Incidence Relations and Directed Cycles

Hao Wu

George Washington University

Directed graphs and directed cycles

A **directed graph** is a pair G = (V(G), E(G)) of finite sets, where

- 1. V(G) is the set of vertices of G,
- 2. E(G) is the set of edges, each of which is directed.

Directed graphs and directed cycles

A **directed graph** is a pair G = (V(G), E(G)) of finite sets, where

- 1. V(G) is the set of vertices of G,
- 2. E(G) is the set of edges, each of which is directed.

A **directed cycle** in G is a closed directed path, that is, a sequence $v_0, x_0, v_1, x_1, \dots, x_{n-1}, v_n, x_n, v_{n+1} = v_0$ satisfying

- 1. v_0, v_1, \ldots, v_n are pairwise distinct vertices of G,
- 2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1} .

Two such sequences represent the same directed cycle if one is a circular permutation of the other.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- α(G) := maximal number of pairwise edge-disjoint directed cycles in G,
- $\tilde{\alpha}(G) := \text{maximal number of pairwise disjoint directed cycles}$ in G.
- $\alpha(G)$ is known as the **cycle packing number** of G. We call $\tilde{\alpha}(G)$ the **strong cycle packing number** of G.

Cycles packing numbers

Two directed cycles in G are called edge-disjoint if they have no common edges. Two directed cycles in G are called disjoint if they have no common vertices.

For a directed graph G, we define

- ho $\alpha(G) :=$ maximal number of pairwise edge-disjoint directed cycles in G,
- $\tilde{\alpha}(G) := \text{maximal number of pairwise disjoint directed cycles}$ in G,
- $\alpha(G)$ is known as the **cycle packing number** of G. We call $\tilde{\alpha}(G)$ the **strong cycle packing number** of G.

Our goal is to determine $\alpha(G)$ and $\tilde{\alpha}(G)$ using elementary projective algebraic geometry.

Directed trials, paths and circuits

Given a directed graph G, a **directed trail** in G from a vertex u to a different vertex v is a sequence

$$u = v_0, x_0, v_1, x_1, \dots, x_{n-1}, v_n = v$$
 such that

- 1. $x_0, x_1, \ldots, x_{n-1}$ are pairwise distinct edges of G,
- 2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1} .

Directed trials, paths and circuits

Given a directed graph G, a **directed trail** in G from a vertex u to a different vertex v is a sequence

$$u = v_0, x_0, v_1, x_1, \dots, x_{n-1}, v_n = v$$
 such that

- 1. $x_0, x_1, \ldots, x_{n-1}$ are pairwise distinct edges of G,
- 2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1} .

If, in addition, we require v_0, v_1, \ldots, v_n to be pairwise distinct, then the above sequence is a **directed path**.

Directed trials, paths and circuits

Given a directed graph G, a **directed trail** in G from a vertex u to a different vertex v is a sequence

$$u = v_0, x_0, v_1, x_1, \dots, x_{n-1}, v_n = v$$
 such that

- 1. $x_0, x_1, \ldots, x_{n-1}$ are pairwise distinct edges of G,
- 2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1} .

If, in addition, we require v_0, v_1, \ldots, v_n to be pairwise distinct, then the above sequence is a **directed path**.

A **directed circuit** in G is a closed trial, that is, a sequence $v_0, x_0, v_1, x_1, \ldots, x_{n-1}, v_n, x_n, v_{n+1} = v_0$ satisfying

- 1. x_0, x_1, \ldots, x_n are pairwise distinct edges of G,
- 2. each x_i is an edge of G with initial vertex v_i and terminal vertex v_{i+1} .

Two such sequences represent the same directed circuit if one is a circular permutation of the other.

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

- 1. I_v of these new vertices have in-degree 1 and out degree 1.
- 2. $k_v l_v$ of these new vertices have degree 1 such that
 - if m ≥ n, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - ▶ if m < n, then each of these degree 1 vertices has in-degree 1 and out-degree 0.

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

- 1. I_v of these new vertices have in-degree 1 and out degree 1.
- 2. $k_v l_v$ of these new vertices have degree 1 such that
 - if m ≥ n, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - ▶ if m < n, then each of these degree 1 vertices has in-degree 1 and out-degree 0.

To disassemble G is to disassemble G at all vertices of G.

Let G be a directed graph, and v a vertex of G. Assume $\deg_{in} v = n$ and $\deg_{out} v = m$. Set $k_v := \max\{m, n\}$ and $l_v := \min\{m, n\}$.

