Incidence Relations and Directed Cycles

Hao Wu
George Washington University

Directed graphs and directed cycles

A directed graph is a pair $G=(V(G), E(G))$ of finite sets, where

1. $V(G)$ is the set of vertices of G,
2. $E(G)$ is the set of edges, each of which is directed.

Directed graphs and directed cycles

A directed graph is a pair $G=(V(G), E(G))$ of finite sets, where

1. $V(G)$ is the set of vertices of G,
2. $E(G)$ is the set of edges, each of which is directed.

A directed cycle in G is a closed directed path, that is, a sequence $v_{0}, x_{0}, v_{1}, x_{1}, \ldots, x_{n-1}, v_{n}, x_{n}, v_{n+1}=v_{0}$ satisfying

1. $v_{0}, v_{1}, \ldots, v_{n}$ are pairwise distinct vertices of G,
2. each x_{i} is an edge of G with initial vertex v_{i} and terminal vertex v_{i+1}.
Two such sequences represent the same directed cycle if one is a circular permutation of the other.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- $\alpha(G):=$ maximal number of pairwise edge-disjoint directed cycles in G,
- $\tilde{\alpha}(G):=$ maximal number of pairwise disjoint directed cycles in G,
$\alpha(G)$ is known as the cycle packing number of G. We call $\tilde{\alpha}(G)$ the strong cycle packing number of G.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- $\alpha(G):=$ maximal number of pairwise edge-disjoint directed cycles in G,
- $\tilde{\alpha}(G):=$ maximal number of pairwise disjoint directed cycles in G,
$\alpha(G)$ is known as the cycle packing number of G. We call $\tilde{\alpha}(G)$ the strong cycle packing number of G.

Our goal is to determine $\alpha(G)$ and $\tilde{\alpha}(G)$ using elementary projective algebraic geometry.

Directed trials, paths and circuits

Given a directed graph G, a directed trail in G from a vertex u to a different vertex v is a sequence
$u=v_{0}, x_{0}, v_{1}, x_{1}, \ldots, x_{n-1}, v_{n}=v$ such that

1. $x_{0}, x_{1}, \ldots, x_{n-1}$ are pairwise distinct edges of G,
2. each x_{i} is an edge of G with initial vertex v_{i} and terminal vertex v_{i+1}.

Directed trials, paths and circuits

Given a directed graph G, a directed trail in G from a vertex u to a different vertex v is a sequence
$u=v_{0}, x_{0}, v_{1}, x_{1}, \ldots, x_{n-1}, v_{n}=v$ such that

1. $x_{0}, x_{1}, \ldots, x_{n-1}$ are pairwise distinct edges of G,
2. each x_{i} is an edge of G with initial vertex v_{i} and terminal vertex v_{i+1}.

If, in addition, we require $v_{0}, v_{1}, \ldots, v_{n}$ to be pairwise distinct, then the above sequence is a directed path.

Directed trials, paths and circuits

Given a directed graph G, a directed trail in G from a vertex u to a different vertex v is a sequence
$u=v_{0}, x_{0}, v_{1}, x_{1}, \ldots, x_{n-1}, v_{n}=v$ such that

1. $x_{0}, x_{1}, \ldots, x_{n-1}$ are pairwise distinct edges of G,
2. each x_{i} is an edge of G with initial vertex v_{i} and terminal vertex v_{i+1}.

If, in addition, we require $v_{0}, v_{1}, \ldots, v_{n}$ to be pairwise distinct, then the above sequence is a directed path.

A directed circuit in G is a closed trial, that is, a sequence $v_{0}, x_{0}, v_{1}, x_{1}, \ldots, x_{n-1}, v_{n}, x_{n}, v_{n+1}=v_{0}$ satisfying

1. $x_{0}, x_{1}, \ldots, x_{n}$ are pairwise distinct edges of G,
2. each x_{i} is an edge of G with initial vertex v_{i} and terminal vertex v_{i+1}.
Two such sequences represent the same directed circuit if one is a circular permutation of the other.

Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\operatorname{deg}_{i n} v=n$ and $\operatorname{deg}_{\text {out }} v=m$. Set $k_{v}:=\max \{m, n\}$ and $I_{v}:=\min \{m, n\}$.

Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\operatorname{deg}_{i n} v=n$ and $\operatorname{deg}_{\text {out }} v=m$. Set $k_{v}:=\max \{m, n\}$ and $I_{v}:=\min \{m, n\}$.

