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Hypoxia induces the expression of genes that alter metabolism through the hypoxia-inducible factor (HIF). A
theoretical model based on differential equations of the hypoxia response network has been previously proposed in
which a sharp response to changes in oxygen concentration was observed but not quantitatively explained. That
model consisted of reactions involving 23 molecular species among which the concentrations of HIF and oxygen were
linked through a complex set of reactions. In this paper, we analyze this previous model using a combination of
mathematical tools to draw out the key components of the network and explain quantitatively how they contribute to
the sharp oxygen response. We find that the switch-like behavior is due to pathway-switching wherein HIF degrades
rapidly under normoxia in one pathway, while the other pathway accumulates HIF to trigger downstream genes under
hypoxia. The analytic technique is potentially useful in studying larger biomedical networks.
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Introduction

Molecular oxygen is the terminal electron acceptor in the
mitochondrial electron transport chain. Hypoxia, or oxygen
deficiency, induces a number of metabolic changes with rapid
and profound consequences on cell physiology. A hypoxia-
induced shortage of energy alters gene expression, energy
consumption, and cellular metabolism to allow for continued
energy generation despite diminished oxygen availability. A
molecular interaction map of the hypoxia response network
has been proposed [1–3] on the basis of analyzing conserved
components between nematodes and mammals. The key
element in this network, hypoxia-inducible factor (HIF), is a
master regulator of oxygen-sensitive gene expression [4–6].
HIF is a heterodimeric transcription factor which consists of
one of the three different members (HIF-1a, HIF-2a, and
HIF-3a) and a common constitutive ARNT subunit which is
also known as HIFb. The system also includes an enzyme
family: prolyl hydroxylases (PHDs), which directly sense the
level of oxygen and hydroxylate HIFa by covalently modifying
the HIFa subunits. It is very likely that reactive oxidative
species (ROS), which are a byproduct of mitochondrial
respiration, are also involved in oxygen sensing by neutraliz-
ing a necessary cofactor, Fe2þ, for the hydroxylation of HIFa
by a PHD [7–10]. There are three members in this enzyme
family: PHD1, PHD2, and PHD3. The hydroxylated HIFa is
then targeted by the von Hippel-Lindau tumor-suppressor
protein (VHL) for the ubiquitination-dependent degradation.
Hypoxia response element (HRE) is the promoter of the
hypoxia-regulated genes, and the occupancy of HRE controls
the expression levels of these genes. The cascade in Figure 1
(reproduced from Figure 2 of [1]) consists of an input (the
concentration of oxygen) and an output (the activation of
promoters that are under control of HREs) as the core
network. The network is characterized by a switch-like
behavior, namely the sharp increase of HIFa when the
oxygen decreases below a critical value, followed by a sharp
increase of HRE occupancy. It was observed experimentally

on many cell lines including Hela cells [11] and Hep 3B cells
[12] that HIFa increases exponentially as the oxygen concen-
tration decreases.
The past two decades have seen a growing body of work on

the use of mathematical modeling to help uncover both
general principles behind molecular networks and to provide
quantitative explanations of particular network phenomena
[13] that may one day have sufficient predictive power to
accurately model large subnetworks of the cell. In this sense,
Kohn et al. [1] have successfully modeled the switch-like
response characteristics of HRE occupancy, by numerically
integrating a system of ordinary differential equations
(ODEs) involving a score of molecular species related to
hypoxia. The large model, however, does not identify the
smaller components that are actually responsible for the
switch-like response and that may occur in other such
networks. Furthermore, a numerical solution does not
provide the type of insight that mathematical formulas can.
At the same time, it is virtually impossible to solve symboli-
cally the type of nonlinear differential equations that model
reactions. In this context, methods are desirable that are both
tractable, that reduce a system to its key components, and
that are not solely reliant on numerical solution.
Extreme pathway analysis (EPA) is one such recently
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developed method [14–16]. In this method, the dynamics of
interactions between species are formulated as a Boolean
network in which the state of a gene is represented as either
transcribed or not transcribed. Upregulation and down-
regulation of genes are captured through an appropriate sign
(plus or minus) and a scaling constant. The Boolean network
is then formulated as a matrix of interaction rules that is then
analyzed to help reveal key components and their contribu-
tions to the dynamic behavior [16]. The theory of matrices
then allows us to look for vectors that characterize the matrix
in ways that are helpful for further analysis. The EPA
technique, in particular, finds vectors (extreme pathways)
that correspond to the boundaries of the space of steady-state

