Transverse Khovanov-Rozansky Homologies

Hao Wu
George Washington University

Transverse Links in the Standard Contact S^{3}

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi=\operatorname{ker} \alpha,\left.d \alpha\right|_{\xi}>0$ and $\alpha \wedge d \alpha>0$. Such a 1 -form is called a contact form for ξ.

Transverse Links in the Standard Contact S^{3}

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi=\operatorname{ker} \alpha,\left.d \alpha\right|_{\xi}>0$ and $\alpha \wedge d \alpha>0$. Such a 1 -form is called a contact form for ξ.
The standard contact structure $\xi_{s t}$ on S^{3} is given by the contact form $\alpha_{s t}=d z-y d x+x d y=d z+r^{2} d \theta$.

Transverse Links in the Standard Contact S^{3}

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi=\operatorname{ker} \alpha,\left.d \alpha\right|_{\xi}>0$ and $\alpha \wedge d \alpha>0$. Such a 1 -form is called a contact form for ξ.
The standard contact structure $\xi_{s t}$ on S^{3} is given by the contact form $\alpha_{s t}=d z-y d x+x d y=d z+r^{2} d \theta$.

An oriented smooth link L in S^{3} is called transverse if $\left.\alpha_{s t}\right|_{L}>0$.

Transverse Links in the Standard Contact S^{3}

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1 -form α on M satisfying $\xi=\operatorname{ker} \alpha,\left.d \alpha\right|_{\xi}>0$ and $\alpha \wedge d \alpha>0$. Such a 1 -form is called a contact form for ξ.
The standard contact structure $\xi_{s t}$ on S^{3} is given by the contact form $\alpha_{s t}=d z-y d x+x d y=d z+r^{2} d \theta$.
An oriented smooth link L in S^{3} is called transverse if $\left.\alpha_{s t}\right|_{L}>0$.
Theorem (Bennequin)
Every transverse link in the standard contact S^{3} is transverse isotopic to a counterclockwise transverse closed braid around the z-axis.

Transverse Links in the Standard Contact S^{3}

A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1 -form α on M satisfying $\xi=\operatorname{ker} \alpha,\left.d \alpha\right|_{\xi}>0$ and $\alpha \wedge d \alpha>0$. Such a 1-form is called a contact form for ξ.
The standard contact structure $\xi_{s t}$ on S^{3} is given by the contact form $\alpha_{s t}=d z-y d x+x d y=d z+r^{2} d \theta$.
An oriented smooth link L in S^{3} is called transverse if $\left.\alpha_{s t}\right|_{L}>0$.

Theorem (Bennequin)

Every transverse link in the standard contact S^{3} is transverse isotopic to a counterclockwise transverse closed braid around the z-axis.

Clearly, any smooth counterclockwise closed braid around the z-axis can be smoothly isotoped into a transverse closed braid around the z-axis without changing the braid word.

The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
- $\sigma_{i} \sigma_{i}^{-1}=\sigma_{i}^{-1} \sigma_{i}=\emptyset$,
- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, when $|i-j|>1$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.
- Conjugations: $\mu \leadsto \eta^{-1} \mu \eta$.
- Positive stabilizations and destabilizations:

$$
\mu\left(\in \mathbf{B}_{m}\right) \nLeftarrow \mu \sigma_{m}\left(\in \mathbf{B}_{m+1}\right) .
$$

The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
- $\sigma_{i} \sigma_{i}^{-1}=\sigma_{i}^{-1} \sigma_{i}=\emptyset$,
- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, when $|i-j|>1$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.
- Conjugations: $\mu \leadsto \eta^{-1} \mu \eta$.
- Positive stabilizations and destabilizations:

$$
\mu\left(\in \mathbf{B}_{m}\right) \leadsto \mu \sigma_{m}\left(\in \mathbf{B}_{m+1}\right) .
$$

Theorem (Orevkov, Shevchishin and Wrinkle)
Two transverse closed braids are transverse isotopic if and only if the two braid words are related by a finite sequence of transverse Markov moves.

The Transverse Markov Theorem

Transverse Markov moves:

- Braid group relations generated by
- $\sigma_{i} \sigma_{i}^{-1}=\sigma_{i}^{-1} \sigma_{i}=\emptyset$,
- $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, when $|i-j|>1$,
- $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.
- Conjugations: $\mu \leadsto \eta^{-1} \mu \eta$.
- Positive stabilizations and destabilizations:
$\mu\left(\in \mathbf{B}_{m}\right) \longleftrightarrow \mu \sigma_{m}\left(\in \mathbf{B}_{m+1}\right)$.
Theorem (Orevkov, Shevchishin and Wrinkle)
Two transverse closed braids are transverse isotopic if and only if the two braid words are related by a finite sequence of transverse Markov moves.