To disassemble G at v is to split v into k_{v} vertices such that 1. I_{v} of these new vertices have in-degree 1 and out degree 1 .
2. $k_{v}-I_{v}$ of these new vertices have degree 1 such that

- if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1 ;
- if $m<n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0 .

Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\operatorname{deg}_{i n} v=n$ and $\operatorname{deg}_{\text {out }} v=m$. Set $k_{v}:=\max \{m, n\}$ and $I_{v}:=\min \{m, n\}$.

To disassemble G at v is to split v into k_{v} vertices such that 1. I_{v} of these new vertices have in-degree 1 and out degree 1 .
2. $k_{v}-I_{v}$ of these new vertices have degree 1 such that

- if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1 ;
- if $m<n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0 .

To disassemble G is to disassemble G at all vertices of G.

Disassembling a directed graph

Let G be a directed graph, and v a vertex of G. Assume $\operatorname{deg}_{i n} v=n$ and $\operatorname{deg}_{\text {out }} v=m$. Set $k_{v}:=\max \{m, n\}$ and $I_{v}:=\min \{m, n\}$.

To disassemble G at v is to split v into k_{v} vertices such that 1. I_{v} of these new vertices have in-degree 1 and out degree 1 .
2. $k_{v}-I_{v}$ of these new vertices have degree 1 such that

- if $m \geq n$, then each of these degree 1 vertices has in-degree 0 and out-degree 1 ;
- if $m<n$, then each of these degree 1 vertices has in-degree 1 and out-degree 0 .

To disassemble G is to disassemble G at all vertices of G.
We call each graph resulted from disassembling G a disassembly of G and denote by $\operatorname{Dis}(G)$ the set of all disassemblies of G.

Disassemblies of a directed graph

Lemma
Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.

Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D)=E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.

Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D)=E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
3. Under the above natural homomorphism,

- each directed path in D is mapped to a directed trail in G,
- each directed cycle in D is mapped to a directed circuit in G,
- the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint circuits in G.

Disassemblies of a directed graph

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.
2. $E(D)=E(G)$ and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
3. Under the above natural homomorphism,

- each directed path in D is mapped to a directed trail in G,
- each directed cycle in D is mapped to a directed circuit in G,
- the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint circuits in G.

4. $\alpha(D) \leq \alpha(G)$ and $\alpha(D)=\alpha(G)$ if and only if the collection of all directed cycles in D is mapped to a collection of $\alpha(G)$ pairwise edge-disjoint directed cycles in G.

Incidence relations, special case

Incidence relations:

$$
\begin{array}{ll}
\Longrightarrow & y=x, \\
\Longrightarrow & 0=x,
\end{array}
$$

$$
\Longrightarrow \quad y=0 .
$$

Incidence relations, special case

Incidence relations:

$$
\begin{aligned}
& \Longrightarrow \quad y=x, \\
& \Longrightarrow \quad 0=x, \\
& \Longrightarrow \quad y=0 .
\end{aligned}
$$

Let G be a directed graph, and D a disassembly of G. Recall that $E(D)=E(G)$. Define the incidence set of D by
$P(D)=\left\{p \in \mathbb{C P}^{|E(G)|-1} \mid p\right.$ satisfies all incidence relations in $\left.D.\right\}$

Incidence relations, special case

Incidence relations:

$$
\begin{aligned}
& \Longrightarrow \quad y=x, \\
& \Longrightarrow \quad 0=x, \\
& \Longrightarrow \quad y=0 .
\end{aligned}
$$

Let G be a directed graph, and D a disassembly of G. Recall that $E(D)=E(G)$. Define the incidence set of D by
$P(D)=\left\{p \in \mathbb{C P}^{|E(G)|-1} \mid p\right.$ satisfies all incidence relations in $\left.D.\right\}$

Clearly, $P(D)$ is a linear subspace of $\mathbb{C P}|E(G)|-1$.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D)-1$ of $\mathbb{C P}|E(G)|-1$.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D)-1$ of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$.
2. For any two disassemblies D_{1} and D_{2} of $G, P\left(D_{1}\right)=P\left(D_{2}\right)$ as linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$ if and only if, under the natural homomorphisms from D_{1} and D_{2} to G, the collections of all directed cycles in D_{1} and D_{2} are mapped to the same collection of pairwise edge-disjoint circuits in G.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set $P(D)$ of D is a linear subspace of dimension $\alpha(D)-1$ of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$.
2. For any two disassemblies D_{1} and D_{2} of $G, P\left(D_{1}\right)=P\left(D_{2}\right)$ as linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$ if and only if, under the natural homomorphisms from D_{1} and D_{2} to G, the collections of all directed cycles in D_{1} and D_{2} are mapped to the same collection of pairwise edge-disjoint circuits in G.