solutions to the differential equations. We note that similar
methods, such as flux balance analysis (FBA) and elementary
modes analysis, have been developed in other contexts [17–
19]. They essentially yield the same results [18], which have
been verified by ExPa [20] and CellNetAnalyzer [21,22]. These
methods provide a way out of the intractable complexity of
sizable molecular networks [23–26].
Our contribution is to go beyond this type of matrix

approach and provide a detailed quantitative analysis that
explains the observed behavior in the models. This is
achieved by combining elementary pathway identification
via EPA, which depends solely on the network topology, and
the detailed analytical as well as numerical analysis of the
governing differential equations in the model, which allows
studies of the phase space spanned by the mostly unknown
rate constants in the differential equations. Specifically, EPA
is first used in our approach to decompose the original
network into several underlying pathways. Following this, we
make some reasonable approximations to facilitate analytic
solution. We show that this analytic solution, in the case of
the hypoxia network, explains the switch-like behavior. This
explanation is confirmed by comparing the numerical output
of the simplified model with the numerical output of the
complete (and complex) differential equation model.
A second contribution of this paper is to highlight a

particular mechanism of pathway-switching or pathway
branching effect [27] that appears to cause the sharp response
to oxygen concentration. In particular, we examine the flux
redistribution among the elementary pathways as a function
of oxygen concentration. We also identify the key molecular
species involved in the subcomponent of the network and
show quantitatively how the response of this subcomponent

D

D

D

Figure 1. Diagram of the Assumed Core Subsystem of the Hypoxia Response Network Redrawn on the Basis of [1]

For simplicity we use HIF to represent HIFa.

doi:10.1371/journal.pcbi.0030171.g001
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Author Summary

A complex biomolecular network utilizes different pathways to
perform different functions. However, the interactions within the
network are typically so complicated that the pathway structure is
usually hidden. By some mathematical techniques, the pathways
can be identified and possibly decoupled, whereby the insightful
details of the network can be exposed. As an example, we study in
this paper the hypoxia response network that manifests a dramatic
switch-like behavior for certain sets of rate constants: a slight
change of the oxygen concentration close to a critical value will lead
to distinct reaction patterns. By a technique called extreme pathway
analysis, the network is decoupled into three major and some minor
pathways. Flux distribution among these pathways can thus be
measured by integrating the ordinary differential equations for any
given set of rate constants. For the sets of rate constants where the
switch-like behavior is observed, we found that such a behavior is
due to the switching of flux between two of the three major
pathways.

Pathway Switching in Hypoxia Network



exactly matches the overall response and thus is responsible
for it. For hypoxia, our analysis suggests that the cycle of
abundant production and efficient degradation of HIFa plays
the main role in the sharp response.