So there is a one-to-one correspondence between transverse isotopy classes of transverse links and closed braids modulo transverse Markov moves.

Contact Framing

$\xi_{s t}$ admits a nowhere vanishing basis $\left\{\partial_{x}+y \partial_{z}, \partial_{y}-x \partial_{z}\right\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

Contact Framing

$\xi_{s t}$ admits a nowhere vanishing basis $\left\{\partial_{x}+y \partial_{z}, \partial_{y}-x \partial_{z}\right\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid B of a knot with writhe w and b strands, its contact framing is determined by its self linking number $s l(B):=w-b$.

Contact Framing

$\xi_{s t}$ admits a nowhere vanishing basis $\left\{\partial_{x}+y \partial_{z}, \partial_{y}-x \partial_{z}\right\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid B of a knot with writhe w and b strands, its contact framing is determined by its self linking number $s l(B):=w-b$.

If a smooth link type contains two transverse links that are isotopic as framed links but not as transverse links, then we call this smooth link type "transverse non-simple".

Contact Framing

$\xi_{s t}$ admits a nowhere vanishing basis $\left\{\partial_{x}+y \partial_{z}, \partial_{y}-x \partial_{z}\right\}$. For each transverse link L, this basis induces a contact framing of L. If two transverse links are transverse isotopic, then they are isotopic as framed links.

For a transverse closed braid B of a knot with writhe w and b strands, its contact framing is determined by its self linking number $s l(B):=w-b$.

If a smooth link type contains two transverse links that are isotopic as framed links but not as transverse links, then we call this smooth link type "transverse non-simple".

An invariant for transverse links is called classical if it depends only on the framed link type of the transverse link. Otherwise, it is called non-classical or effective.

The Khovanov-Rozansky Homology

Khovanov and Rozansky introduced an approach to construct link homologies using matrix factorizations by:

1. Choose a base ring R and a potential polynomial $p(x) \in R[x]$.
2. Define matrix factorizations associated to MOY graphs using this potential $p(x)$.
3. Define chain complexes of matrix factorizations associated to link diagrams using the crossing information.

The Khovanov-Rozansky Homology

Khovanov and Rozansky introduced an approach to construct link homologies using matrix factorizations by:

1. Choose a base ring R and a potential polynomial $p(x) \in R[x]$.
2. Define matrix factorizations associated to MOY graphs using this potential $p(x)$.
3. Define chain complexes of matrix factorizations associated to link diagrams using the crossing information.

This approach has been carried out for the following potential polynomials:

- $x^{N+1} \in \mathbb{Q}[x]$ (the $\mathfrak{s l}(N)$ Khovanov-Rozansky homology);
- $a x \in \mathbb{Q}[a, x]$ (the HOMFLYPT homology);
- $x^{N+1}+\sum_{l=1}^{N} \lambda_{l} x^{\prime} \in \mathbb{Q}[x]$ (deformed $\mathfrak{s l}(N)$

Khovanov-Rozansky homology);

- $x^{N+1}+\sum_{l=1}^{N} a_{l} x^{\prime} \in \mathbb{Q}\left[a_{1}, \ldots, a_{N}, x\right]$ (the equivariant $\mathfrak{s l}(N)$ Khovanov-Rozansky homology).

Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky's matrix factorization construction to $a x^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex \mathcal{C}_{N}. For each link diagram D, the homology $\mathcal{H}_{N}(D)$ of $\mathcal{C}_{N}(D)$ is a $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky's matrix factorization construction to $a x^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex \mathcal{C}_{N}. For each link diagram D, the homology $\mathcal{H}_{N}(D)$ of $\mathcal{C}_{N}(D)$ is a $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Theorem (W)
Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_{N}(B)$ preserving the $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module structure.

Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky's matrix factorization construction to $a x^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex \mathcal{C}_{N}. For each link diagram D, the homology $\mathcal{H}_{N}(D)$ of $\mathcal{C}_{N}(D)$ is a $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Theorem (W)

Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_{N}(B)$ preserving the $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module structure.

Therefore, by the Transverse Markov Theorem, \mathcal{H}_{N} is an invariant for transverse links in the standard contact S^{3}.