Incidence relations, general case

The set of incidence relations at v is

$$
\Delta_{v}:=\left\{e_{l}\left(x_{1}, \ldots, x_{m}\right)=e_{l}\left(y_{1}, \ldots, y_{n}\right) \mid 1 \leq I \leq \max \{n, m\},\right\}
$$

where e_{I} is the degree-/ elementary symmetric polynomial.

Incidence relations, general case

The set of incidence relations at v is

$$
\Delta_{v}:=\left\{e_{l}\left(x_{1}, \ldots, x_{m}\right)=e_{l}\left(y_{1}, \ldots, y_{n}\right) \mid 1 \leq I \leq \max \{n, m\},\right\}
$$

where e_{l} is the degree-/ elementary symmetric polynomial.
For a directed graph G, its set of incidence relations is
$\Delta(G):=\bigcup_{v \in V(G)} \Delta_{v}$. The incidence set of G is
$P(G)=\left\{p \in \mathbb{C} \mathbb{P}^{|E(G)|-1} \mid p\right.$ satisfies all incidence relations in $\left.G.\right\}$

The incidence set

Proposition
As subsets of $\mathbb{C P}^{|E(G)|-1}, P(G)=\bigcup_{D \in \operatorname{Dis}(G)} P(D)$.

The incidence set

Proposition

As subsets of $\mathbb{C P}^{|E(G)|-1}, P(G)=\bigcup_{D \in \operatorname{Dis}(G)} P(D)$.
Lemma
Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be two sequences of complex numbers. Then the following statements are equivalent.

1. $e_{k}\left(x_{1}, \ldots, x_{n}\right)=e_{k}\left(y_{1}, \ldots, y_{n}\right)$ for $k=1, \ldots, n$, where e_{k} is the k-th elementary symmetric polynomial.
2. There is a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $x_{i}=y_{\sigma(i)}$ for $i=1, \ldots, n$.

Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal ${ }^{1}$ collection \mathcal{C} of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal{C}}$ of G such that \mathcal{C} is the collection of images of directed cycles in $D_{\mathcal{C}}$ under the natural homomorphism.
${ }^{1}$ with respect to the partial order of sets given by inclusion.

Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal ${ }^{1}$ collection \mathcal{C} of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal{C}}$ of G such that \mathcal{C} is the collection of images of directed cycles in $D_{\mathcal{C}}$ under the natural homomorphism.
2. For any disassembly D of $G, P(D)$ is not a proper subset of $P\left(D^{\prime}\right)$ for any $D^{\prime} \in \operatorname{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.
[^0]
Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal ${ }^{1}$ collection \mathcal{C} of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal{C}}$ of G such that \mathcal{C} is the collection of images of directed cycles in $D_{\mathcal{C}}$ under the natural homomorphism.
2. For any disassembly D of $G, P(D)$ is not a proper subset of $P\left(D^{\prime}\right)$ for any $D^{\prime} \in \operatorname{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.
3. The set of irreducible components of $P(G)$ is $\left\{P\left(D_{\mathcal{C}}\right) \mid \mathcal{C}\right.$ is a maximal collection of pairwise edge-disjoint directed cycles in G.\}
[^1]The incidence set determines the cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\operatorname{dim} P(G)=\alpha(G)-1$;

The incidence set determines the cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\operatorname{dim} P(G)=\alpha(G)-1$;
2. $\operatorname{deg} P(G)=$ the number of distinct collections of $\alpha(G)$ edge-disjoint cycles in G;

The incidence set determines the cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\operatorname{dim} P(G)=\alpha(G)-1$;
2. $\operatorname{deg} P(G)=$ the number of distinct collections of $\alpha(G)$ edge-disjoint cycles in G;
3. There is a bijection between the set of irreducible components of $P(G)$ of dimension $n-1$ and the set of maximal collections of pairwise edge-disjoint directed cycles in G containing exactly n directed cycles.

Collections of pairwise disjoint directed cycles, a stretch

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_{G} obtained by stretching each vertex in G.