Results

Model Description
For consistency and ease of understanding, we use the

notation and nomenclature in [1] and use their 23-species
network and differential equation model as the starting
point. With this background, the original network shown in
Figure 2 of [1] can be further reduced in the following way.
Kohn et al. [1] have shown that the feedback of mRNA is not
necessary for the switch-like behavior. We therefore eliminate
this feedback loop (reaction k32). Hence, Transcript inter-
mediate 1, 2, and 3 (Species 8, 9, and 10) can also be dropped,
as well as the associated reactions: k7, k8, k9, k10, and k11,
because they do not affect the dynamics of the network.
Species 23 is only the joint name of HIFa:ARNT:HRE (Species
7) and HIFaOH:ARNT:HRE (Species 22); therefore, it is
dropped. HIFa precursor (Species 1) is a constant and is thus
dropped, because its information can be simply encoded in
the reaction k1. The degradation products (Species 2) are also
eliminated because they are assumed to leave the network
immediately after their production and do not affect the
dynamics. Similarly, species 19, 20, and 21 do not contribute
to the dynamics and are therefore removed. The resulting
network is summarized in Tables 1 and 2, where there are 13
molecular species and 19 reactions in total. The system can be
described by the following set of ODEs where [Sn] stands for
the concentration of species n as tabulated in Table 1 and [O2]
indicates the input cellular oxygen concentration. Table 2
shows the specific reaction each rate constants kn represents.
The real values of kn are from [1]. Note that the ODE system
below is typical: the terms are based on mass-action
principles and, taken together, result in complex behavior
not readily discernible by examining the equations. We also
dropped the precursor concentration [S1] since it is set to
unity.

d½S3�
dt
¼ k1 � k2½S3� � k12½S3�½S12� þ k13½S13� � k3½S3�½S4� þ k4½S5�

ð1Þ

d½S4�
dt
¼ �k3½S3�½S4� þ k4½S5� þ k22½S16� � k21½S4�½S14� ð2Þ

d½S5�
dt
¼ k3½S3�½S4� � k4½S5� � k5½S5�½S6� þ k6½S7�

� k15½S5�½S12� þ k16½S15� ð3Þ

d½S6�
dt
¼ �k5½S5�½S6� þ k6½S7� � k29½S16�½S6� þ k30½S22� ð4Þ

d½S7�
dt
¼ k5½S5�½S6� � k6½S7� ð5Þ

d½S12�
dt
¼ �k12½S3�½S12� þ ðk13 þ k14½O2�Þ½S13�

� k15½S5�½S12� þ ðk16 þ k17½O2�Þ½S15�

ð6Þ

d½S13�
dt
¼ k12½S3�½S12� � ðk13 þ k14½O2�Þ½S13� ð7Þ

d½S14�
dt
¼ k14½O2�½S13� � k18½S14�½S17� þ k19½S18�

� k21½S14�½S4� þ k22½S16�

ð8Þ

d½S15�
dt
¼ k15½S5�½S12� � ðk16 þ k17½O2�Þ½S15� ð9Þ

d½S16�
dt
¼ k17½O2�½S15� þ k21½S4�½S14�

� k22½S16� � k29½S16�½S6� þ k30½S22�

ð10Þ

d½S17�
dt
¼ �k18½S14�½S17� þ ðk19 þ k20Þ½S18� ð11Þ

d½S18�
dt
¼ k18½S14�½S17� � ðk19 þ k20Þ½S18� ð12Þ

d½S22�
dt
¼ k29½S16�½S6� � k30½S22� ð13Þ

Figure 2. Stoichiometric Matrix of the Reduced Hypoxia Response Network

The rows represent the 13 variable molecular species in Table 1, and the columns represent the 19 reactions in Table 2.
doi:10.1371/journal.pcbi.0030171.g002
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Network Decomposition by Extreme Pathway Analysis
This section assumes some familiarity with linear algebra.

The 13 3 19 stoichiometric matrix U of the reduced hypoxia
response network (Tables 1 and 2) is shown in Figure 2 (for
details, see Materials and Methods). The rank of U is
computed and shown to be 9, indicating that there are only
nine independent molecular species to serve as constraints
for the analysis. Therefore, the dimension of the correspond-
ing null space is 10. The linearly independent basis B vectors
are generated by Matlab 6.5 and are shown in Figure 3.
According to the constraint that no negative values are
allowed in the basis vectors, we can uniquely transform basis
B into basis P as shown in Figure 4. Both b8 and b9 have
negative terms. b8 has to be transformed first, otherwise there
will be no þ1 to cancel out the �1 at the twelfth row of b8.
Each�1 in b8 is canceled out through the operation b8 þ b9.
In the second step, one has to use b7 to cancel�1 at the ninth
row of b9. In this way, we obtain the set of basis vectors P. The
above analysis indicates that the dimension of this null space
is the same as the number of edges for its corresponding
convex cone [28], which is the algebraic basis for extreme
pathways [14] and elementary modes [29].

