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In bacterial chemotaxis, several types of ligand-specific receptors form mixed clusters, wherein
receptor–receptor interactions lead to signal amplification and integration. However, it remains
unclear how a mixed receptor cluster adapts to individual stimuli and whether it can differentiate
between different types of ligands. Here, we combine theoretical modeling with experiments to
reveal the adaptation dynamics of the mixed chemoreceptor cluster in Escherichia coli. We show that
adaptation occurs locally and is ligand-specific: only the receptor that binds the external ligand
changes its methylation level when the system adapts, whereas other types of receptors change
methylation levels transiently. Permanent methylation crosstalk occurs when the system fails to
adapt accurately. This local adaptation mechanism enables cells to differentiate individual stimuli
by encoding them into the methylation levels of corresponding types of chemoreceptors. It tunes
each receptor to its most responsive state to maintain high sensitivity in complex environments and
prevents saturation of the cluster by one signal.
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Introduction

In environments with multiple cues, organisms need to sense
different signals and process the complex information in order
to make decisions to enhance their chances of survival; e.g., to
move toward nutrients and away from toxins. Two-component
sensory kinase systems are used ubiquitously in the prokar-
yotic world and in plant and yeast cells to sense environmental
stress and mediate appropriate cellular responses (Hoch and
Silhavy, 1995; Stock et al, 2000). One of the best studied two-
component systems is the bacterial chemosensory pathway,
which also serves as a model system for understanding general
principles of sensory signal transduction in biology (Adler,
1976; Falke et al, 1997; Falke and Hazelbauer, 2001; Laub and
Goulian, 2007; Hazelbauer et al, 2008). In Escherichia coli,
extracellular chemical information is sensed by several types
of transmembrane chemoreceptors, each binding to a different
set of chemical ligands and converting this binding into
the regulation of intracellular pathway activity. Tar and Tsr
receptors are the two most abundant chemoreceptors in

E. coli, specific for aspartate and serine, respectively (Grebe
and Stock, 1998). Experiments showed that the receptors form
hetero-trimers of homo-dimers in bacterial cytoplasmic
membrane (Kim et al, 1999; Ames et al, 2002; Studdert and
Parkinson, 2005), and these receptor trimers-of-dimers associ-
ate to form clusters together with the cytoplasmic adaptor protein
CheW and the histidine kinase CheA (Maddock and Shapiro,
1993; Kentner et al, 2006). Ligand binding to receptors changes
the autophosphorylation activity of the attached CheA, which in
turn affects phosphorylation of the response regulator protein
CheYand eventually regulates cell swimming.

To explain the large signal amplification and high sensitivity
in bacterial chemotaxis, receptor cooperativity in the cluster
was first proposed by Bray and coworkers (Bray et al, 1998;
Duke and Bray, 1999). This important insight has been
confirmed by in vitro (Bornhorst and Falke, 2000; Li and Weis,
2000) and in vivo experiments (Sourjik and Berg, 2002, 2004)
as well as by subsequent quantitative modeling (Mello and Tu,
2003b, 2005; Mello et al, 2004; Endres and Wingreen, 2006;

Molecular Systems Biology 7; Article number 475; doi:10.1038/msb.2011.8
Citation: Molecular Systems Biology 7:475
& 2011 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/11
www.molecularsystemsbiology.com

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 1

mailto:v.sourjik@zmbh.uni-heidelberg.de
mailto:yuhai@us.ibm.com
http://dx.doi.org/10.1038/msb.2011.8
http://www.molecularsystemsbiology.com
http://www.molecularsystemsbiology.com


Keymer et al, 2006). In particular, in vivo measurements of
pathway activity using fluorescence resonance energy transfer
(FRET; Sourjik and Berg, 2002; Vaknin and Berg, 2007) and the
corresponding modeling work (Mello and Tu, 2003b) demon-
strated strong interactions between different types of chemo-
receptors, such as Tar and Tsr. Cooperativity among different
types of receptors allows them to act together (globally) in the
mixed cluster to amplify the response to any specific signal.

Sensory adaptation in E. coli chemotaxis is carried out by
receptor methylation and demethylation, mediated by two
cytoplasmic enzymes: methyltransferase (CheR) and methy-
lesterase (CheB), which add and remove methyl group (CH3

þ )
at specific methylation sites on the receptor, respectively. This
covalent modification of the receptor modulates the activity of
the attached histidine kinase CheA, which phosphorylates not
only CheY but also CheB. As CheB methylesterase activity
dramatically increases on phosphorylation (Djordjevic et al,
1998), the overall (global) kinase activity can control the
methylation process through CheB phosphorylation. In addi-
tion, receptors undergo reversible conformational changes
upon ligand binding and methylation, e.g., in their HAMP
domain (a linkage domain underneath the plasma membrane)
as shown by recent cryoelectron microscopy experiments for
E. coli Tsr receptor (Khursigara et al, 2008). Studies on
ubiquitin receptors have shown that conformational changes
in the linkage domain can affect the selectivity and affinity of
enzyme binding and catalysis processes (Sims and Cohen,
2009; Sims et al, 2009), and the observed conformational

change in MCP receptors can, in principle, also directly affect
methylation kinetics, providing a possible local feedback
mechanism, in which the adaptation of an individual receptor
is controlled by its own ‘local’ activity. Besides evidences from
structural studies, a recent systematic study of receptor
modification kinetics (Amin and Hazelbauer, 2010) has clearly
confirmed that the receptor methylation rate is modulated by
the receptor’s ligand occupancy and methylation level, which
are related to its activity/conformation.

Despite our understanding of the heterogeneous receptor
cooperativity, little is known about its effects on the adaptation
process in the mixed receptor clusters. To explain the observed
accurate adaptation to external stimuli, Barkai and Leibler
(1997) first proposed that the receptor methylation/demethy-
lation in bacterial chemotaxis depends on the activity of
receptor–kinase complexes. This integral feedback mechan-
ism (Yi et al, 2000) maintains the overall kinase activity of the
cell within the narrow operational range of the ultrasensitive
flagellar motor (Cluzel et al, 2000). However, as illustrated
in Figure 1A, if the overall kinase activity controls the
methylation/demethlayion dynamics of the individual recep-
tors and if the receptors are strongly coupled in the cluster,
there will be severe methylation crosstalk between different
types of receptors; e.g., the Tsr receptors will be methylated
to the same degree as the Tar receptors even when the cell
only experiences a change in the aspartate concentration.
As receptor methylation serves as the cell’s memory of
the external chemical environment (Webre et al, 2003), such
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Figure 1 Illustration of the different models of receptor adaptation and receptor cooperativity. (A) The global adaptation model, in which the overall integrated activity a
controls the methylation dynamics of individual receptor. [L]1(2) represents MeAsp (serine) concentration; m1(2) and a1(2) represent Tar (Tsr) methylation level and its local
activity (conformational state). (B) The local adaptation model, in which the methytlation of individual receptor is controlled by its own conformational changes. (C) The
MWC-type model for receptor cooperativity. The extended receptor cluster is divided into tightly coupled functional complex (large dashed circle), within which the
receptors, Tar (blue circle) and Tsr (red circle), are synchronized to be either active (filled) or inactive (hollow). (D) The Ising-type model, in which neighboring receptors
interact with a finite coupling strength to favor (but not absolutely enforce) same activities.
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severe methylation crosstalk would limit the ability of a cell to
‘remember’ multiple stimuli distinctively and consequently
decrease the cell’s ability to detect different signals. The key
question is therefore whether different chemoreceptors can
avoid methylation crosstalk (memory ‘contamination’) in the
presence of strong heterogeneous receptor–receptor inter-
actions by adapting locally as illustrated in Figure 1B.