Transverse Khovanov-Rozansky Homologies

For $N \geq 1$, applying Khovanov and Rozansky's matrix factorization construction to $a x^{N+1} \in \mathbb{Q}[a, x]$, one gets a chain complex \mathcal{C}_{N}. For each link diagram D, the homology $\mathcal{H}_{N}(D)$ of $\mathcal{C}_{N}(D)$ is a $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module.

Theorem (W)

Suppose $N \geq 1$. Let B be a closed braid. Every transverse Markov move on B induces an isomorphism of $\mathcal{H}_{N}(B)$ preserving the $\mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module structure.

Therefore, by the Transverse Markov Theorem, \mathcal{H}_{N} is an invariant for transverse links in the standard contact S^{3}.

Question
Is \mathcal{H}_{N} an effective invariant for transverse links?

Decategorification

$$
\mathcal{P}_{N}(B):=\sum_{(\varepsilon, i, j, k) \in \mathbb{Z}_{2} \oplus \mathbb{Z} \oplus^{3}}(-1)^{i} \tau^{\varepsilon} \alpha^{j} \xi^{k} \operatorname{dim}_{\mathbb{Q}} \mathcal{H}_{N}^{\varepsilon, i, j, k}(B) \in \mathbb{Z}[[\alpha, \xi]]\left[\alpha^{-1}, \xi^{-1}, \tau\right] /\left(\tau^{2}-1\right)
$$

Decategorification

$$
\mathcal{P}_{N}(B):=\sum_{(\varepsilon, i, j, k) \in \mathbb{Z}_{2} \oplus \mathbb{Z} \oplus 3}(-1)^{i} \tau^{\varepsilon} \alpha^{j} \xi^{k} \operatorname{dim}_{\mathbb{Q}} \mathcal{H}_{N}^{\varepsilon, i, j, k}(B) \in \mathbb{Z}[[\alpha, \xi]]\left[\alpha^{-1}, \xi^{-1}, \tau\right] /\left(\tau^{2}-1\right)
$$

Theorem (W)

1. \mathcal{P}_{N} is invariant under transverse Markov moves.
2. $\alpha^{-1} \xi^{-N} \mathcal{P}_{N}(>)-\alpha \xi^{N} \mathcal{P}_{N}(\nearrow)=\tau\left(\xi^{-1}-\xi\right) \mathcal{P}_{N}()$ ().
3. $\mathcal{P}_{N}\left(U^{\sqcup m}\right)=\left(\tau \alpha^{-1}[N]\right)^{m}\left(\frac{1}{1-\alpha^{2}}+\frac{\left(\frac{\tau \alpha \xi^{-1}+\xi^{-N}}{\xi-\xi^{N}}\right)^{m}-1}{\tau \alpha \xi^{-N-1}+1}\right)$, where $U^{\sqcup m}$ is the m-strand closed braid with no crossings and $[N]:=\frac{\xi^{-N}-\xi^{N}}{\xi^{-1}-\xi}$.
4. Parts 1-3 above uniquely determine the value of \mathcal{P}_{N} on every closed braid.

Decategorification

$$
\mathcal{P}_{N}(B):=\sum_{(\varepsilon, i, j, k) \in \mathbb{Z}_{2} \oplus \mathbb{Z} \oplus^{3}}(-1)^{i} \tau^{\varepsilon} \alpha^{j} \xi^{k} \operatorname{dim}_{\mathbb{Q}} \mathcal{H}_{N}^{\varepsilon, i, j, k}(B) \in \mathbb{Z}[[\alpha, \xi]]\left[\alpha^{-1}, \xi^{-1}, \tau\right] /\left(\tau^{2}-1\right)
$$

Theorem (W)

1. \mathcal{P}_{N} is invariant under transverse Markov moves.
2. $\alpha^{-1} \xi^{-N} \mathcal{P}_{N}(>)-\alpha \xi^{N} \mathcal{P}_{N}(\nearrow)=\tau\left(\xi^{-1}-\xi\right) \mathcal{P}_{N}()$ ().
3. $\mathcal{P}_{N}\left(U^{\sqcup m}\right)=\left(\tau \alpha^{-1}[N]\right)^{m}\left(\frac{1}{1-\alpha^{2}}+\frac{\left(\frac{\tau \alpha \xi^{-1}+\xi^{-N}}{\xi-\xi^{N}}\right)^{m}-1}{\tau \alpha \xi^{-N-1}+1}\right)$, where $U^{\sqcup m}$ is the m-strand closed braid with no crossings and $[N]:=\frac{\xi^{-N}-\xi^{N}}{\xi^{-1}-\xi}$.
4. Parts 1-3 above uniquely determine the value of \mathcal{P}_{N} on every closed braid.