To disassemble G at v is to split v into k_v vertices such that

- 1. I_v of these new vertices have in-degree 1 and out degree 1.
- 2. $k_v l_v$ of these new vertices have degree 1 such that
 - if m ≥ n, then each of these degree 1 vertices has in-degree 0 and out-degree 1;
 - ▶ if m < n, then each of these degree 1 vertices has in-degree 1 and out-degree 0.

To disassemble G is to disassemble G at all vertices of G.

We call each graph resulted from disassembling G a **disassembly** of G and denote by $\mathrm{Dis}(G)$ the set of all disassemblies of G.

Lemma

Let G be a directed graph, and D a disassembly of G.

1. D is a disjoint union of directed paths and directed cycles.

Lemma

Let G be a directed graph, and D a disassembly of G.

- 1. D is a disjoint union of directed paths and directed cycles.
- 2. E(D) = E(G) and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.

Lemma

Let G be a directed graph, and D a disassembly of G.

- 1. D is a disjoint union of directed paths and directed cycles.
- 2. E(D) = E(G) and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
- 3. Under the above natural homomorphism,
 - each directed path in D is mapped to a directed trail in G,
 - each directed cycle in D is mapped to a directed circuit in G,
 - ▶ the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint circuits in G.

Lemma

Let G be a directed graph, and D a disassembly of G.

- 1. D is a disjoint union of directed paths and directed cycles.
- 2. E(D) = E(G) and there is a natural graph homomorphism from D to G that maps each edge to itself and each vertex v in D the vertex in G used to create v.
- 3. Under the above natural homomorphism,
 - each directed path in D is mapped to a directed trail in G,
 - each directed cycle in D is mapped to a directed circuit in G,
 - ▶ the collection of all directed cycles in D is mapped to a collection of pairwise edge-disjoint circuits in G.
- 4. $\alpha(D) \leq \alpha(G)$ and $\alpha(D) = \alpha(G)$ if and only if the collection of all directed cycles in D is mapped to a collection of $\alpha(G)$ pairwise edge-disjoint directed cycles in G.

Incidence relations, special case

Incidence relations:

$$y = x,$$

$$x = 0 = x,$$

$$y = 0.$$

Incidence relations, special case

Incidence relations:

$$y = x,$$

$$x = y$$

$$y = x,$$

$$0 = x,$$

$$y = 0.$$

Let G be a directed graph, and D a disassembly of G. Recall that E(D) = E(G). Define the **incidence set** of D by

 $P(D) = \{ p \in \mathbb{CP}^{|E(G)|-1} \mid p \text{ satisfies all incidence relations in } D. \}$

Incidence relations, special case

Incidence relations:

$$y = x,$$

$$x = y$$

$$y = x,$$

$$0 = x,$$

$$y = 0.$$

Let G be a directed graph, and D a disassembly of G. Recall that E(D) = E(G). Define the **incidence set** of D by

$$P(D) = \{ p \in \mathbb{CP}^{|E(G)|-1} \mid p \text{ satisfies all incidence relations in } D. \}$$

Clearly, P(D) is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

1. For any disassembly D of G, the incidence set P(D) of D is a linear subspace of dimension $\alpha(D) - 1$ of $\mathbb{CP}^{|E(G)|-1}$.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

- 1. For any disassembly D of G, the incidence set P(D) of D is a linear subspace of dimension $\alpha(D) 1$ of $\mathbb{CP}^{|E(G)|-1}$.
- 2. For any two disassemblies D_1 and D_2 of G, $P(D_1) = P(D_2)$ as linear subspaces of $\mathbb{CP}^{|E(G)|-1}$ if and only if, under the natural homomorphisms from D_1 and D_2 to G, the collections of all directed cycles in D_1 and D_2 are mapped to the same collection of pairwise edge-disjoint circuits in G.

Incidence sets of disassemblies

Lemma

Let G be a directed graph.

- 1. For any disassembly D of G, the incidence set P(D) of D is a linear subspace of dimension $\alpha(D) 1$ of $\mathbb{CP}^{|E(G)|-1}$.
- 2. For any two disassemblies D_1 and D_2 of G, $P(D_1) = P(D_2)$ as linear subspaces of $\mathbb{CP}^{|E(G)|-1}$ if and only if, under the natural homomorphisms from D_1 and D_2 to G, the collections of all directed cycles in D_1 and D_2 are mapped to the same collection of pairwise edge-disjoint circuits in G.