The receptor cooperativity has been described recently
using classical Monod–Wyman–Changeux (MWC) allosteric
model (Monod et al, 1965), in which receptors behave in an
all-or-none manner in a functional cluster (activity of receptors
in a functional cluster can be either all on or all off), as
illustrated in Figure 1C. The MWC model has been successfully
used to describe the regulation of kinase activity in mixed
receptor cluster in responses to stimuli (Sourjik and Berg,
2004; Mello and Tu, 2005; Keymer et al, 2006). However,
because of the all-or-none assumption, the MWC-type model
would predict the same methylation pattern for Tar and Tsr
within a heterogeneous receptor cluster independent of the
signal (Endres and Wingreen, 2006), which is inconsistent
with the ligand-specific adaptation reported previously (Silver-
man and Simon, 1977; Sanders and Koshland, 1988; Antom-
mattei et al, 2004).

On the basis of ‘conformational spread’ concept put forth by
Bray et al (1998), the E. coli chemoreceptor cluster was first
modeled using an Ising-type model by Duke and Bray (1999)
(see also a review by Bray and Duke, 2004). Although the Duke
and Bray model successfully demonstrated the heightened
sensitivity due to receptor–receptor interaction, it was too
simplistic, with only one type of receptor and two methylation
levels (m¼0, 1), to describe the adaptation dynamics of the
mixed receptor cluster. Around the same time, a detailed free-
energy-based stochastic model (Morton-Firth et al, 1999) was
developed to study the adaptation dynamics of the chemor-
eceptors in response to addition of aspartate. However,
without considering the receptor–receptor interaction, this
model predicted a decrease in Tsr methylation level in
response to aspartate addition, which disagrees with the
experimental observations (Sanders and Koshland, 1988).
Later, Shimizu et al (2003) incorporated receptor–receptor
coupling into this model and generally established the
connection between receptor–receptor coupling strength and
signal amplification. However, only one type of receptor was
considered in Shimizu et al (2003). An Ising-type model for
mixed receptor cluster was first proposed by Mello and Tu
(2003b). Direct comparison between this mixed receptor Ising-
type model and FRET experiments (Sourjik and Berg, 2002)
was able to show a strong interaction between different types
of chemoreceptors in the cluster. However, the adaptation
dynamics of the mixed receptor cluster was not addressed in
Mello and Tu (2003b). Goldman et al (2009) has recently
proposed an alternative Ising-type model to explain the
selective methylation in mixed receptor system. In this model,
there is no direct receptor–receptor interaction. Instead,
cooperative CheA–CheA interactions within an extended
CheA lattice (Goldman et al, 2009). The absence of direct
receptor–receptor interaction eliminates methylation cross-
talk. As shown in Goldman et al (2009), the Tsr methylation
level does not change at all in response to aspartate, not even
transiently. This is inconsistent with the previous experiments

(Sanders and Koshland, 1988) and the new experimental data
to be presented later in this paper, which clearly shows the
existence of transient methylation crosstalk. Moreover, direct
interactions between receptor dimers within the basic trimer-
of-dimer receptor unit has been observed in FRETexperiments
(Vaknin and Berg, 2007; Kentner and Sourjik, 2009), even in
the absence of CheW and CheA. In addition, there has been no
direct experimental evidence in support of the cooperative
CheA–CheA interaction in the cluster as assumed in the
Goldman model.

Here, we develop a theory (model) for the mixed chemo-
receptor cluster in which receptors interact directly between
nearest neighbors (nn) as illustrated in Figure 1D, and a local
adaptation (LA) scheme is used to describe the methylation
kinetics of individual receptors as shown in Figure 1B.
Predictions made by this model were tested by direct
measurements of the receptor methylation dynamics for both
Tar and Tsr in response to ligands sensed by either receptor.
Combining theory and experiments, we address the two basic
questions of whether bacteria can differentiate different
stimuli and how such information can be used to enhance
sensitivity in complex environment with multiple cues.

Results

Modeling framework and mathematical
procedures

The LA model for a mixed receptor network with nn
interactions is illustrated in Figure 1B and D. There are two
types of chemoreceptors in the cluster: Tar that binds aspartate
and a-methyl-D,L-aspartate (MeAsp), and Tsr that binds serine.
Each individual receptor, Rqlam, is characterized by four state
variables (written as subscripts). q represents the type of
receptor with q¼1 for Tar and q¼2 for Tsr. l¼0, 1 indicates
ligand binding state of the receptor to be either vacant or
occupied. a¼0, 1 represents inactive or active conformation of
the receptor. m is the receptor methyl level. Tar and Tsr
receptors can have up to 4 and 5 methyl groups, respectively.
For simplicity, we use mA[0, 4] for both receptors. This
simplification does not affect our results and conclusions.
Neighboring receptors in the connected network, which does
not have to be an ordered lattice, can interact and affect each
other’s conformational states (Vaknin and Berg, 2007). The
free energy of a given receptor in a particular state (q,l,a,m)
can be written as

Hðq; l; a;mÞ ¼ mqlþ ðEL
q lþ EM

q;m þ EC
q Þa; ð1Þ

where mq¼ln(Kq
I /[L]q) and mqþ Eq

L¼ln(Kq
A/[L]q) are the chemi-

cal potentials of the inactive and active ligand-bound
receptors, respectively, Eq,m

M is the receptor methylation-
dependent free energy contribution, and Eq

C is the coupling
interaction strength between neighboring receptors. Kq

I and Kq
A

are the dissociation constants for the inactive and active type-q
receptors, and [L]q is the concentration of ligand that binds
with type-q receptor. All energies in this paper are written in
units of the thermal energy kBT.

The energy parameters mq, Eq
L, Eq,m

M for individual receptors
can have complicated dependence on the state variables q and
m. For simplicity, we assume that chemical potential terms
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mq and Eq
L are constants for each type of ligand, independent of

receptor methylation levels. We further assume methylation
energy Eq,m

M is linearly proportional to methylation level m
(Shimizu et al, 2010):

EM
q;m ¼ aqðm�mq;0Þ; ð2Þ

where aq quantifies the energy change by adding one methyl
group to a type-q receptor (aqo0), and mq,0 sets the average
methylation level in the absence of any stimuli for a type-q
receptor. By analogy to the Ising-type model used in describing
collective behaviors in physical systems, such as ferromagnet-
ism (Bozorth, 1993), the receptor–receptor coupling energy Eq

C

is assumed to depend linearly on the activity of its neighbors:

EC
q ¼

X

ðnnÞ
Cqq0 ðaq0 � 0:5Þ: ð3Þ

Equation (3) shows that activity of a receptor (a¼0 or 1) in the
cluster is influenced by its neighbors’ activities with a coupling
constant (strength) Cqq0. The overall coupling effect of a given
receptor is obtained by summing over all its nn. In this paper,
we assume symmetric coupling strength (Cqq0¼Cq0q). We set
Cqq0o0 to represent cooperative receptor–receptor interac-
tions. The 0.5 in the formula is for preserving symmetry
between active and inactive state. It does not affect the general
behavior of the model.