The ten basis vectors of P represent ten underlying
pathways of the hypoxia network. They are illustrated in
Figures 5 and 6, from which one finds two distinct patterns:
p1, p7, and p9 belong to the HIFa degradation pathways
(Figure 5) and the others belong to the simple association–
dissociation pathways (Figure 6). More specifically, through
p1, HIFa is directly degraded by reaction k2, a presumably
oxygen-independent degradation pathway; whereas in oxy-
gen-dependent pathways p7 and p9, the hydroxylated HIFa is
recognized by the VHL that channels it through a ubiquitin
degradation component that is shown as the dotted box in
Figure 5. Even though p1, p7, and p9 are all elementary modes
[29], they can share certain reactions of the network. For
example, the total influx for HIFa synthesis from a precursor
can thus be decomposed into three parts with the overall rate

constant k1 being given by c1k1, c2k1, and c3k1, where c1þ c2þ
c3¼ 1.
The pathways p7, and p9 are almost the same. The only

difference is that HIFa is associated with ARNT in the middle
part of the pathway p9. Therefore, ARNT must be function-
ally very important, otherwise it would be hard to explain why
the two underlying pathways, which should play significantly
different roles, look so similar. Indeed, HIFa degrades
differently through the two pathways. The k-sets were
selected in [1] on the basis that they produced a switch-like
behavior. For all the three k-sets, it was observed that HIFa
has high affinity to PHD and low affinity to ARNT. The
former is consistent with the usual case of high enzyme-
substrate binding affinity. This implies that p9 is not the
major degradation pathway because HIFa does not bind with
ARNT very well. Moreover, p9 is immediately adjacent to
HRE, which suggests its major role is to deliver signals to
activate the promoters of hypoxia-regulated genes. As a signal
transducer, the rate constant c3k1 itself need not to be high;
what the downstream genes are sensitive to is d(c3k1)/dt.
Therefore, we hypothesize that there is a negligible flux
through p9 (or c3 » 0). To verify our hypothesis, we calculate
the c1, c2, and c3 values, as the indication of the relative
importance of p1, p7, and p9 in HIFa degradation, at different
oxygen levels. The results are given in Table 3. Note that [O2]
¼ 0.1 and [O2] ¼ 1.0 represent typical low and high oxygen
levels according to [1]. One sees that the pathway p9 is always
much less important than the other two as far as HIFa
degradation is concerned. The majority of HIFa gets
degraded via either p1 at low oxygen or p7 at high oxygen.
The comparison of hypoxia response network and heat shock
response network [30] as in Table 4 shows the similarity
between these two networks with respect to the issue of
affinity. The huge difference in the affinity can clearly
separate the underlying pathways and assign different

Table 1. Molecular Species of the Reduced Network

Species

Number

Initial

Concentration

Species

Identifier

Accession

Number

S3 5 HIFa Q16665

S4 5 ARNT P27540

S5 0 HIFa:ARNT

S6 1 HRE

S7 0 HIFa:ARNT:HRE

S12 10 PHD Q96KS0, Q9H6Z9, Q9GZT9

S13 0 HIFa:PHD

S14 0 HIFaOH

S15 0 HIFa:ARNT:PHD

S16 0 HIFaOH:ARNT

S17 10 VHL I38926

S18 0 HIFaOH:VHL

S22 0 HIFaOH:ARNT:HRE

S1 1 HIF precursor

S20 0.0–1.2 Oxygen

There are 13 molecular species as the dynamical variables. In addition, there are two
constant variables: S1 for an HIF precursor whose concentration is fixed at unity ([S1]¼ 1)
and S20 for cellular oxygen whose concentration is set at different values to model the
effect of its availability on the network ([S20] [ [O2] ¼ 0.0� 1.2).
doi:10.1371/journal.pcbi.0030171.t001

Table 2. 19 Reactions of the Reduced Network and Corre-
sponding Reactants and Products

