
Incidence Relations and Directed Cycles

Hao Wu

George Washington University



Directed graphs and directed cycles

A directed graph is a pair G = (V (G ),E (G )) of finite sets, where

1. V (G ) is the set of vertices of G ,

2. E (G ) is the set of edges, each of which is directed.



Directed graphs and directed cycles

A directed graph is a pair G = (V (G ),E (G )) of finite sets, where

1. V (G ) is the set of vertices of G ,

2. E (G ) is the set of edges, each of which is directed.

A directed cycle in G is a closed directed path, that is, a
sequence v0, x0, v1, x1, . . . , xn−1, vn, xn, vn+1 = v0 satisfying

1. v0, v1, . . . , vn are pairwise distinct vertices of G ,

2. each xi is an edge of G with initial vertex vi and terminal
vertex vi+1.

Two such sequences represent the same directed cycle if one is a
circular permutation of the other.



Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no
common edges. Two directed cycles in G are called disjoint if they
have no common vertices.
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For a directed graph G , we define

◮ α(G ) := maximal number of pairwise edge-disjoint directed
cycles in G ,

◮ α̃(G ) := maximal number of pairwise disjoint directed cycles
in G ,

α(G ) is known as the cycle packing number of G . We call α̃(G )
the strong cycle packing number of G .



Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no
common edges. Two directed cycles in G are called disjoint if they
have no common vertices.

For a directed graph G , we define

◮ α(G ) := maximal number of pairwise edge-disjoint directed
cycles in G ,

◮ α̃(G ) := maximal number of pairwise disjoint directed cycles
in G ,

α(G ) is known as the cycle packing number of G . We call α̃(G )
the strong cycle packing number of G .

Our goal is to determine α(G ) and α̃(G ) using elementary
projective algebraic geometry.



Directed trials, paths and circuits

Given a directed graph G , a directed trail in G from a vertex u to
a different vertex v is a sequence
u = v0, x0, v1, x1, . . . , xn−1, vn = v such that

1. x0, x1, . . . , xn−1 are pairwise distinct edges of G ,

2. each xi is an edge of G with initial vertex vi and terminal
vertex vi+1.
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If, in addition, we require v0, v1, . . . , vn to be pairwise distinct,
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Directed trials, paths and circuits

Given a directed graph G , a directed trail in G from a vertex u to
a different vertex v is a sequence
u = v0, x0, v1, x1, . . . , xn−1, vn = v such that

1. x0, x1, . . . , xn−1 are pairwise distinct edges of G ,

2. each xi is an edge of G with initial vertex vi and terminal
vertex vi+1.

If, in addition, we require v0, v1, . . . , vn to be pairwise distinct,
then the above sequence is a directed path.

A directed circuit in G is a closed trial, that is, a sequence
v0, x0, v1, x1, . . . , xn−1, vn, xn, vn+1 = v0 satisfying

1. x0, x1, . . . , xn are pairwise distinct edges of G ,

2. each xi is an edge of G with initial vertex vi and terminal
vertex vi+1.

Two such sequences represent the same directed circuit if one is a
circular permutation of the other.



Disassembling a directed graph

Let G be a directed graph, and v a vertex of G . Assume
degin v = n and degout v = m. Set kv := max{m, n} and
lv := min{m, n}.
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To disassemble G at v is to split v into kv vertices such that

1. lv of these new vertices have in-degree 1 and out degree 1.

2. kv − lv of these new vertices have degree 1 such that
◮ if m ≥ n, then each of these degree 1 vertices has in-degree 0

and out-degree 1;
◮ if m < n, then each of these degree 1 vertices has in-degree 1

and out-degree 0.
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Disassembling a directed graph

Let G be a directed graph, and v a vertex of G . Assume
degin v = n and degout v = m. Set kv := max{m, n} and
lv := min{m, n}.

To disassemble G at v is to split v into kv vertices such that

1. lv of these new vertices have in-degree 1 and out degree 1.

2. kv − lv of these new vertices have degree 1 such that
◮ if m ≥ n, then each of these degree 1 vertices has in-degree 0

and out-degree 1;
◮ if m < n, then each of these degree 1 vertices has in-degree 1

and out-degree 0.

To disassemble G is to disassemble G at all vertices of G .

We call each graph resulted from disassembling G a disassembly

of G and denote by Dis(G ) the set of all disassemblies of G .
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Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
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◮ each directed path in D is mapped to a directed trail in G,
◮ each directed cycle in D is mapped to a directed circuit in G,
◮ the collection of all directed cycles in D is mapped to a

collection of pairwise edge-disjoint circuits in G.



Disassemblies of a directed graph

Lemma
Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.

2. E (D) = E (G ) and there is a natural graph homomorphism

from D to G that maps each edge to itself and each vertex v

in D the vertex in G used to create v .