For bacterial chemotaxis, the time scales for ligand binding
and activity switching are much faster than that of receptor
methylation/demethylation. Therefore, a given individual
receptor is at quasi-equilibrium among its four (a, l) states:
(0, 0), (0, 1), (1, 0) or (1, 1). The probabilities in these four
states are given by the Boltzmann distribution function with
their free energies given by Equation (1). The average ‘local’
activity of an individual type-q receptor depends on its
methylation level m and is denoted as /aSq,m. In the mean-
field approximation, /aSq,m can be taken as the mean activity
of all type-q receptors with methylation level m in the cluster.
The properties of the whole cooperative receptor cluster can be
determined by direct Monte Carlo simulations (Supplementary
Figure S8) or the mean-field-theory approximation (see
Supplementary Information for detailed descriptions of these
two methods). Both methods give consistent results. In
particular, /aSq,m and the population Pq,m of type-q receptors
with methylation level m can be computed from our model.
From /aSq,m and P(q,m), we can obtain the average activity
of type-q receptor /aSq¼

P
mPq,m/aSq,m. The average global

activity of the entire mixed receptor cluster can be described as
/aSq¼

P
qfq/aSq, where fq is the fraction of type-q receptor in

the cluster (
P

qfq¼1). Note that the average in /aS is over all
the receptors in the mixed cluster. Detailed equations and
solutions are discussed in the Supplementary Information.

To complete the description of the pathway dynamics, we
need to describe the (slow) adaptation process, characterized
by the dynamics of receptor population in different methyla-
tion levels Pq,m. Previous studies have shown that the
methylation process has to depend on the receptor activity in
order to explain the observed accurate adaptation (Barkai and
Leibler, 1997). However, the origin of the receptor activity
dependence in methylation/demethylation kinetics remains
unclear. One obvious way of receptor activity dependence
comes from the fact that the methylesterase protein CheB is

phosphorylated to its active form CheB-P (Djordjevic et al,
1998) by the histidine kinase CheA, which is controlled by the
integrated global activity of all the chemoreceptors. However,
accurate adaptation occurs even in the absence of CheB
phosphorylation (Alon et al, 1999). A more subtle but perhaps
more important way of receptor activity dependence comes
from individual receptor’s conformational changes (local
activity), which can control the accessibility of its methylation
sites and/or affinity of the enzymes to the receptor (Sims and
Cohen, 2009; Sims et al, 2009). One focus of this paper is to
understand and distinguish the general consequences of the
local and global activity dependence in methylation/demthyl-
ation dynamics.

We can study the local and global activity dependence
within a simple and general model framework by assuming
that the methylation rate decreases with an effective receptor
activity a and the demethylation rate increases with a, both in
a linear manner. The effective receptor activity a can be either
the ‘local’ single receptor activity /aSq,m or the ‘global’ mixed
receptor cluster activity /aS. Thus, the dynamics of the
receptor population Pq,m can be written as

dPq;m

dt
¼k
ðqÞ
R ð1� aÞPq;m�1 þ k

ðqÞ
B aPq;mþ1�

½kðqÞR ð1� aÞ þ k
ðqÞ
B a�Pq;m

; ð4Þ

where kR
(q) and kB

(q) are rates of methylation and demethylation
for receptor type-q and are set to be the same for Tar and Tsr:
kR,B

(q)¼kR,B unless otherwise stated. Within this general model-
ing construct, different choices of the effective receptor activity
a in the above equation correspond to different adaptation
models: a¼/aSq,m is the LA model and a¼/aS is the global
adaptation (GA) model. The difference between these two
adaptation schemes (models) is the focus of this paper. All the
parameters used in this study (Equations (1–4)) are summa-
rized in Table I. The qualitative behavior of our models does
not depend on the quantitative choices of the parameters

Table I Parameters used in the LA model

Item Value or formula Item Value or formula

f1 1/2 f2 1/2

E1
L 8 E2

L 3

m1,0 1 m2,0 2.5

a1 �1.875 a2 �1.0

C1,1
J �5.5 C1,2

J �6.0

C2,1
J �6.0 C2,2

J �6.0

kR
(1) 1 kB

(1) 2

kR
(2) 1 kB

(2) 2

KI
1 18.1 mM KI

2 6.0mM

fq are chosen within the measured range of Tar/Tsr ratio (Kalinin et al, 2010);
Eq

L are chosen to reflect the estimated Kd differences between active and inactive
receptors binding with ligand (Mello et al, 2004; Mello and Tu, 2005); aq are from
previous experimental measurements and estimates (Shimizu et al, 2010); mq,0

are estimated from our experiments shown in Figure 4C and D, E1,0
M is set to be

3.75 to further suppress the activity of Tar for the m¼0 state; CJ is designed to be
symmetric, meanwhile provide high sensitivity (Mello and Tu, 2003b; Mello
et al, 2004); kR

(q) and kB
(q) are set to be the same for Tar and Tsr receptors for

convenience; all the energy parameters are in the unit of kBT, and the timescale is
set by having kR

(1)¼1.
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(see Supplementary Figure S2 for results using another
parameter set).

Conceptually, the MWC-type models (Mello and Tu, 2005;
Endres and Wingreen, 2006; Keymer et al, 2006) can be
considered as a special case of the general Ising model with
infinite coupling strength within (finite-sized) functional
clusters. All the receptors within an MWC functional cluster
(see Figure 1C) switch between their active and inactive states
synchronously (‘all-or-none’), regardless of their types
(Tar, Tsr) or methylation levels. As a result, the local activities
of individual receptors are exactly the same as that of the
whole cluster (/aSq,m¼/aS). Therefore, in terms of adapta-
tion, the methylation/demethylation process in an MWC-type
model is effectively only determined by the global activity, the
same as the GA model studied here.

Before studying the two simplified adaptation models (GA
and LA), it should be noted that in wild-type E. coli cells, the
activation (phosphorylation) of the demethylation enzyme
CheB depends on the global activity of the receptor cluster.
Thus, the global and local activities can combine in a complex
‘hybrid’ manner to affect the adaptation dynamics. However,

including this detail in the demethylation dynamics does not
change the general results and conclusions of this paper as
long as LA effects exist (see Supplementary Information and
Supplementary Figure S5 for details).

Adaptation dynamics for mixed receptor cluster:
local adaptation prevents permanent methylation
crosstalk

Using the local adaptation (LA) model described in the last
section, we study and predict the adaptation dynamics of Tar
and Tsr in a mixed cluster. As shown in Figure 2A, in response
to a step increase of the chemo-attractant MeAsp, the activity
of Tar is suppressed immediately by ligand binding. Owing to
the heterogeneous receptor–receptor interactions (EC), the
activity of Tsr in the mixed receptor cluster also decrease
quickly. After the initial activity drop, the system starts to
recover (adapt) by increasing the receptor methylation levels,
which restores the receptor activities to their initial pre-
stimulus levels. In the GA models (such as the MWC-type
model), the methylation levels of both types of receptors
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Figure 2 The adaptation dynamics of a mixed receptor cluster in response to addition of ligand. (A) Adding modest amount (180 mM) of MeAsp induces immediate
activity drops for both Tar and Tsr receptors. Afterwards, Tar activity recovers monotonically (blue line), whereas Tsr activity (red line) first increases to a higher level
(overshoot) and then returns back to its initial level. Black line is the averaged activity recovery trajectory of the entire heterogenous receptor cluster. (B) Tar and Tsr
exhibit different methylation dynamics after MeAsp addition: Tar increases its methylation level monotonically to a higher level (blue line), whereas Tsr is first methylated
then demethylated, and returns to its pre-stimulus state (red line). (C, D) The dynamics of the receptor populations in each methylation level for Tar and Tsr, respectively,
after adding 1 mM MeAsp. (E) Schematic illustration of methylation dynamics after MeAsp addition under local (upper row) and global (bottom row) adaptation schemes.
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increase monotonically to higher levels as they are both
controlled by the (same) global kinase activity. However, in the
LA model used here, only the average methylation level /mS1