Reaction Reactants Products

k1 S1 S3

k2 S3

k3 S3 S4 S5

k4 S5 S3 S4

k5 S5 S6 S7

k6 S7 S5 S6

k12 S3 S12 S13

k13 S13 S3 S12

k14 S13 S20 S12 S14

k15 S5 S12 S15

k16 S15 S5 S12

k17 S15 S20 S12 S16

k18 S14 S17 S18

k19 S18 S14 S17

k20 S18 S17

k21 S4 S14 S16

k22 S16 S4 S14

k29 S6 S16 S22

k30 S22 S6 S16

Note that k2 represents a presumably oxygen-independent direct degradation process of
HIF (S3).
doi:10.1371/journal.pcbi.0030171.t002
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functions to them. This is also the basis for the Goldbeter-
Koshland model [31]. We tested our method to all three
parameter sets (k-sets 1, 2, and 3) in [1], and find that the
analytical results are almost identical with those of the direct
simulations of the entire network, which strongly validates
our approximation. For the rest of the paper thereafter, we
only report numerical results for k-set 1.

Analytical Solution to the Decomposed Hypoxia Response
Network

The EPA method gives us a starting point from which to
analyze our reaction network in greater and more revealing
detail. The verification of our hypothesis implies that the
pathways associated with p9 could be neglected in the first
place. The following equations describe the combination p1,
p4, p6, and p7, which constitute the oxygen sensing mecha-
nism:

d½S3�
dt
¼ k1 � k2½S3� � k12½S3�½S12� þ k13½S13�; ð14Þ

d½S12�
dt
¼ �k12½S3�½S12� þ k13½S13� þ k14½O2�½S13�; ð15Þ

d½S13�
dt
¼ k12½S3�½S12� � k13½S13� � k14½O2�½S13�; ð16Þ

d½S14�
dt
¼ k14½O2�½S13� � k18½S14�½S17� þ k19½S18�; ð17Þ

d½S17�
dt
¼ �k18½S14�½S17� þ k19½S18� þ k20½S18�; ð18Þ

d½S18�
dt
¼ k18½S14�½S17� � k19½S18� � k20½S18�: ð19Þ

Note the differences between Equations 1, 6, and 8, and
Equations 14, 15, and 17. The p9 related elements have been
omitted due to their smallness. By setting the left-hand sides

of the above equations to zero, one obtains the steady state
equations:

k1 � k2½S�3� � k12½S�3�½S�12� þ k13½S�13� ¼ 0; ð20Þ

k12½S�3�½S�12� � k13½S�13� � k14½O2�½S�13� ¼ 0; ð21Þ

k14½O2�½S�13� � k18½S�14�½S�17� þ k19½S�18� ¼ 0; ð22Þ

k18½S�14�½S�17� � k19½S�18� � k20½S�18� ¼ 0: ð23Þ

The total amount of PHD is conserved: PHD is either in the
form of PHD (S12) or HIFa:PHD (S13). This implies

½S�13� þ ½S�12� ¼ ½S012�; ð24Þ

where ½S012� is the initial concentration of PHD. By some
derivation, the following equation is obtained:

a½S�3�
2 þ b½S�3� þ c ¼ 0; ð25Þ

where a ¼ k2k12, b¼ b1þ b2[O2], c ¼ c1þc2[O2], where

b1 ¼ k13k2 � k1k12;

b2 ¼ k12k14½S012� þ k2k14;

c1 ¼ �k1k13;

c2 ¼ �k1k14:

Since c , 0, Equation 25 has one and only one reasonable
root

½S�3� ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

� bÞ=2a ð26Þ

Note that none of the species and reactions in the
degradation box is present in Equation 26, which indicates
that the components in the degradation box are not

Figure 3. Set of Theoretically Feasible Basis Vectors B

doi:10.1371/journal.pcbi.0030171.g003

Figure 4. Set of Both Theoretically and Biochemically Feasible Basis

Vectors P

doi:10.1371/journal.pcbi.0030171.g004
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responsible for the sharp response curve. Once ½S�3� is
determined, the analysis of the remaining network (p2, p3,
p5, p6, p8, p9, and p10) becomes straightforward, and the
results are given in the section ‘‘Additional results.’’ In fact,
these results can be further simplified (see Equations 30 and
43 for ½S�3� and ½S�7� ).

