 is 1 -dimensional. So d_{k}^{+}exists and is unique up to homotopy and scaling.

The lowest quantum grading of
is 4. So $d_{k-1}^{+} \circ d_{k}^{+} \simeq 0$.

The chain complex of a colored crossing (cont'd)

The lowest quantum grading of
is 1 and the space of homogeneous elements of quantum degree 1 is 1 -dimensional. So d_{k}^{+}exists and is unique up to homotopy and scaling.

The lowest quantum grading of
is 4. So $d_{k-1}^{+} \circ d_{k}^{+} \simeq 0$.
Thus, the chain complex $C_{N}\left({ }^{m}\right)$ exists and is unique up to chain isomorphism (if we require $d_{k}^{+} \nsucceq 0$.)

Invariance: fork sliding

Lemma

Invariance: Reidemeister moves

Invariance: Reidemeister moves

Invariance: Reidemeister moves

The invariance under Reidemeister moves II_{b} and III follows similarly. Reidemeister move I requires an extra lemma.

Equivariant homology

Consider the polynomial

$$
f(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} B_{k} X^{N+1-k}
$$

where B_{k} is a homogeneous indeterminate of degree $2 k$.
For an alphabet $\mathbb{X}=\left\{x_{1}, \ldots, x_{m}\right\}$, define
$f(\mathbb{X})=\sum_{i=1}^{m} f\left(x_{i}\right)=p_{N+1}(\mathbb{X})+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} B_{k} p_{N+1-k}(\mathbb{X})$.
We can repeat the above construction using $f(\mathbb{X})$ instead of $p_{N+1}(\mathbb{X})$ and get an equivariant colored $\mathfrak{s l}(N)$ link homology.

Equivariant homology (cont'd)

$$
\begin{aligned}
& L_{v} \\
& C_{f}(v)=\left(\begin{array}{cc}
U_{1} & X_{1}-Y_{1} \\
U_{2} & X_{2}-Y_{2} \\
\cdots & \cdots \\
U_{m} & X_{m}-Y_{m}
\end{array}\right)_{R\left[B_{1}, \ldots, B_{N}\right]}\left\{q^{-\sum_{1 \leq s<t \leq k i} s^{\prime} t}\right\},
\end{aligned}
$$

where U_{j} is homogeneous of degree $2 N+2-2 j$ and the potential is $\sum_{j=1}^{m}\left(X_{j}-Y_{j}\right) U_{j}=f(\mathbb{X})-f(\mathbb{Y})$.

Equivariant homology (cont'd)

The quotient map $\pi_{0}: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi_{0}\left(B_{k}\right)=0$ induces a functor
$\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi_{0}} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), p_{N+1}(\mathbb{X})-p_{N+1}(\mathbb{Y})}$.

Equivariant homology (cont'd)

The quotient map $\pi_{0}: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi_{0}\left(B_{k}\right)=0$ induces a functor
$\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{w_{0}} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), p_{N+1}(\mathbb{X})-p_{N+1}(\mathbb{Y})}$.

Krasner made the observation that, for any morphism ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}, \psi$ is a homotopy equivalence if and only if $\varpi_{0}(\psi)$ is a homotopy equivalence.

Equivariant homology (cont'd)

The quotient map $\pi_{0}: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi_{0}\left(B_{k}\right)=0$ induces a functor
$\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi_{0}} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), p_{N+1}(\mathbb{X})-p_{N+1}(\mathbb{Y})}$.

Krasner made the observation that, for any morphism ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}, \psi$ is a homotopy equivalence if and only if $\varpi_{0}(\psi)$ is a homotopy equivalence.

This observation allows one to easily prove the invariance of the equivariant colored $\mathfrak{s l}(N)$ link homology using the proof of the invariance of the colored $\mathfrak{s l}(N)$ link homology.

Deformed homology

The quotient map $\pi: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi\left(B_{k}\right)=b_{k} \in \mathbb{C}$ induces a functor

$$
\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), P(\mathbb{X})-P(\mathbb{Y})},
$$

where $P(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} b_{k} X^{N+1-k}$.