of Tar receptors, which directly bind the external ligand
(MeAsp), increases monotonically and reaches a higher
methylation level in the final adapted state (blue line in
Figure 2B). The average methylation level /mS2 of the Tsr
receptors increases only transiently before returning back to its
pre-stimulus level when the system reaches its adapted steady
state (red line in Figure 2B). Thus the LA model predicts only
transient methylation interference (crosstalk) but no perma-
nent (steady state) methylation crosstalk. The activities of Tar
and Tsr also show distinct behaviors. The average Tar activity
/aS1 shows a monotonic recovery to its pre-stimulus level
(blue line in Figure 2A). The average Tsr activity/aS2 shows a
characteristic overshoot above its pre-stimulus level before
returning back when the system adapts (red line in Figure 2A).
Similar results are obtained in response to moderate amounts
of serine, to which the system can adapt accurately.

The transient dynamics of Tsr in the mixed cluster in
response to MeAsp is an important prediction of the LA model
and can be understood intuitively as follows. As Tsr does not
bind to MeAsp (except for extremely high MeAsp level), the
only driving force for Tsr methylation is its coupling to Tar,
which makes Tsr activity dependent on the Tar activity.
Therefore, even though the Tsr methylation level increases
initially right after the MeAsp addition due to the initial Tar
activity drop, it should recover to its pre-stimulus level as Tar
adapts, and hence the driving force for Tsr methylation
disappears. The initial rise of the Tsr methylation level,
dhmi2

dt jt¼040, and its final recovery /mS2|t¼N¼/mS2|t¼0,
imply that there exists a time point t* when the Tsr methylation
level reaches its maximum:

dhmi2
dt
jt¼t� ¼ 0 and

d2hmi2
dt2

jt¼t�o0

For LA model, since dhmi2
dt � kRð1� hai2Þ � kBhai2 (see

Equation (5) and corresponding descriptions), the first
equation above shows that the Tsr activity crosses its steady-
state value a0

(2)¼kR/(kRþ kB) at time t*, and the inequality
leads to d2/mS2/dt2¼�(kRþ kB)� d/aS2/dto0 so that
d/aS2/dt40 at t*. Therefore, exactly when Tsr methylation
level reaches its maximum level at time t*, the Tsr activity
/aS2 crosses its steady-state value with a positive changing
rate, as it overshoots to a higher value before it finally recovers
to /aS0

(2) in steady state. This explains the overshoot seen
in Figure 2A (see Supplementary Figure S1A for more details).

Another interesting prediction from the LA model is that the
averaged kinase activity does not always stay below the
adapted value and recover monotonically as it would do in the
global (MWC-type) adaptation model. If Tsr is more abundant
than Tar and Tsr adapts slower than Tar, the transient
nonmonotonic Tsr activity recovery dynamics in response to
addition of aspartate or MeAsp (Figure 2A and Supplementary
Figure S1A) can bring the overall kinase activity above its
adapted level (i.e., an overshoot) before the system reaches its
final steady state. For example, with the same energy and
coupling strength parameters listed in Table I, but f1/f2¼1:4
and kR

(1)/kR
(2)¼2:1, the overall kinase activity undergoes a 10%

overshoot in response to addition of 180 mM of MeAsp, as

shown in Supplementary Figure S1B. This predicted behavior
from the LA model is consistent with the overshoot in the
transient response (in terms of the rotational bias of the
flagellar motor) of E. coli to a large step chemotactic stimuli
observed by Berg and Brown (1972). This agreement strongly
supports the LA model. Our model also predicts that such
overshoot will be absent without the mixed receptor cluster.
This prediction may be tested in cells with only one type of
chemoreceptors.

Theoretical modeling also allows us to study the detailed
dynamics of receptor population Pq,m in each individual methyl-
ation state (m¼0, 1,y, 4) and for different types of receptors
(q¼1, 2). When there is no MeAsp present, the Tar receptors
mostly populate the low-methylation states (m¼0, 1; see
below and also Supplementary Figure S9 in Neumann et al,
2010). After adding 1 mM MeAsp, the Tar population shifts
from low-methylation states to high-methylation states with
monotonic decreases of P1,0 and P1,1, and monotonic increases
of P1,2, P1,3 and P1,4 as shown in Figure 2C. However, for the Tsr
receptors that do not bind MeAsp, methylation level distribu-
tions remain unchanged upon adaptation to MeAsp. Transi-
ently, we observe a decrease-then-increase trend of the
low-methylation state probabilities P2,0, P2,1 and P2,2 for Tsr,
whereas the probabilities of the high-methylation states P2,3

and P2,4 show opposite transient behaviors due to the
conservation of the total receptor population (Figure 2D).
Similar changes in methylation level distribution for Tsr
are observed when 1 mM serine is added (Supplementary
Figure S1C and S1D). However, the adapted methylation
levels of Tar receptors in response to 1 mM of serine have
increased from their pre-stimulus levels (Supplementary
Figure S1C). This permanent methylation crosstalk is related
to the mixed receptor cluster’s inability to maintain perfect
adaptation to high concentrations of serine, which we will
study next.

Methylation crosstalk and adaptation accuracy:
imperfect adaptation leads to permanent
methylation crosstalk

A receptor can adapt to a certain range of ligand concentrations
by adjusting its methylation level (Mesibov et al, 1973; Mao et al,
2003). A mixed receptor cluster made of Tar and Tsr has the
ability of adapting to both MeAsp and serine stimuli, but with
different accuracies. Adaptation to MeAsp (or aspartate) is
known to be relatively accurate (perfect) in a wide range of
MeAsp concentrations, whereas the adaptation to serine is much
less accurate, in other words, imperfect (Berg and Brown, 1972;
Neumann et al, 2010). This is demonstrated in Figure 3, in which
properties of the adapted (steady) state of the mixed receptor
cluster are shown for different levels of MeAsp and serine. As can
be easily seen from Figure 3A and B, for a high MeAsp concen-
tration (e.g., 1mM, B50 K1

I ), the activity can still adapt
accurately and there is no permanent methylation crosstalk
(see also Figure 2D). However, the same level of serine (1 mM,
B200 K2

I ) leads to inaccurate adaptation (Figure 3C), and it also
triggers methylation increase for the (non-binding) Tar receptors
(Figure 3D, see also Supplementary Figure S1C); i.e, permanent
methylation crosstalk. These observations suggest a close
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relationship between permanent methylation crosstalk and
adaptation accuracy.

To directly demonstrate the correlation between permanent
methylation crosstalk and adaptation accuracy, we plot the
degree of methylation crosstalk Dm, defined as the permanent
methylation level increase for the non-binding receptor, versus
the adaptation error (Da), defined as the steady-state cluster
activity change, for different amounts of ligand additions
(Figure 3E). With the parameter set used here (Table I), the
correlations between Dm and Da are nearly linear for both
MeAsp (blue line) and serine (red line) addition, which confirms
the strong dependence of permanent methylation crosstalk on
adaptation accuracy. Changing model parameters only affects the
dependence quantitatively, and the strong correlation between
permanent methylation crosstalk and the adaptation accuracy
exists for all parameter sets tested.

