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called a contact form for ξ.

The standard contact structure ξst on S3 is given by the contact
form αst = dz − ydx + xdy = dz + r2dθ.

An oriented smooth link L in S3 is called transverse if αst |L > 0.

Theorem (Bennequin)

Every transverse link in the standard contact S3 is transverse

isotopic to a counterclockwise transverse closed braid around the

z-axis.

Clearly, any smooth counterclockwise closed braid around the
z-axis can be smoothly isotoped into a transverse closed braid
around the z-axis without changing the braid word.



The Transverse Markov Theorem

Transverse Markov moves:

◮ Braid group relations generated by
◮ σiσ

−1
i = σ−1

i σi = ∅,
◮ σiσj = σjσi , when |i − j | > 1,
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◮ Conjugations: µ ! η−1µη.

◮ Positive stabilizations and destabilizations:
µ (∈ Bm) ! µσm (∈ Bm+1).
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Theorem (Orevkov, Shevchishin and Wrinkle)

Two transverse closed braids are transverse isotopic if and only if

the two braid words are related by a finite sequence of transverse

Markov moves.

So there is a one-to-one correspondence between transverse isotopy
classes of transverse links and closed braids modulo transverse
Markov moves.
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ξst admits a nowhere vanishing basis {∂x + y∂z , ∂y − x∂z}. For
each transverse link L, this basis induces a contact framing of L. If
two transverse links are transverse isotopic, then they are isotopic
as framed links.

For a transverse closed braid B of a knot with writhe w and b

strands, its contact framing is determined by its self linking
number sl(B) := w − b.

If a smooth link type contains two transverse links that are isotopic
as framed links but not as transverse links, then we call this
smooth link type “transverse non-simple”.

An invariant for transverse links is called classical if it depends only
on the framed link type of the transverse link. Otherwise, it is
called non-classical or effective.
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homologies using matrix factorizations by:
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This approach has been carried out for the following potential
polynomials:

◮ xN+1 ∈ Q[x ] (the sl(N) Khovanov-Rozansky homology);

◮ ax ∈ Q[a, x ] (the HOMFLYPT homology);

◮ xN+1 +
∑N

l=1 λlx
l ∈ Q[x ] (deformed sl(N)

Khovanov-Rozansky homology);

◮ xN+1 +
∑N

l=1 alx
l ∈ Q[a1, . . . , aN , x ] (the equivariant sl(N)

Khovanov-Rozansky homology).
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construction to axN+1 ∈ Q[a, x ], one gets a chain complex CN . For
each link diagram D, the homology HN(D) of CN(D) is a
Z2 ⊕ Z⊕3-graded Q[a]-module.

Theorem (W)

Suppose N ≥ 1. Let B be a closed braid. Every transverse Markov

move on B induces an isomorphism of HN(B) preserving the

Z2 ⊕ Z⊕3-graded Q[a]-module structure.

Therefore, by the Transverse Markov Theorem, HN is an invariant
for transverse links in the standard contact S3.

Question
Is HN an effective invariant for transverse links?



Decategorification

PN(B) :=
∑

(ε,i,j,k)∈Z2⊕Z⊕3

(−1)iτεαjξk dimQ Hε,i,j,k

N (B) ∈ Z[[α, ξ]][α−1, ξ−1, τ ]/(τ 2−1)



Decategorification

PN(B) :=
∑

(ε,i,j,k)∈Z2⊕Z⊕3

(−1)iτεαjξk dimQ Hε,i,j,k

N (B) ∈ Z[[α, ξ]][α−1, ξ−1, τ ]/(τ 2−1)

Theorem (W)

1. PN is invariant under transverse Markov moves.

2. α−1ξ−NPN(
✒■
)− αξNPN(

■✒
) = τ(ξ−1 − ξ)PN(

✒■
).

3. PN(U
⊔m) = (τα−1[N])m( 1

1−α2 +

(

ταξ−1+ξ−N

ξ−N−ξN

)m

−1

ταξ−N−1+1
), where U⊔m is the

m-strand closed braid with no crossings and [N] := ξ−N
−ξN

ξ−1−ξ
.

4. Parts 1–3 above uniquely determine the value of PN on every closed

braid.



Decategorification

PN(B) :=
∑

(ε,i,j,k)∈Z2⊕Z⊕3

(−1)iτεαjξk dimQ Hε,i,j,k

N (B) ∈ Z[[α, ξ]][α−1, ξ−1, τ ]/(τ 2−1)

Theorem (W)

1. PN is invariant under transverse Markov moves.

2. α−1ξ−NPN(
✒■
)− αξNPN(

■✒
) = τ(ξ−1 − ξ)PN(

✒■
).

3. PN(U
⊔m) = (τα−1[N])m( 1

1−α2 +

(

ταξ−1+ξ−N
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−1

ταξ−N−1+1
), where U⊔m is the

m-strand closed braid with no crossings and [N] := ξ−N
−ξN

ξ−1−ξ
.