Deformed homology

The quotient map $\pi: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi\left(B_{k}\right)=b_{k} \in \mathbb{C}$ induces a functor

$$
\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), P(\mathbb{X})-P(\mathbb{Y})},
$$

where $P(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} b_{k} X^{N+1-k}$.
$\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}$.

Deformed homology

The quotient map $\pi: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi\left(B_{k}\right)=b_{k} \in \mathbb{C}$ induces a functor

$$
\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), P(\mathbb{X})-P(\mathbb{Y})},
$$

where $P(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} b_{k} X^{N+1-k}$.
$\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}$.

This allows one to define a deformed colored $\mathfrak{s l}(N)$ link homology H_{P}.

Deformed homology

The quotient map $\pi: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi\left(B_{k}\right)=b_{k} \in \mathbb{C}$ induces a functor

$$
\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \xrightarrow{\varpi} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), P(\mathbb{X})-P(\mathbb{Y})}
$$

where $P(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} b_{k} X^{N+1-k}$.
$\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}$.

This allows one to define a deformed colored $\mathfrak{s l}(N)$ link homology H_{P}.
H_{P} comes with a homological grading and a quantum filtration.

Deformed homology

The quotient map $\pi: \mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \rightarrow \mathbb{C}$ given by $\pi\left(B_{k}\right)=b_{k} \in \mathbb{C}$ induces a functor

$$
\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})} \stackrel{\varpi}{\longrightarrow} \operatorname{hmf}_{\operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), P(\mathbb{X})-P(\mathbb{Y})},
$$

where $P(X)=X^{N+1}+\sum_{k=1}^{N}(-1)^{k} \frac{N+1}{N+1-k} b_{k} X^{N+1-k}$.
$\varpi(\psi)$ is a homotopy equivalence for any homotopy equivalence ψ in $\operatorname{hmf}_{\mathbb{C}\left[B_{1}, \ldots, B_{N}\right] \otimes \operatorname{Sym}(\mathbb{X} \mid \mathbb{Y}), f(\mathbb{X})-f(\mathbb{Y})}$.

This allows one to define a deformed colored $\mathfrak{s l}(N)$ link homology H_{P}.
H_{P} comes with a homological grading and a quantum filtration.
This quantum filtration induces a spectral sequence converging to H_{P} with E_{2}-page isomorphic to the (undeformed) colored $\mathfrak{s l}(N)$ link homology.

Generic deformed homology

We say that $P(X)$ is generic if

$$
P^{\prime}(X)=(N+1)\left(X^{N}+\sum_{k=1}^{N}(-1)^{k} b_{k} X^{N-k}\right)
$$

has N distinct roots in \mathbb{C}.

Generic deformed homology

We say that $P(X)$ is generic if

$$
P^{\prime}(X)=(N+1)\left(X^{N}+\sum_{k=1}^{N}(-1)^{k} b_{k} X^{N-k}\right)
$$

has N distinct roots in \mathbb{C}.
For a generic P, denote by Σ the set of roots of P^{\prime}. For a colored link L, a state of L is a function

$$
\psi:\{\text { components of } L\} \rightarrow \mathcal{P}(\Sigma)
$$

such that $\# \psi(K)=$ the color of K.

Generic deformed homology

We say that $P(X)$ is generic if

$$
P^{\prime}(X)=(N+1)\left(X^{N}+\sum_{k=1}^{N}(-1)^{k} b_{k} X^{N-k}\right)
$$

has N distinct roots in \mathbb{C}.
For a generic P, denote by Σ the set of roots of P^{\prime}. For a colored link L, a state of L is a function

$$
\psi:\{\text { components of } L\} \rightarrow \mathcal{P}(\Sigma)
$$

such that $\# \psi(K)=$ the color of K.
Theorem

$$
H_{P}(L)=\bigoplus_{\psi \in \mathcal{S}_{P}(L)} \mathbb{C} \cdot v_{\psi}
$$

where $v_{\psi} \neq 0$ and the decomposition preserves the homological grading.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\max _{\operatorname{deg}}^{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right),
$$

where $K^{(m)}$ is K colored by m.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\operatorname{maxdeg}_{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right),
$$