The causal relation between methylation crosstalk and
adaptation accuracy can also be understood analytically from
our model. For high ligand concentrations, the effect of ligand
binding may not longer be balanced by the covalent modifica-
tion (methylation) of its corresponding receptor; therefore, the
system fails to adapt accurately. This permanent change in
activity (imperfect adaptation) is felt by the other receptors in
the mixed cluster through receptor–receptor interactionP

Cqiqi0 �ðai0 � 0:5Þ, which depends on the activity. The
changes in receptor–receptor interaction strength drive the
methylation of the non-binding receptors and eventually leads
to the permanent changes of their methylation levels, i.e.,
methylation crosstalk.

What causes inaccurate adaptation? We can answer this
question by deriving the dynamical equation for the average
methylation level /mSq(�

P
m¼0
4 Pq,mm) by summing over the

dynamical equations (Equation (4)) for receptor populations
Pq,m in different methylation levels:

dhmiq
dt

¼ kRð1� haiqÞ � kBhaiq þ kBhaiq;0Pq;0

� kRð1� haiq;4ÞPq;4: ð5Þ

The last two terms in the above equation represent the
contributions from the boundary methylation values m¼0
and 4. If the receptor population at these boundary methyla-
tion levels are small, i.e., Pq,0,Pq,4 � 1, these boundary terms
can be neglected from Equation (5), which will lead to
/aS0

q¼kR/(kRþ kB) in steady state independent of ligand
concentration, i.e., perfect adaptation. Otherwise, as first
pointed out in Mello and Tu (2003a), these two ‘boundary
terms’ are responsible for imperfect adaptation of the system.
There are two factors causing imperfect adaptation: finite
receptor population at the methylation boundaries (Pm¼0a0
or Pm¼4a0), and the existence of activity ‘gap’ at these
methylation boundaries (defined as D/aSq,0�/aSq,0 and
D/aSq,4�1�/aSq,4, see Supplementary Figure S6A and B for
details). If the activity gaps are not closed, i.e., D/aSq,0a0 or
D/aSq,4a0, CheB or CheR would still attempt to demethylat-
ing or methylating MCP receptors at the methylation bound-
aries (m¼0) or (m¼4) in order to achieve perfect adaptation.
However, the finite range of receptor methylation levels
(boundaries) prevent the proper enzymatic reaction from
continuing. Therefore, the two boundary activity gaps affect
the adaptation accuracy by controlling the catalytic deficiency
at the two boundaries. As the receptor activity ‘gap’ is
normally very small (D/aSq,0B0) at m¼0, the dominant
contribution for imperfect adaptation comes from the receptor
population at the highest methylation level m¼4. The
dynamics of the Tar and Tsr population distributions in
different methylation levels after additions of 1 mM MeAsp is
shown in Figure 2C and D. Even though adding 1 mM MeAsp
brings Tar methylation levels up from m¼0, 1, 2 to m¼1, 2, 3,
P1,4 is still small, so the system adapts to 1 mM MeAsp accurately
and the steady-state distribution of Tsr methylation levels remain
unchanged, i.e., no permanent methylation crosstalk as shown
in Figure 2D. However, adding 1 mM serine shifts most of the Tsr
population to the boundary level m¼4 (Supplementary Figure
S1D), which leads to imperfect adaptation and consequently a
observable shift in Tar methylation population distribution
toward higher methylation level (Supplementary Figure S1C).
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Experimental measurements and comparison with
theoretical predictions

To test the predictions from the LA model, we have measured
the Tar and Tsr populations in different methylation states at
different time points after addition of 1 mM of either MeAsp or
serine. For experiments, we used E. coli strain RP2893 deleted
for genomic copies of cheR and cheB and expressing CheR and
CheBc, a constitutively active truncated version of CheB, from
inducible plasmids. This setup enables us to focus on studying
the adaptation control by the local activity while decoupling it
from the known regulation of the global activity through CheB
phosphorylation. Tar and Tsr receptors with different levels
of glutamate methylation were separated using the effects of
methylation or similarly neutralizing replacement of gluta-
mate by glutamine on protein mobility on the SDS–PAGE gel
(images shown in Figure 4A and B). Mobility of individual
modification states was calibrated using samples prepared
from cells expressing Tar or Tsr receptors with zero to four (for
Tar) or five (for Tsr) glutamines in place of glutamates, as
shown in the inset in Figure 4C. Thus, determined mobilities of
individual methylation levels are shown as vertical lines in
Figure 4C and D. Generally, Tsr mobility on the gel is lower and

Tar mobility is higher, but there is also an overlap in mobilities
of high-modified Tsr receptors and low-modified Tar receptors.
Note that the peaks of methylated receptors do not migrate
exactly at the same positions as the standards, presumably due
to small differences between the effects of methylation and
glutamine replacement and/or between modifications at
different sites. The two shaded regions in Figure 4C and D
mark the clearly distinguishable methylation levels for Tsr (left
region, m¼0�3) and Tar (right region, m¼2�4). Figure 4C and
D shows the detailed experimental results for the time
dependence of the receptor methylation profiles (up to 600 s)
after adding 1 mM of MeAsp (Figure 4C) and serine
(Figure 4D). For MeAsp addition, the measured methylation
level profile shows significant changes for Tar. In contrast,
changes in the Tsr methylation are very subtle and only
transient before relaxing to their original levels (Figure 4C).
Although Tsr may directly bind MeAsp at very high concentra-
tions (B100 mM; Sourjik and Berg, 2002), no Tsr methylation
was observed in the tar-strain stimulated by 1 mM MeAsp
(data not shown), ruling out direct effect of MeAsp binding on
Tsr methylation. Furthermore, the observed transient methy-
lation crosstalk is not likely due to the direct nonspecific
binding of MeAsp ligand to Tsr receptors, because the
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Figure 4 Direct measurements of receptor methylation dynamics. (A, B) Mobility images of the Tar–Tsr two receptor system on the SDS–PAGE gel after addition
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methylation crosstalk would otherwise be permanent after the
system adapts. Distinctly, for addition of 1 mM serine, not only
the methylation levels of the Tsr receptor increases (as seen by
the drastic decrease in the low-methylation level population of
Tsr), but the methylation level of the Tar receptor also
increases (as seen by the increase in the high-methylation
level populations of Tar, Figure 4D). Both of these observations
are in agreement with the LA model and confirms the predicted
connection between methylation crosstalk and adaptation
accuracy. Again, no methylation of Tar receptor was observed
in the tsr-strain stimulated by serine (data not shown),
confirming that Tar methylation is due to crosstalk and not
the direct binding of serine to Tar.