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_{G} obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_{G};

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_{G} obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_{G};
2. A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_{G} is pairwise edge-disjoint;

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_{G} obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_{G};
2. A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_{G} is pairwise edge-disjoint;
3. $\tilde{\alpha}(G)=\alpha\left(B_{G}\right)$.

The strong incidence set

The set of strong incidence relations at v is

$$
\begin{aligned}
\tilde{\Delta}_{v}:= & \left\{e_{1}\left(x_{1}, \ldots, x_{m}\right)=e_{1}\left(y_{1}, \ldots, y_{n}\right)\right\} \\
& \cup\left\{e_{l}\left(x_{1}, \ldots, x_{m}\right)=0 \mid 2 \leq I \leq m\right\} \\
& \cup\left\{e_{l}\left(y_{1}, \ldots, y_{n}\right)=0 \mid 2 \leq I \leq n\right\} .
\end{aligned}
$$

The strong incidence set

The set of strong incidence relations at v is

$$
\begin{aligned}
\tilde{\Delta}_{v}:= & \left\{e_{1}\left(x_{1}, \ldots, x_{m}\right)=e_{1}\left(y_{1}, \ldots, y_{n}\right)\right\} \\
& \cup\left\{e_{l}\left(x_{1}, \ldots, x_{m}\right)=0 \mid 2 \leq I \leq m\right\} \\
& \cup\left\{e_{l}\left(y_{1}, \ldots, y_{n}\right)=0 \mid 2 \leq I \leq n\right\} .
\end{aligned}
$$

For a directed graph G, its set of strong incidence relations is $\tilde{\Delta}(G):=\bigcup_{v \in V(G)} \tilde{\Delta}_{v}$. The strong incidence set of G is
$\tilde{P}(G)=\left\{p \in \mathbb{C P}^{|E(G)|-1} \mid p\right.$ satisfies all strong incidence relations in $\left.G.\right\}$

The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;

The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1} ;$
2. $\operatorname{dim} \tilde{P}(G)=\alpha \tilde{(G)}-1$;

The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1} ;$
2. $\operatorname{dim} \tilde{P}(G)=\alpha \tilde{(G)}-1$;
3. $\operatorname{deg} \tilde{P}(G)=$ the number of distinct collections of $\tilde{\alpha}(G)$ disjoint cycles in G;

The strong cycle packing number

Theorem
Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{C} \mathbb{P}^{|E(G)|-1} ;$
2. $\operatorname{dim} \tilde{P}(G)=\alpha \tilde{(G)}-1$;
3. $\operatorname{deg} \tilde{P}(G)=$ the number of distinct collections of $\tilde{\alpha}(G)$ disjoint cycles in G;
4. There is a bijection between the set of irreducible components of $\tilde{P}(G)$ of dimension $n-1$ and the set of maximal collections of pairwise disjoint directed cycles in G containing exactly n directed cycles.

Irreducible incidence sets

Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:
1.1 $P(G)$ is irreducible;
1.2 $P(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
1.3 G contains exactly $\alpha(G)$ distinct directed cycles.

Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:
1.1 $P(G)$ is irreducible;
1.2 $P(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
1.3 G contains exactly $\alpha(G)$ distinct directed cycles.
2. The following statements are equivalent:
2.1 $\tilde{P}(G)$ is irreducible;
2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.

Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:
1.1 $P(G)$ is irreducible;
1.2 $P(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
1.3 G contains exactly $\alpha(G)$ distinct directed cycles.
2. The following statements are equivalent:
$2.1 \tilde{P}(G)$ is irreducible;
2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.
3. If $\tilde{P}(G)$ is irreducible, then $P(G)=\tilde{P}(G)$.

Irreducible incidence sets

Theorem
Let G be a directed graph.

1. The following statements are equivalent:
1.1 $P(G)$ is irreducible;
1.2 $P(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
1.3 G contains exactly $\alpha(G)$ distinct directed cycles.
2. The following statements are equivalent:
2.1 $\tilde{P}(G)$ is irreducible;
2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{C} \mathbb{P}^{|E(G)|-1}$;
2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.
3. If $\tilde{P}(G)$ is irreducible, then $P(G)=\tilde{P}(G)$.

See arXiv:1508.07337 for more related results.

[^0]: ${ }^{1}$ with respect to the partial order of sets given by inclusion.

[^1]: ${ }^{1}$ with respect to the partial order of sets given by inclusion.