3. Under the above natural homomorphism,

◮ each directed path in D is mapped to a directed trail in G,
◮ each directed cycle in D is mapped to a directed circuit in G,
◮ the collection of all directed cycles in D is mapped to a

collection of pairwise edge-disjoint circuits in G.

4. α(D) ≤ α(G ) and α(D) = α(G ) if and only if the collection

of all directed cycles in D is mapped to a collection of α(G )
pairwise edge-disjoint directed cycles in G.
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Let G be a directed graph, and D a disassembly of G . Recall that
E (D) = E (G ). Define the incidence set of D by

P(D) = {p ∈ CP
|E(G)|−1 | p satisfies all incidence relations in D.}



Incidence relations, special case

Incidence relations:

- -y x =⇒ y = x ,

-x =⇒ 0 = x ,

-y =⇒ y = 0.

Let G be a directed graph, and D a disassembly of G . Recall that
E (D) = E (G ). Define the incidence set of D by

P(D) = {p ∈ CP
|E(G)|−1 | p satisfies all incidence relations in D.}

Clearly, P(D) is a linear subspace of CP|E(G)|−1.



Incidence sets of disassemblies

Lemma
Let G be a directed graph.

1. For any disassembly D of G, the incidence set P(D) of D is a

linear subspace of dimension α(D)− 1 of CP|E(G)|−1.



Incidence sets of disassemblies
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Let G be a directed graph.

1. For any disassembly D of G, the incidence set P(D) of D is a

linear subspace of dimension α(D)− 1 of CP|E(G)|−1.

2. For any two disassemblies D1 and D2 of G, P(D1) = P(D2)
as linear subspaces of CP|E(G)|−1 if and only if, under the

natural homomorphisms from D1 and D2 to G, the collections

of all directed cycles in D1 and D2 are mapped to the same

collection of pairwise edge-disjoint circuits in G.



Incidence sets of disassemblies

Lemma
Let G be a directed graph.

1. For any disassembly D of G, the incidence set P(D) of D is a

linear subspace of dimension α(D)− 1 of CP|E(G)|−1.

2. For any two disassemblies D1 and D2 of G, P(D1) = P(D2)
as linear subspaces of CP|E(G)|−1 if and only if, under the

natural homomorphisms from D1 and D2 to G, the collections

of all directed cycles in D1 and D2 are mapped to the same

collection of pairwise edge-disjoint circuits in G.



Incidence relations, general case
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The set of incidence relations at v is

∆v := {el(x1, . . . , xm) = el(y1, . . . , yn) | 1 ≤ l ≤ max{n,m}, }

where el is the degree-l elementary symmetric polynomial.



Incidence relations, general case
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The set of incidence relations at v is

∆v := {el(x1, . . . , xm) = el(y1, . . . , yn) | 1 ≤ l ≤ max{n,m}, }

where el is the degree-l elementary symmetric polynomial.

For a directed graph G , its set of incidence relations is
∆(G ) :=

⋃
v∈V (G)∆v . The incidence set of G is

P(G ) = {p ∈ CP
|E(G)|−1 | p satisfies all incidence relations in G .}
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⋃
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The incidence set

Proposition

As subsets of CP|E(G)|−1, P(G ) =
⋃

D∈Dis(G) P(D).

Lemma
Let x1, . . . , xn and y1, . . . , yn be two sequences of complex

numbers. Then the following statements are equivalent.

1. ek(x1, . . . , xn) = ek(y1, . . . , yn) for k = 1, . . . , n, where ek is

the k-th elementary symmetric polynomial.

2. There is a bijection σ : {1, . . . , n} → {1, . . . , n} such that

xi = y
σ(i) for i = 1, . . . , n.



Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal1 collection C of pairwise edge-disjoint

directed cycles in G, there is a disassembly DC of G such that

C is the collection of images of directed cycles in DC under the

natural homomorphism.

1with respect to the partial order of sets given by inclusion.
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Proposition

Let G be a directed graph.

1. For every maximal1 collection C of pairwise edge-disjoint

directed cycles in G, there is a disassembly DC of G such that

C is the collection of images of directed cycles in DC under the

natural homomorphism.

2. For any disassembly D of G, P(D) is not a proper subset of

P(D ′) for any D ′ ∈ Dis(G ) if and only if the natural

homomorphism maps the directed cycles in D to a maximal

collection of pairwise edge-disjoint directed cycles in G.

1with respect to the partial order of sets given by inclusion.



Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal1 collection C of pairwise edge-disjoint

directed cycles in G, there is a disassembly DC of G such that

C is the collection of images of directed cycles in DC under the

natural homomorphism.

2. For any disassembly D of G, P(D) is not a proper subset of

P(D ′) for any D ′ ∈ Dis(G ) if and only if the natural

homomorphism maps the directed cycles in D to a maximal

collection of pairwise edge-disjoint directed cycles in G.