Quantitatively, the measured methylation profiles can be
analyzed by adding up the two shaded regions underneath
each profile curve, corresponding to the non-overlapping
methylation levels of Tar and Tsr, at each time point. In
Figure 5, the Tsr population in low-methylation levels
(m¼1�3) and the Tar population in high-methylation levels
(m¼2�4) in response to 1 mM MeAsp (Figure 5A) and 1 mM
serine (Figure 5B) are shown. The blues lines are predictions
from the LA model. In response to the 1 mM MeAsp addition,
the high-methylation population of Tar increases monotoni-
cally consistent with our theoretical prediction (blue line).
Although the time trajectories for each individual methylation
levels of Tsr are dynamic (see Figure 5C), their sum is rather
flat in agreement with the LA model results (blue line). This is

due to the fact that P2,3 changes in opposite trend with respect
to P2,1 and P2,2 (as shown both in model prediction Figure 2D
and in experiment Figure 5C), which neutralize the overall
change of their sum. The unchanged overall methylation
profile at t¼600 s in comparison with that at t¼0 indicates that
there is no permanent methylation crosstalk between Tar and
Tsr upon 1 mM MeAsp addition. For the response to 1 mM
serine, Figure 5B shows a significant decrease of the low-
methylation level population for Tsr as the Tsr receptors move
to higher methylation level in response to serine binding.
However, the high-methylation level populations for Tar also
show a significant increase, indicating an increased Tar
methylation level even though Tar does not bind serine
directly. This observed methylation crosstalk in response to
serine confirms the LA model prediction (Supplementary
Figure S1C) and is caused by the inaccurate adaption to serine
as explained earlier. Parameter set in Table I is used for the
theoretical simulations without parameter fitting, although
better quantitative agreement with experimental data can be
achieved by decreasing the adaptation rate for Tar (see
Supplementary information and Supplementary Figure S3).

Dynamics of the receptor populations for individual
methylation levels in the non-overlapping regions of the gel
can also be studied for the lower methylation levels of Tsr
(m¼1–3) and the higher methylation levels of Tar (m¼2–4).
The dynamics of Tsr lower methylation states in response to
addition of 1 mM MeAsp are shown in Figure 5C, in which the
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red dots are from experimental measurement and the solid
blue curves are from the LA model prediction, the methylation
rate kR is set to be 5�10�3 s�1 for temporal comparison (better
quantitative agreement can be achieved by requiring different
methylation rates kR for Tar and Tsr in our model). The LA
model agrees well with the experiments. The non-monotonic
nature of the Tsr population dynamic in different methylation
levels confirms the transient methylation crosstalk predicted
by the LA model. In comparison, the GA model leads to
permanent changes of the Tsr population in different
methylation levels (dotted blue lines in Figure 5C) in response
to MeAsp, in clear disagreement with the experiments. The
dynamics of Tar populations in higher methylation levels from
the LA model also agrees with the data (see Supplementary
Figure S4).

Overall, the experimental measurements strongly support
the LA model, in which individual receptor activity has an
important role in regulating its own methylation level to
achieve adaptation. Our experimental observation of a limited
(transient) crosstalk is inconsistent with the purely GA
models, in which methylation is solely controlled by the total
activity of the mixed receptor cluster. It also disagrees with the
recently proposed CheA–CheA interaction model by Goldman
et al (2009) that predicts the absence of any (even transient)
methylation crosstalk. Both the LA model and the experi-
mental measurements show that when a mixed receptor
cluster is exposed to a mixture of external chemostimuli,
different types of receptors adapt to different methylation
levels, depending on the composition of the mixed stimuli.
This LA mechanism suggests that bacteria can distinguish and
encode complex external ligand information through methyla-
tion levels of their corresponding receptors.

Discussion

The ability to adapt to complex environments is essential for
organisms to survive (Adler and Tso, 1974). For the bacterial
chemosensory system studied here, adaptation is carried out by a
reversible receptor covalent modification (methylation/de-
methylation) process (Falke et al, 1997). The resulting methyla-
tion levels of the receptors encode a rudimentary memory of the
environment encountered by the cell. In this paper, we proposed
a local adaptation (LA) mechanism, in which the receptor
adaptation is controlled by its own conformational changes. We
showed that this local feedback mechanism allows the cell to
adapt accurately to different stimuli in the presence of
heterogeneous receptor–receptor interactions. This LA strategy
avoids receptor methylation crosstalk, and thus enables the cell
to record (remember) the concentrations of different stimuli
distinctively using the methylation levels of the corresponding
receptors. The LA mechanism is verified by direct experimental
measurements of the methylation dynamics of different chemor-
eceptors Tar and Tsr in response to addition of MeAsp and serine.

For E. coli chemotaxis, the adaptation dynamics after a given
environment change can be illustrated by the two-dimensional
trajectories of the average Tar and Tsr methylation levels. For
the LA model, as shown in Figure 6A, adding MeAsp leads to
a methylation level trajectory that ends to the right of the
starting point, whereas adding serine gives rise to a trajectory

that ends above the starting point. When perfect adaptation is
achieved, the methylation coordinate of the end point in the
non-binding direction is the same as that of the starting point,
indicating no permanent methylation crosstalk. However,
when the trajectories approach the maximum methylation
level (m¼4), perfect adaptation fails, and the end (steady
state) point has finite changes in both methylation coordinates
even for additions of one single type of stimulus, indicating the
start of methylation crosstalk. Contrarily, for the GA model,
such as the MWC-type adaptation models, the methylation
dynamics always follows the same trajectory independent of
the details of the environment changes. As shown in Figure 6B,
the end points only depend on an overall strength of the
environment changes integrated over all stimuli, and the
methylation level trajectories for different ligand perturbations
all collapse onto a single line, indicative of severe permanent
methylation crosstalk.

The relevant information about the external chemical
environment for an E. coli cell can be specified by the ligand
concentrations ([L]1, [L]2) for MeAsp and serine, respectively.
From the methylation trajectory analysis, it is clear that the LA
mechanism encodes this information distinctively in the
methylation levels of Tar and Tsr (/mS1, /mS2) in a unique
one-to-one manner without loss of information, as shown in
Figure 6C. However, for the GA mechanism, the mapping from
the chemical information to its intracellular record is not
unique (many-to-one). In fact, as shown in Figure 6D, a whole
line of different combinations of concentrations are mapped to
a single point in the methylation space, representing a severe
loss of information. In the following, we study the functional
advantages of the LA mechanism that prevents permanent
methylation crosstalk and avoids such information losses.

Local adaptation leads to high sensitivity in global
activity response

The most important performance measure of a sensory system
is its sensitivity to various external stimuli in different
backgrounds. For E. coli chemotaxis, after the mixed receptor
cluster reaches its steady state in a given ambient chemical
background, the response to a sudden change of a stimulus
concentration (D[L]) can be measured by the relative sensi-
tivity: S�([D]/aS//aS/D[L]/[L]), where Da is the immedi-
ate activity change before methylation/demethylation takes
place and [L] is the ambient level of the ligand whose
concentration has been changed. Here, we compare the
sensitivities of the Ising-type GA and the LA models in
different backgrounds of MeAsp and serine concentrations. In
Figure 7A, we plot the sensitivity to MeAsp as a function of the
background MeAsp concentration at different levels of serine
background. Results show that higher levels of serine back-
ground do not change the shape of the sensitivity curve, but
lower the overall sensitivity to MeAsp, likely caused by the
cell’s imperfect adaptation to serine. The serine sensitivity
curves in different levels of MeAsp backgrounds, as shown in
Figure 7B, have little or no dependence on the MeAsp
backgrounds, as the cell can adapt to a wide range of MeAsp
concentrations accurately. More systematic evaluations have
been performed under all combinations of background MeAsp

Adaptation dynamics of the mixed chemoreceptor cluster
G Lan et al

10 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



and serine concentrations, and the results are summarized in
Supplementary Figure S7. For responses to all combinations of
MeAsp and serine, the LA scheme for the Ising-type model
always leads to a higher sensitivity than the global scheme (see
also Supplementary Figure S7).