Incidence relations, general case

The set of **incidence relations** at v is

$$\Delta_{v} := \{e_{I}(x_{1}, \dots, x_{m}) = e_{I}(y_{1}, \dots, y_{n}) \mid 1 \leq I \leq \max\{n, m\}, \}$$

where e_l is the degree-l elementary symmetric polynomial.

Incidence relations, general case

The set of **incidence relations** at v is

$$\Delta_{v} := \{e_{I}(x_{1}, \dots, x_{m}) = e_{I}(y_{1}, \dots, y_{n}) \mid 1 \leq I \leq \max\{n, m\}, \}$$

where e_l is the degree-l elementary symmetric polynomial.

For a directed graph G, its set of incidence relations is $\Delta(G) := \bigcup_{v \in V(G)} \Delta_v$. The **incidence set** of G is

$$P(G) = \{ p \in \mathbb{CP}^{|E(G)|-1} \mid p \text{ satisfies all incidence relations in } G. \}$$

The incidence set

Proposition

As subsets of $\mathbb{CP}^{|E(G)|-1}$, $P(G) = \bigcup_{D \in \mathrm{Dis}(G)} P(D)$.

The incidence set

Proposition

As subsets of $\mathbb{CP}^{|E(G)|-1}$, $P(G) = \bigcup_{D \in \mathrm{Dis}(G)} P(D)$.

Lemma

Let x_1, \ldots, x_n and y_1, \ldots, y_n be two sequences of complex numbers. Then the following statements are equivalent.

- 1. $e_k(x_1,...,x_n) = e_k(y_1,...,y_n)$ for k = 1,...,n, where e_k is the k-th elementary symmetric polynomial.
- 2. There is a bijection $\sigma: \{1, ..., n\} \rightarrow \{1, ..., n\}$ such that $x_i = y_{\sigma(i)}$ for i = 1, ..., n.

Irreducible components of the incidence set

Proposition

Let G be a directed graph.

1. For every maximal 1 collection $\mathcal C$ of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal C}$ of G such that $\mathcal C$ is the collection of images of directed cycles in $D_{\mathcal C}$ under the natural homomorphism.

with respect to the partial order of sets given by inclusion.

Irreducible components of the incidence set

Proposition

Let G be a directed graph.

- 1. For every maximal 1 collection $\mathcal C$ of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal C}$ of G such that $\mathcal C$ is the collection of images of directed cycles in $D_{\mathcal C}$ under the natural homomorphism.
- 2. For any disassembly D of G, P(D) is not a proper subset of P(D') for any $D' \in \operatorname{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.

¹with respect to the partial order of sets given by inclusion.

Irreducible components of the incidence set

Proposition

Let G be a directed graph.

- 1. For every maximal 1 collection $\mathcal C$ of pairwise edge-disjoint directed cycles in G, there is a disassembly $D_{\mathcal C}$ of G such that $\mathcal C$ is the collection of images of directed cycles in $D_{\mathcal C}$ under the natural homomorphism.
- 2. For any disassembly D of G, P(D) is not a proper subset of P(D') for any $D' \in \mathrm{Dis}(G)$ if and only if the natural homomorphism maps the directed cycles in D to a maximal collection of pairwise edge-disjoint directed cycles in G.
- 3. The set of irreducible components of P(G) is $\{P(D_C) \mid C \text{ is a maximal collection of pairwise edge-disjoint directed cycles in } G.\}$

with respect to the partial order of sets given by inclusion.

The incidence set determines the cycle packing number

Theorem

Let G be any directed graph. Then:

1. dim
$$P(G) = \alpha(G) - 1$$
;

The incidence set determines the cycle packing number

Theorem

Let G be any directed graph. Then:

- 1. dim $P(G) = \alpha(G) 1$;
- 2. $\deg P(G) = \text{the number of distinct collections of } \alpha(G)$ edge-disjoint cycles in G;

The incidence set determines the cycle packing number

Theorem

Let G be any directed graph. Then:

- 1. dim $P(G) = \alpha(G) 1$;
- 2. $\deg P(G) = \text{the number of distinct collections of } \alpha(G)$ edge-disjoint cycles in G;
- 3. There is a bijection between the set of irreducible components of P(G) of dimension n-1 and the set of maximal collections of pairwise edge-disjoint directed cycles in G containing exactly n directed cycles.

Collections of pairwise disjoint directed cycles, a stretch

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G ;

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

- 1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G ;
- 2. A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_G is pairwise edge-disjoint;

Collections of pairwise disjoint directed cycles, a stretch

For a directed graph G, denote by B_G obtained by stretching each vertex in G.