3. The set of irreducible components of P(G ) is {P(DC) | C is a

maximal collection of pairwise edge-disjoint directed cycles in

G .}

1with respect to the partial order of sets given by inclusion.
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The incidence set determines the cycle packing number

Theorem
Let G be any directed graph. Then:

1. dimP(G ) = α(G )− 1;

2. degP(G ) = the number of distinct collections of α(G )
edge-disjoint cycles in G;

3. There is a bijection between the set of irreducible components

of P(G ) of dimension n− 1 and the set of maximal collections

of pairwise edge-disjoint directed cycles in G containing

exactly n directed cycles.
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For a directed graph G , denote by BG obtained by stretching each
vertex in G .
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For a directed graph G , denote by BG obtained by stretching each
vertex in G .

Lemma

1. There is a bijection from the set of directed cycles in G to the

set of directed cycles in BG ;



Collections of pairwise disjoint directed cycles, a stretch

�

j
R

�*

R

y1

y2

...

yn

x1

x2

...

xm

v

�

j
R

-
�*

R

y1

y2

...

yn

x1

x2

...

xm

vin vout

zv

For a directed graph G , denote by BG obtained by stretching each
vertex in G .

Lemma

1. There is a bijection from the set of directed cycles in G to the

set of directed cycles in BG ;

2. A collection of directed cycles in G is pairwise disjoint if and

only if the corresponding collection in BG is pairwise

edge-disjoint;
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For a directed graph G , denote by BG obtained by stretching each
vertex in G .

Lemma

1. There is a bijection from the set of directed cycles in G to the

set of directed cycles in BG ;

2. A collection of directed cycles in G is pairwise disjoint if and

only if the corresponding collection in BG is pairwise

edge-disjoint;

3. α̃(G ) = α(BG ).



The strong incidence set
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The set of strong incidence relations at v is

∆̃v := {e1(x1, . . . , xm) = e1(y1, . . . , yn)}

∪{el(x1, . . . , xm) = 0 | 2 ≤ l ≤ m}

∪{el(y1, . . . , yn) = 0 | 2 ≤ l ≤ n}.



The strong incidence set
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The set of strong incidence relations at v is

∆̃v := {e1(x1, . . . , xm) = e1(y1, . . . , yn)}

∪{el(x1, . . . , xm) = 0 | 2 ≤ l ≤ m}

∪{el(y1, . . . , yn) = 0 | 2 ≤ l ≤ n}.

For a directed graph G , its set of strong incidence relations is
∆̃(G ) :=

⋃
v∈V (G) ∆̃v . The strong incidence set of G is

P̃(G ) = {p ∈ CP
|E(G)|−1 | p satisfies all strong incidence relations in G .}
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The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. P̃(G ) is the union of finitely many linear subspaces of

CP
|E(G)|−1;

2. dim P̃(G ) = ˜α(G )− 1;

3. deg P̃(G ) = the number of distinct collections of α̃(G )
disjoint cycles in G;

4. There is a bijection between the set of irreducible components

of P̃(G ) of dimension n− 1 and the set of maximal collections

of pairwise disjoint directed cycles in G containing exactly n

directed cycles.
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Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:

1.1 P(G ) is irreducible;

1.2 P(G ) is a linear subspace of CP|E(G)|−1;

1.3 G contains exactly α(G ) distinct directed cycles.



Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:

1.1 P(G ) is irreducible;

1.2 P(G ) is a linear subspace of CP|E(G)|−1;

1.3 G contains exactly α(G ) distinct directed cycles.

2. The following statements are equivalent:

2.1 P̃(G ) is irreducible;

2.2 P̃(G ) is a linear subspace of CP|E(G)|−1;

2.3 G contains exactly α̃(G ) distinct directed cycles.



Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:

1.1 P(G ) is irreducible;

1.2 P(G ) is a linear subspace of CP|E(G)|−1;

1.3 G contains exactly α(G ) distinct directed cycles.

2. The following statements are equivalent:

2.1 P̃(G ) is irreducible;

2.2 P̃(G ) is a linear subspace of CP|E(G)|−1;

2.3 G contains exactly α̃(G ) distinct directed cycles.

3. If P̃(G ) is irreducible, then P(G ) = P̃(G ).



Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:

1.1 P(G ) is irreducible;

1.2 P(G ) is a linear subspace of CP|E(G)|−1;

1.3 G contains exactly α(G ) distinct directed cycles.

2. The following statements are equivalent:

2.1 P̃(G ) is irreducible;

2.2 P̃(G ) is a linear subspace of CP|E(G)|−1;

2.3 G contains exactly α̃(G ) distinct directed cycles.

3. If P̃(G ) is irreducible, then P(G ) = P̃(G ).

See arXiv:1508.07337 for more related results.