In a given background, the receptor methylation levels reach
their steady-state values. The subsequent fast response to a
sudden change of ligand concentration can be studied by fixing
these methylation levels as they can only change slowly. The
immediate activity responses as a function of the final level of
ligand concentration (background plus added ligand concen-
trations) are shown in Figure 7C and D, for MeAsp and serine,
respectively. The sensitivities are given by the slopes of the
response curves at the positions of the adapted states
represented by the dots in Figure 7C and D. The response
curves for different adaptation schemes clearly show that the
local scheme (black lines) always leads to steeper dose–
response curves than the global scheme (red lines). In
Figure 7C, the predicted dose–responses in three backgrounds
(30, 500 and 5000 mM MeAsp) are compared directly with the
corresponding experimental measurements (Sourjik and Berg,
2002; diamond symbols). The LA model shows excellent
agreement with the experiments. The high sensitivity of the LA
scheme can be understood intuitively as all the individual
receptors are tuned (adapted) to their most sensitive operating
point (Mello and Tu, 2007). Contrarily, the GA scheme only
leads to a state with a fixed globally averaged activity with the

individual receptors adapting to activities either higher or
lower than their most sensitive operating points. The deviation
of the individual receptors from their most sensitive regimes is
responsible for the reduction in the overall sensitivity of the
system. Note that the MWC model is different from the Ising-
type GA model, and it can reproduce the kinase response data
(Keymer et al, 2006; Mello and Tu, 2007) due to the effectively
infinite receptor coupling strength (within a functional cluster)
assumed in the MWC model. However, the MWC model, which
automatically adopts the global scheme for the receptor
methylation dynamics, would predict incorrect receptor
methylation levels in the mixed receptor cluster.

Stability of the methylation dynamics

Although similar in their structures, Tar and Tsr receptors
differ in their cytoplasmic regions, including the positions of
their methyl-accepting sites. Therefore, even though both
types of receptors share the same enzymes for methylation and
demethylation reactions, the structural variance between them
could lead to different catalytic efficiencies of these enzymes.
In our model, this difference can be represented by different
kR

(q)/kB
(q) ratios for Tar (q¼1) and Tsr (q¼2) receptors, which

leads to different preferred steady-state activities a0
(q)¼kR

(q)/
(kR

(q)þ kB
(q)) for the Tar and Tsr adaptation dynamics. In the LA

model, this difference in preferred activities is allowed as each
type of receptor can achieve its own preferred adapted activity

0 1 2 3 4
2

2.4

2.8

3.2

3.6

4
<
m

>
2

<m>1

<
m

>
2

[L]1=0

 

1 2 3 4
1

1.5

2

2.5

3

3.5

4
[L

] 1

[L
] 1

[L]2

104

103

102

101

10–1 100 101 102
100

102

102

101

101

100

100

10–1

10–1
10–2

10–22.5 3 3.5 4
1

2

3

4

1 2 3

1

2

3

A B

C D

<m>2 <m>2

<m>1

<
m

>
1

[L]2

<
m

>
1

[L]2=10 K2
I

I

[L]1=0
[L]2=102 K2

I
[L]1=102 K1

I

[L]2=102 K2
I

[L]1=10 K1
I

[L]2=0

[L]1=102 K1
I

[L]2=0
[L]1=10 K1

I

[L]2=0
[L]1=K1

I

[L]2=0

[L]2=K2

[L]1=0

[L]2=0
[L]1=0 [L]2=0

[L]1=0
[L]1=K1

I

[L]2=0

[L]1=10 K1
I

[L]2=K2
I

[L]1=102 K1
I

[L]2=K2
I

[L]1=102 K1
I

[L]2=10 K2
I

[L]1=102 K1
I

[L]2=102 K2
I

Figure 6 The adaptation trajectories and the mapping from external chemical signal to internal memory. (A) The adaptation dynamics in response to additions of
different stimuli, as represented by the (average) methylation level trajectories in the 2D plane spanned by (/mS1, /mS2), are shown for the local adaptation model.
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end point of each curve). (B) The adaptation trajectories from the MWC-type model. Trajectories for different stimuli fall onto a single line in the (/mS1, /mS2) plane.
(C) The ligand concentration space ([L]1, [L]2) is organized by the constant adapted activity contour lines shown in the left panel; the corresponding (average) receptor
methylation levels (/mS1, /mS2) adapted to the external stimuli ([L]1, [L]2) can be determined from the local adaptation model and are shown in the right panel with the
same color as the corresponding ligand concentrations. The mapping from the external stimuli ([L]1, [L]2) to the internal memory (/mS1, /mS2) is unique (one-to-one)
in the local adaptation model, and there is no loss of information. (D) In the MWC model, each constant kinase activity line in the ([L]1, [L]2) space, shown on the left,
is mapped onto a single point in the methylation space, shown on the right. This represents a drastic reduction of information from external chemical signal to the
internal memory.
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separately. However, for the GA scheme, in which both the Tar
and Tsr methylation dynamics are controlled by the same
global activity a, different ratios kR

(q)/kB
(q) for Tar and Tsr can be

a major problem as can be seen in the following simple linear
equations for the Tar and Tsr methylation dynamics:

dmq

dt
¼ k

ðqÞ
R ð1� aÞ � k

ðqÞ
B a;

where q¼1, 2 represents Tar and Tsr, respectively. There is no
steady state solution for the above equations unless the two
ratios of kinetic constants are exactly the same kR

(1)/kB
(1)¼kR

(2)/
kB

(2) for Tar and Tsr. If they are not the same kR
(1)/kB

(1)akR
(2)/kB

(2),
the system becomes unstable (frustrated) and the methylation
levels of Tar and Tsr will be driven to their extreme values
at m¼0 or 4, inconsistent with experimental observations.
In comparison with the more flexible LA mechanism, the
stringent requirement of the exact equality of the two kinetic

constant ratios for different receptors makes the GA mecha-
nism much less robust.

Local adaptation prevents the poisoning effect by
methylation contamination

In environments with extremely high levels of a given
stimulus, the cell can lose its ability to respond to further
change of this particular stimulus. A natural question arises
as to whether saturation of one type of stimulus can destroy
the cell’s sensitivity to other types of stimuli. Clustering of
different types of chemoreceptors, which has an important role
in signal amplification, could mediate methylation of one
type of receptor in response to a ligand that binds with another
type of receptor. Because a receptor loses its ability to sense
concentration change at high-methylation levels (m43), with
a strong methylation crosstalk, the mixed receptor cluster
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Figure 7 Response sensitivity in different backgrounds and comparison with experiments. (A) The response sensitivities to MeAsp as functions of the background
MeAsp level. Different panels are for different serine backgrounds. (B) The response sensitivities to serine as functions of the background serine level. Different panels
are for different MeAsp backgrounds. (C, D) Show the dose–response curves for the LA (black) and GA (red) models at three different backgrounds shown by the dotted
lines. The responses in three backgrounds ([L]0¼30, 500 and 5000 mM MeAsp) are compared with the corresponding experimental measurements (Sourjik and Berg,
2002; diamond symbols) in (C). For comparison purpose, we subtracted background activity at saturate amount of MeAsp (C) or serine (D) and scaled the experimentally
measured adapted activities to a0 in our model. The LA model shows excellent agreement with the experiments. Note that instead of plotting the response to the added
concentration D[L] as done in Sourjik and Berg (2002), we have plotted the response against the final concentration [L]1¼[L]0þD[L] so that the sensitivity can be directly
determined from the slope of the response curve at [L]1¼[L]0 (Mello and Tu, 2007). The results here indicate that for any given backgrounds, the LA model always leads
to higher sensitivity than the GA model.
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could lose its sensitivity to all types of chemical stimuli when
saturated by one type of ligand.