Lemma

- 1. There is a bijection from the set of directed cycles in G to the set of directed cycles in B_G ;
- 2. A collection of directed cycles in G is pairwise disjoint if and only if the corresponding collection in B_G is pairwise edge-disjoint;
- 3. $\tilde{\alpha}(G) = \alpha(B_G)$.

The strong incidence set

The set of **strong incidence relations** at v is

$$\tilde{\Delta}_{\nu} := \{e_{1}(x_{1}, \dots, x_{m}) = e_{1}(y_{1}, \dots, y_{n})\}
\cup \{e_{l}(x_{1}, \dots, x_{m}) = 0 \mid 2 \leq l \leq m\}
\cup \{e_{l}(y_{1}, \dots, y_{n}) = 0 \mid 2 \leq l \leq n\}.$$

The strong incidence set

The set of **strong incidence relations** at v is

$$\tilde{\Delta}_{\nu} := \{e_{1}(x_{1}, \dots, x_{m}) = e_{1}(y_{1}, \dots, y_{n})\}
\cup \{e_{l}(x_{1}, \dots, x_{m}) = 0 \mid 2 \leq l \leq m\}
\cup \{e_{l}(y_{1}, \dots, y_{n}) = 0 \mid 2 \leq l \leq n\}.$$

For a directed graph G, its set of **strong incidence relations** is $\tilde{\Delta}(G) := \bigcup_{v \in V(G)} \tilde{\Delta}_v$. The **strong incidence set** of G is

$$ilde{P}(G) = \{p \in \mathbb{CP}^{|E(G)|-1} \mid p \text{ satisfies all strong incidence relations in } G.\}$$

Theorem

Let G be any directed graph. Then:

1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$;

Theorem

Let G be any directed graph. Then:

- 1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$;
- 2. dim $\tilde{P}(G) = \alpha(\tilde{G}) 1$;

Theorem

Let G be any directed graph. Then:

- 1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$;
- 2. dim $\tilde{P}(G) = \alpha(\tilde{G}) 1$;
- 3. $\deg \tilde{P}(G) = \text{the number of distinct collections of } \tilde{\alpha}(G)$ disjoint cycles in G;

Theorem

Let G be any directed graph. Then:

- 1. $\tilde{P}(G)$ is the union of finitely many linear subspaces of $\mathbb{CP}^{|E(G)|-1}$;
- 2. dim $\tilde{P}(G) = \alpha(\tilde{G}) 1$;
- 3. $\deg \tilde{P}(G) = \text{the number of distinct collections of } \tilde{\alpha}(G)$ disjoint cycles in G;
- 4. There is a bijection between the set of irreducible components of $\tilde{P}(G)$ of dimension n-1 and the set of maximal collections of pairwise disjoint directed cycles in G containing exactly n directed cycles.

Theorem

Let G be a directed graph.

- 1. The following statements are equivalent:
 - 1.1 P(G) is irreducible;
 - 1.2 P(G) is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.

Theorem

Let G be a directed graph.

- 1. The following statements are equivalent:
 - 1.1 P(G) is irreducible;
 - 1.2 P(G) is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 1.3 G contains exactly $\alpha(G)$ distinct directed cycles.
- 2. The following statements are equivalent:
 - 2.1 $\tilde{P}(G)$ is irreducible;
 - 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 2.3 *G* contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.

Theorem

Let G be a directed graph.

- 1. The following statements are equivalent:
 - 1.1 P(G) is irreducible;
 - 1.2 P(G) is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 1.3 *G* contains exactly $\alpha(G)$ distinct directed cycles.
- 2. The following statements are equivalent:
 - 2.1 $\tilde{P}(G)$ is irreducible;
 - 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 2.3 *G* contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.
- 3. If $\tilde{P}(G)$ is irreducible, then $P(G) = \tilde{P}(G)$.

Theorem

Let G be a directed graph.

- 1. The following statements are equivalent:
 - 1.1 P(G) is irreducible;
 - 1.2 P(G) is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 1.3 *G* contains exactly $\alpha(G)$ distinct directed cycles.
- 2. The following statements are equivalent:
 - 2.1 $\tilde{P}(G)$ is irreducible;
 - 2.2 $\tilde{P}(G)$ is a linear subspace of $\mathbb{CP}^{|E(G)|-1}$;
 - 2.3 G contains exactly $\tilde{\alpha}(G)$ distinct directed cycles.
- 3. If $\tilde{P}(G)$ is irreducible, then $P(G) = \tilde{P}(G)$.

See arXiv:1508.07337 for more related results.