It is not clear if \mathcal{P}_{N} is effective. But \mathcal{P}_{N} does not detect flype moves. $\left(\mu \sigma_{m}^{k} \nu \sigma_{m}^{ \pm 1} \rightsquigarrow \mu \sigma_{m}^{ \pm 1} \nu \sigma_{m}^{k}\right.$, where $\left.\mu, \nu \in \mathbf{B}_{m}.\right)$

Module Structure

Theorem (W)
Let $H_{N}(B)$ be the $\mathfrak{s l}(N)$ Khovanov-Rozansky homology of a closed braid B, and $(\varepsilon, i, k) \in \mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 2}$.

1. $H_{N}^{\varepsilon, i, k}(B) \cong \mathcal{H}_{N}^{\varepsilon, i, \star, k}(B) /(a-1) \mathcal{H}_{N}^{\varepsilon, i, \star, k}(B)$.

Module Structure

Theorem (W)

Let $H_{N}(B)$ be the $\mathfrak{s l}(N)$ Khovanov-Rozansky homology of a closed braid B, and $(\varepsilon, i, k) \in \mathbb{Z}_{2} \oplus \mathbb{Z}^{\oplus 2}$.

1. $H_{N}^{\varepsilon, i, k}(B) \cong \mathcal{H}_{N}^{\varepsilon, i, \star, k}(B) /(a-1) \mathcal{H}_{N}^{\varepsilon, i, \star, k}(B)$.
2. As a \mathbb{Z}-graded $\mathbb{Q}[a]$-module,

$$
\left.\mathcal{H}_{N}^{\varepsilon, i, k, k}(B) \cong\left(\mathbb{Q}[a]\{s l(B)\}_{a}\right)^{\oplus \prime} \oplus\left(\mathbb{Q}[a]\{s l(B)+2\}_{a}\right)^{\oplus\left(\operatorname{dim}_{\mathbb{Q}} H_{N}^{\varepsilon}, i, k\right.}(B)-l\right) \oplus\left(\bigoplus_{q=1}^{n} \mathbb{Q}[a] /(a)\left\{s_{q}\right\}\right),
$$

where

- $\{s\}_{a}$ means shifting the a-grading by s,
- I and n are finite non-negative integers determined by B and the triple (ε, i, k),
- $\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{Z}$ is a sequence determined up to permutation by B and the triple (ε, i, k),
- $s l(B) \leq s_{q} \leq c_{+}-c_{-}-1$ and $(N-1) s_{q} \leq k-2 N+2 c_{-}$for $1 \leq q \leq n$, where $c_{ \pm}$is the number of \pmcrossings in B.

Negative Stabilization

Theorem (W)
Let L be a transverse closed braid, and L_{-}a transverse closed braid obtained from L by a single negative stabilization. Then the chain complex $\mathcal{C}_{N}\left(L_{-}\right)\{2,0\}$ is isomorphic to the mapping cone of the standard quotient map $\pi_{0}: \mathcal{C}_{N}(L) \rightarrow \mathcal{C}_{N}(L) / a \mathcal{C}_{N}(L)$.

Negative Stabilization

Theorem (W)

Let L be a transverse closed braid, and L_{-}a transverse closed braid obtained from L by a single negative stabilization. Then the chain complex $\mathcal{C}_{N}\left(L_{-}\right)\{2,0\}$ is isomorphic to the mapping cone of the standard quotient map $\pi_{0}: \mathcal{C}_{N}(L) \rightarrow \mathcal{C}_{N}(L) / a \mathcal{C}_{N}(L)$.