where $K^{(m)}$ is K colored by m.
Theorem

- $\left|s_{P}^{(m)}(K)\right| \leq 2 m(N-m) g_{*}(K)$, where $g_{*}(K)$ is the smooth slice genus of K.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\operatorname{maxdeg}_{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right)
$$

where $K^{(m)}$ is K colored by m.
Theorem

- $\left|s_{P}^{(m)}(K)\right| \leq 2 m(N-m) g_{*}(K)$, where $g_{*}(K)$ is the smooth slice genus of K.
- $s_{P}^{(m)}(K) \geq m(N-m)(\overline{S L}(K)+1)$, where $\overline{S L}(K)$ is the maximal self linking number of K.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\operatorname{maxdeg}_{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right)
$$

where $K^{(m)}$ is K colored by m.
Theorem

- $\left|s_{P}^{(m)}(K)\right| \leq 2 m(N-m) g_{*}(K)$, where $g_{*}(K)$ is the smooth slice genus of K.
- $s_{P}^{(m)}(K) \geq m(N-m)(\overline{S L}(K)+1)$, where $\overline{S L}(K)$ is the maximal self linking number of K.
- $s_{P}^{(m)}(K)=0$ if K is amphicheiral.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\max _{\operatorname{deg}}^{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right)
$$

where $K^{(m)}$ is K colored by m.
Theorem

- $\left|s_{P}^{(m)}(K)\right| \leq 2 m(N-m) g_{*}(K)$, where $g_{*}(K)$ is the smooth slice genus of K.
- $s_{P}^{(m)}(K) \geq m(N-m)(\overline{S L}(K)+1)$, where $\overline{S L}(K)$ is the maximal self linking number of K.
- $s_{P}^{(m)}(K)=0$ if K is amphicheiral.

Corollary

- A knot K is chiral if $\overline{S L}(K) \geq 0$.

Colored $\mathfrak{s l}(N)$ Rasmussen invariants

Let P be generic. For a knot K, the m-colored $\mathfrak{s l}(N)$ Rasmussen invariant of K is

$$
s_{P}^{(m)}(K)=\frac{1}{2}\left(\max _{\operatorname{deg}}^{q} H_{P}\left(K^{(m)}\right)+\min \operatorname{deg}_{q} H_{P}\left(K^{(m)}\right)\right)
$$

where $K^{(m)}$ is K colored by m.
Theorem

- $\left|s_{P}^{(m)}(K)\right| \leq 2 m(N-m) g_{*}(K)$, where $g_{*}(K)$ is the smooth slice genus of K.
- $s_{P}^{(m)}(K) \geq m(N-m)(\overline{S L}(K)+1)$, where $\overline{S L}(K)$ is the maximal self linking number of K.
- $s_{P}^{(m)}(K)=0$ if K is amphicheiral.

Corollary

- A knot K is chiral if $\overline{S L}(K) \geq 0$.
- Quasipositive amphicheiral knots are smoothly slice.

A composition product - labellings

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ, the color of e is $c(e)$.

A composition product - labellings

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ, the color of e is $c(e)$.

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ.

A composition product - labellings

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ, the color of e is $c(e)$.

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ.

Denote by $\mathcal{L}(\Gamma)$ the set of all labellings of Γ. For every $f \in \mathcal{L}(\Gamma)$, denote by Γ_{f} the MOY graph obtained by re-coloring the underlying oriented trivalent graph of Γ using f.

A composition product - labellings

Let Γ be an MOY graph. Denote by c its color function. That is, for every edge e of Γ, the color of e is $c(e)$.

A labeling f of Γ is an MOY coloring of the underlying oriented trivalent graph of Γ such that $f(e) \leq c(e)$ for every edge e of Γ.

Denote by $\mathcal{L}(\Gamma)$ the set of all labellings of Γ. For every $f \in \mathcal{L}(\Gamma)$, denote by Γ_{f} the MOY graph obtained by re-coloring the underlying oriented trivalent graph of Γ using f.

For every $f \in \mathcal{L}(\Gamma)$, define a function \bar{f} on $E(\Gamma)$ by $\bar{f}(e)=c(e)-f(e)$ for every edge e of Γ. It is easy to see that $\bar{f} \in \mathcal{L}(\Gamma)$.