This detrimental ‘poisoning’ effect is particularly severe for
the MWC-type GA models. Owing to the effectively infinite
coupling strength between receptors within the finite func-
tional cluster in the MWC-type models, the methylation levels
of all types of receptors can reach their maximum in their
concerted response to extremely high level of one type of
stimulus. As a result, the non-binding receptors in the mixed
cluster also reach high-methylation levels and therefore either
lose the ability to sense any changes in their corresponding
ligand (signal) or fail to recover their activity, and hence ability
to respond. As shown in Figure 8A–C for the MWC-type model,
when two different types of ligands are added successively,
the mixed receptor sensory system cannot respond to the
second ligand addition when the first ligand is overdosed
(Figure 8C).

The situation is much improved for the LA scheme as shown
in Figure 8D, E and F. In the LA model, the coupling strength
(Cqq0) between receptors is finite, and each receptor undergoes
separate adaptation dynamics. Therefore, when one type of
ligand is overdosed, the corresponding receptor loses its ability
for sensing further change of that type of ligand (red lines in
Figure 8D, E and F). However, even though methylation
crosstalk does occur in the LA model as the system fails to
adapt, the finite coupling strength limits the degree of
methylation contamination, and acts as a fire-wall to keep
other types of receptors from being driven to their highest
methylation levels. As a result, the mixed receptor cluster is
still capable (albeit to a less degree) of sensing changes of other
stimuli (blue lines in Figure 8D, E and F).

Figure 8 also shows the corresponding methylation trajec-
tories upon successive ligand additions for the MWC (Figure
8G, H and I) and the LA models (Figure 8J, K and L). Not
surprisingly, methylation contamination is severe for the MWC
model. For the LA model, however, the finite coupling
interaction and the LA mechanism work together to limit the
degree of methylation contamination and protect the entire
sensory machinery from being totally destroyed by overdosing
of one single type of ligand.

In summary, highly cooperative interactions between
sensors (receptors) within a mixed sensor network can amplify
small signals and are directly responsible for high response
sensitivity. What we have shown here is that allowing
individual sensors in the network to adapt according to its
own (local) activity is crucial in maintaining the responsive-
ness of the system in environments with multiple signals. Both
the modeling work and the experimental measurements of the
methylation dynamics confirm that this local-activity-depen-
dent adaptation strategy is used in E. coli chemotaxis. Micro-
scopically, certain conformational changes of the chemo-
receptors control the activity of the attached histidine kinase.
Our study confirms that the same receptor conformational
changes also affect the receptor’s methylation/demethylation
kinetics. This LA scheme prevents methylation crosstalk and
enables the cell to differentiate different signals by the
methylation levels of the corresponding receptors. This LA
process tunes each individual sensor to its most sensitive
operating point and thus maintains the high sensitivity of the
entire cluster. The absence of methylation crosstalk shows

that the receptors in a functional cluster do not work in a
all-or-none manner. Instead, the receptor interactions within
a mixed cluster can be best described by a Ising-type model
with nn interactions. The finite interaction strength between
neighboring sensors in a Ising model can also prevent the total
disfunction of one type of receptor by the saturation of another
type of receptors.

Materials and methods
All strains used in this study are listed in Supplementary Table S1.
Methylation experiments were performed in E. coli strain RP2893
[D2206 (tap-cheZ)] expressing CheR from plasmid pVS113 and CheBc
from plasmid pSB4. To calibrate mobility of different receptor
modification states on the SDS–PAGE gel, receptors with a defined
number of glutamate residues (E) replaced by glutamine (Q), which
mimics methylated glutamate (Dunten and Koshland, 1991), were
used. Tar standard was derived from strains VS144 (tsr TarEEEE), VS141
(tsr TarQEEE), VS148 (tsr TarQEQE), VS150 (tsr TarQEQQ) and SB1 (tsr
TarQQQQ) that encode Tar mutants on the chromosome. Tsr standard
was derived from strain VS164 (tar TsrQEQEE), and strain VS172 (tsr tar)
that expressed Tsr from plasmids pVS362 (TsrEEEEE), pVS356
(TsrQEEEE), pVS361 (TsrQQQEE), pVS363 (TsrQQQQE) and pVS502
(TsrQQQQQ).

Cell growth and preparation

Strains were grown in tryptone broth (0.1%. tryptone and 0.5% NaCl)
with added antibiotics (100mg ml�1 ampicillin, 35 mg ml�1 chloram-
phenicol) and appropriate inducers. Overnight cultures, grown at
301C, were diluted 1:100 and grown at 341C and 275 r.p.m. to a final
OD600 of 0.45–0.5. Cells were collected by centrifugation (4000 r.p.m.,
10 min), washed and resuspended in tethering buffer (10 mM
potassium phosphate, 0.1 mM EDTA, 1mM L-methionine, 67 mM
sodium chloride, 10 mM sodium lactate, pH 7). Cells were incubated
for 1 h at 41C to stop growth before methylation experiments.

Determination of optimal induction levels

Strain RP2847 [D2241(tap-cheB)] transformed with pVS113 and pSB4
was plated on soft agar plates (1% tryptone, 0.5% NaCl and 0.3%
agar) containing varying levels of inducers, L-arabinose and isopropyl
b-D-thiogalactoside. Wild type (RP437) and RP2847 transformed with
empty vectors pTrc99a and pBAD33 served as positive and negative
control on the same plate, respectively. The diameter of formed swarm
rings was measured and served as basis for estimation of the optimal
induction level, which was defined at 0.01% arabinose for CheR
expression and 30 mg ml�1 isopropyl b-D-thiogalactoside for CheBc
expression.

Methylation reaction

Cells were five times concentrated, poured into a small beaker and
gently mixed at room temperature. Samples of 200ml were taken before
and 30, 60, 180, 360 and 600 s after addition of MeAsp or serine to a
final concentration of 1 mM each. Because L-serine is metabolized,
1 mM serine had to be added every minute during incubation. Samples
were mixed with 100ml pre-heated (951C) 3� Laemmli buffer and
either used immediately or stored at �801C.

Immunoblotting

Methylation states of receptor populations were resolved on 8% SDS–
PAGE gels with a running length of 35 cm. Neutralization of negatively
charged glutamate residues through methylation causes enhanced SDS
binding and an increased charge-mass-ratio of methylated receptors
(Boyd and Simon, 1980). Proteins were transferred from gels onto
nitrocellulose paper using a semidry transfer apparatus (Biometra,
Fastblot B34 and B44) for 45 min. Membranes were hybridized with
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rabbit polyclonal anti-Tar antibody and fluorescently labeled second-
ary antibody (goat anti-rabbit IgG IRDyes 800 conjugate), both at a
dilution of 1:5000. Detection was performed using LI-COR Odysseys
Infrared Imaging System, and intensity profiles were analyzed using
ImageJ software, Version 1.34 l (W Rasband, National Institutes of
Health, Bethesda, MD; http://rsb.info.nih.gov/ij). Data were subse-
quently processed using KaleidaGraph software, Version 3.6 (Synergy
Software). Intensity profiles in individual lanes were measured within
a stripe comprising all receptor methylation states. Intensity values
were normalized to the integral fluorescence intensity of the
distribution. The resulting profile was smoothed by using Smooth
function of KaleidaGraph. Estimation of the relative change in receptor
methylation with time was made by calculating the area corresponding
to low- or high-methylation states.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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