4. Parts 1–3 above uniquely determine the value of PN on every closed

braid.

It is not clear if PN is effective. But PN does not detect flype moves.
(µσk

mνσ
±1
m ! µσ±1

m νσk
m, where µ, ν ∈ Bm.)



Module Structure

Theorem (W)

Let HN(B) be the sl(N) Khovanov-Rozansky homology of a closed

braid B, and (ε, i , k) ∈ Z2 ⊕ Z⊕2.

1. H
ε,i ,k
N (B) ∼= Hε,i ,⋆,k

N (B)/(a− 1)Hε,i ,⋆,k
N (B).



Module Structure

Theorem (W)

Let HN(B) be the sl(N) Khovanov-Rozansky homology of a closed

braid B, and (ε, i , k) ∈ Z2 ⊕ Z⊕2.

1. H
ε,i ,k
N (B) ∼= Hε,i ,⋆,k

N (B)/(a− 1)Hε,i ,⋆,k
N (B).

2. As a Z-graded Q[a]-module,

Hε,i,⋆,k

N
(B) ∼= (Q[a]{sl(B)}a)

⊕l⊕(Q[a]{sl(B)+2}a)
⊕(dimQ H

ε,i,k
N

(B)−l)⊕(
n⊕

q=1

Q[a]/(a){sq}),

where
◮ {s}a means shifting the a-grading by s,
◮ l and n are finite non-negative integers determined by B and the

triple (ε, i , k),
◮ {s1, . . . , sn} ⊂ Z is a sequence determined up to permutation by

B and the triple (ε, i , k),
◮ sl(B) ≤ sq ≤ c+ − c− − 1 and (N − 1)sq ≤ k − 2N + 2c− for

1 ≤ q ≤ n, where c± is the number of ± crossings in B.
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Negative Stabilization

Theorem (W)

Let L be a transverse closed braid, and L− a transverse closed

braid obtained from L by a single negative stabilization. Then the

chain complex CN(L−){2, 0} is isomorphic to the mapping cone of

the standard quotient map π0 : CN(L) → CN(L)/aCN(L).

Thus, if HN(L) is the homology of CN(L)/aCN(L), there is a long
exact sequence

· · · → Hε,i−1
N (L){−2, 0}

π0−→ H
ε,i−1
N (L){−2, 0} → Hε,i

N (L−) → Hε,i

N (L){−2, 0}
π0−→ · · ·



Negative Stabilization (cont’d)

Theorem (W)
Let B be a closed braid and B− a stabilization of B. Set

s = sl(B). Then for any (i , k) ∈ Z⊕2, there are a long exact
sequence of Z-graded Q[a]-modules

· · · // Hs−1,i,⋆,k
N

(B−) // Hs,i−1,⋆,k+N+1
N

(B){−1}a

tt✐✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

H
s,i−1,k+N+1
N

(B)⊗Q Q[a]{s − 1}a // Hs−1,i+1,⋆,k
N

(B−) // · · ·

and a short exact sequence of Z-graded Q[a]-modules

0 → H
s,i,k

N
(B)⊗Q Q[a]{s}a → Hs,i,⋆,k

N
(B−) → Hs−1,i−1,⋆,k+N+1

N
(B){−1}a → 0.
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Transverse Unknots

◮ Bennequin’s inequality implies that the highest self linking
number of a transverse unknot is −1, which is attained by the
1-strand transverse closed braid.

◮ Eliashberg and Fraser showed that two transverse unknots are
transverse isotopic if and only if their self linking numbers are
equal.

◮ Denote by U0 the transverse unknot with self linking −1 and
by Um the transverse unknot obtained from U0 by m negative
stabilizations.

◮ Then every transverse unknot is transverse isotopic to Um for
some m ≥ 0.



Transverse Unknots (cont’d)

F :=
N−1⊕

l=0

Q[a] 〈1〉 {−1,−N + 1 + 2l},

T :=

∞⊕

l=0

Q[a]/(a) 〈1〉 {−1,N + 1 + 2l},
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Transverse Unknots (cont’d)

F :=
N−1⊕

l=0

Q[a] 〈1〉 {−1,−N + 1 + 2l},

T :=

∞⊕

l=0

Q[a]/(a) 〈1〉 {−1,N + 1 + 2l},

HN(U0) ∼= F ⊕ T ,

HN(U1) ∼= F ⊕ T 〈1〉 {−1,−N − 1}‖1‖,

and, for m ≥ 2,

HN(Um) ∼= F{−2(m − 1), 0} ⊕ T 〈m〉 {−m,−m(N + 1)}‖m‖

⊕
m−1⊕

l=1

F/aF 〈l〉 {−2m + l ,−l(N + 1)}‖l + 1‖,

where “‖l‖” means shifting the homological grading by l .