A composition product

Let Γ be an MOY graph. For any positive integers M and N,

$$
\langle\Gamma\rangle_{M+N}=\sum_{\mathrm{f} \in \mathcal{L}(\Gamma)} q^{\sigma_{M, N}(\Gamma, \mathrm{f})} \cdot\left\langle\Gamma_{\mathrm{f}}\right\rangle_{M} \cdot\left\langle\Gamma_{\overline{\mathrm{f}}}\right\rangle_{N} .
$$

A composition product

Let Γ be an MOY graph. For any positive integers M and N,

$$
\langle\Gamma\rangle_{M+N}=\sum_{\mathrm{f} \in \mathcal{L}(\Gamma)} q^{\sigma_{M, N}(\Gamma, \mathrm{f})} \cdot\left\langle\Gamma_{\mathrm{f}}\right\rangle_{M} \cdot\left\langle\Gamma_{\overline{\mathrm{f}}}\right\rangle_{N} .
$$

This composition product is equivalent to the state sum formula of the $\mathfrak{s l}(N)$ MOY graph polynomial.

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,
$w-b \leq \liminf _{N \rightarrow \infty} \frac{\min _{\operatorname{deg}_{q}} H_{N}\left(B^{(m)}\right)}{m(N-m)} \leq \limsup _{N \rightarrow \infty} \frac{\max ^{\operatorname{deg}_{q} H_{N}\left(B^{(m)}\right)}}{m(N-m)} \leq w+b$,
where $B^{(m)}$ is B colored by m.

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,
$w-b \leq \liminf _{N \rightarrow \infty} \frac{\min _{\operatorname{deg}_{q}} H_{N}\left(B^{(m)}\right)}{m(N-m)} \leq \limsup _{N \rightarrow \infty} \frac{\max ^{\operatorname{deg}_{q} H_{N}\left(B^{(m)}\right)}}{m(N-m)} \leq w+b$,
where $B^{(m)}$ is B colored by m.
More generally, for any two sequences $\left\{m_{k}\right\}$ and $\left\{N_{k}\right\}$ of positive integers satisfying $\lim _{k \rightarrow \infty} \frac{1}{N_{k}}=\lim _{k \rightarrow \infty} \frac{m_{k}}{N_{k}}=0$,
$w-b \leq \liminf _{k \rightarrow+\infty} \frac{\min \operatorname{deg}_{q} H_{N_{k}}\left(B^{\left(m_{k}\right)}\right)}{m_{k}\left(N_{k}-m_{k}\right)} \leq \limsup _{k \rightarrow+\infty} \frac{\min _{\operatorname{deg}_{q}} H_{N_{k}}\left(B^{\left(m_{k}\right)}\right)}{m_{k}\left(N_{k}-m_{k}\right)} \leq w+b$.

Colored homological MFW inequalities

For a closed braid B with writhe w and b strands,
$w-b \leq \liminf _{N \rightarrow \infty} \frac{\min _{\operatorname{deg}_{q} H_{N}\left(B^{(m)}\right)}^{m(N-m)} \leq \limsup _{N \rightarrow \infty} \frac{\max ^{\operatorname{deg}_{q} H_{N}\left(B^{(m)}\right)}}{m(N-m)} \leq w+b, ~}{m(N)}$
where $B^{(m)}$ is B colored by m.
More generally, for any two sequences $\left\{m_{k}\right\}$ and $\left\{N_{k}\right\}$ of positive integers satisfying $\lim _{k \rightarrow \infty} \frac{1}{N_{k}}=\lim _{k \rightarrow \infty} \frac{m_{k}}{N_{k}}=0$,
$w-b \leq \liminf _{k \rightarrow+\infty} \frac{\min _{\operatorname{deg}_{q}} H_{N_{k}}\left(B^{\left(m_{k}\right)}\right)}{m_{k}\left(N_{k}-m_{k}\right)} \leq \limsup _{k \rightarrow+\infty} \frac{\min _{\operatorname{deg}_{q}} H_{N_{k}}\left(B^{\left(m_{k}\right)}\right)}{m_{k}\left(N_{k}-m_{k}\right)} \leq w+b$.

When $m=1$, the above inequalities imply the original MFW inequality.