Thus, if $\mathscr{H}_{N}(L)$ is the homology of $\mathcal{C}_{N}(L) / a \mathcal{C}_{N}(L)$, there is a long exact sequence

$$
\cdots \rightarrow \mathcal{H}_{N}^{\varepsilon, i-1}(L)\{-2,0\} \xrightarrow{\pi_{0}} \mathscr{H}_{N}^{\varepsilon, i-1}(L)\{-2,0\} \rightarrow \mathcal{H}_{N}^{\varepsilon, i}\left(L_{-}\right) \rightarrow \mathcal{H}_{N}^{\varepsilon, i}(L)\{-2,0\} \xrightarrow{\pi_{0}} \cdots
$$

Negative Stabilization (cont'd)

Theorem (W)
Let B be a closed braid and B_{-}a stabilization of B. Set $s=s /(B)$. Then for any $(i, k) \in \mathbb{Z}^{\oplus 2}$, there are a long exact sequence of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules

and a short exact sequence of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules

$$
0 \rightarrow H_{N}^{s, i, k}(B) \otimes \mathbb{Q} \mathbb{Q}[a]\{s\}_{a} \rightarrow \mathcal{H}_{N}^{s, i, \star, k}\left(B_{-}\right) \rightarrow \mathcal{H}_{N}^{s-1, i-1, \star, k+N+1}(B)\{-1\}_{a} \rightarrow 0
$$

Transverse Unknots

- Bennequin's inequality implies that the highest self linking number of a transverse unknot is -1 , which is attained by the 1 -strand transverse closed braid.

Transverse Unknots

- Bennequin's inequality implies that the highest self linking number of a transverse unknot is -1 , which is attained by the 1-strand transverse closed braid.
- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.

Transverse Unknots

- Bennequin's inequality implies that the highest self linking number of a transverse unknot is -1 , which is attained by the 1-strand transverse closed braid.
- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.
- Denote by U_{0} the transverse unknot with self linking -1 and by U_{m} the transverse unknot obtained from U_{0} by m negative stabilizations.

Transverse Unknots

- Bennequin's inequality implies that the highest self linking number of a transverse unknot is -1 , which is attained by the 1-strand transverse closed braid.
- Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal.
- Denote by U_{0} the transverse unknot with self linking -1 and by U_{m} the transverse unknot obtained from U_{0} by m negative stabilizations.
- Then every transverse unknot is transverse isotopic to U_{m} for some $m \geq 0$.

Transverse Unknots (cont'd)

$$
\begin{aligned}
\mathcal{F} & :=\bigoplus_{l=0}^{N-1} \mathbb{Q}[a]\langle 1\rangle\{-1,-N+1+2 /\} \\
\mathcal{T} & :=\bigoplus_{l=0}^{\infty} \mathbb{Q}[a] /(a)\langle 1\rangle\{-1, N+1+2 /\},
\end{aligned}
$$

Transverse Unknots (cont'd)

$$
\begin{aligned}
& \mathcal{F}:=\bigoplus_{l=0}^{N-1} \mathbb{Q}[a]\langle 1\rangle\{-1,-N+1+2 /\}, \\
& \mathcal{T}:=\bigoplus_{l=0}^{\infty} \mathbb{Q}[a] /(a)\langle 1\rangle\{-1, N+1+2 /\}, \\
& \mathcal{H}_{N}\left(U_{0}\right) \cong \mathcal{F} \oplus \mathcal{T}, \\
& \mathcal{H}_{N}\left(U_{1}\right) \cong \mathcal{F} \oplus \mathcal{T}\langle 1\rangle\{-1,-N-1\}\|1\|,
\end{aligned}
$$

Transverse Unknots (cont'd)

$$
\begin{aligned}
& \mathcal{F}:=\bigoplus_{l=0}^{N-1} \mathbb{Q}[a]\langle 1\rangle\{-1,-N+1+2 /\}, \\
& \mathcal{T}:=\bigoplus_{l=0}^{\infty} \mathbb{Q}[a] /(a)\langle 1\rangle\{-1, N+1+2 /\} \\
& \mathcal{H}_{N}\left(U_{0}\right) \cong \mathcal{F} \oplus \mathcal{T} \\
& \mathcal{H}_{N}\left(U_{1}\right) \cong \mathcal{F} \oplus \mathcal{T}\langle 1\rangle\{-1,-N-1\}\|1\|
\end{aligned}
$$

and, for $m \geq 2$,

$$
\begin{aligned}
\mathcal{H}_{N}\left(U_{m}\right) \cong & \mathcal{F}\{-2(m-1), 0\} \oplus \mathcal{T}\langle m\rangle\{-m,-m(N+1)\}\|m\| \\
& \oplus \bigoplus_{l=1}^{m-1} \mathcal{F} / a \mathcal{F}\langle I\rangle\{-2 m+I,-I(N+1)\}\|I+1\|
\end{aligned}
$$

where " $\|/\|$ " means shifting the homological grading by \rfloor.