Figure 7A and 7B shows the steady-state values of [HIFa]
(½S�3� ) and [HIFa:ARNT:HRE] ( ½S�7�) at different oxygen values.
The red lines depict the simulation results obtained by the
numerical integration of the ODE system (1–13) until the
steady state is reached. The black lines depict the analytical
solutions that are obtained by the algebraic Equations 26 and
56. To better determine the critical point of pathway
switching, we calculate @½S�3�/@[O2] and @½S�7�/@[O2]. The results
are shown in Figure 7C and 7D. One sees that both @½S�3�/@[O2]
and @½S�7�/@[O2] change abruptly in a very narrow region of
[O2], with the rest of the values almost zero. One observes that
the critical point is about [O2]

c ¼ 0.65.
We thus show that the sharpness of the response curve can

be determined analytically, instead of exhaustively enumer-
ating [O2] values combined with time-consuming numerical
integration of a large number of ODEs at each [O2] value.

Discussion

EPA is a powerful, yet simple tool that can significantly
reduce the complexity of the original network and thus make
further analytical effort feasible. In this paper, the additional
analysis explains precisely the sharp reaction to oxygen of the

network as a whole. The clear separation of p7 and p9
indicates their different functions: the pathway p7 and its
other associated pathways constitute the sensing of ambient
molecular oxygen; in contrast, the pathway p9 and its
associated other pathways are responsible for the signal
transduction to form the promoters of hypoxia-regulated
genes. Most importantly, the simplification allows for a
complete explanation of the switch behavior and a clear
presentation of the relations between ½S�3� and [O2], ½S�7� and
[O2], ½S�3� and ½S�7� . The first step below explains the sharp
HIFa stabilization. The second step explains the sharp HRE
occupancy that is induced by the HIFa stabilization.
HIFa stabilization. This involves the dissociation of path-

ways p1, p4, p6, and p7 from the whole network, due to the fact
that the flux through p9 is always small and can be neglected. It
reveals a critical value that corresponds to the switching
between pathways p1 and p7. Since an abrupt change often
relates to the notion of singularity in mathematics, we proceed
to see if a singularity can be found. Under nomoxia, ½S�3� » 0,
and a½S�3�

2 can be neglected in Equation 25, which yields

½S�3� ¼ �
c
b
¼ � c1 þ c2½O2�

b1 þ b2½O2�
ð27Þ

One immediately finds the singularity

½O2�c ¼ �b1=b2 ð28Þ

For k-set 1 in [1], one obtains [O2]
c¼ 0.64, which is exactly

the critical value found in Figure 7. When the oxygen level

Figure 5. Graphical Representations of the Three Underlying Pathways of HIFa Degradation: p1, p7, and p9

Through p1, HIFa is degraded directly by k2. In p7, HIFa first binds with PHD after synthesis. HIFa:PHD is then dissociated into PHD and HIFaOH with the
participation of oxygen. HIFaOH then binds with VHL to form HIFaOH:VHL. Finally, the dissociation of HIFaOH:VHL concludes HIFa degradation. The
pathway p9 differs from p7 only in that HIFa first binds with ARNT after synthesization.
doi:10.1371/journal.pcbi.0030171.g005
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decreases to a value close to [O2]
c, the denominator in

Equation 27 becomes very small and a ½S�3�
2 can no longer be

ignored. Moreover, the term c in Equation 25 can be ignored
compared with the large value of ½S�3� . One thus has

½S�3� ¼ �
b
a
¼ � b1

a
� b2

a
½O2� ¼

b2
a
ð½O2�c � ½O2�Þ ð29Þ

This explains the linear decrease of ½S�3� versus [O2]
increasing in Figure 7A. In summary, one has

½S�3� ¼
�c=b ½O2�. ½O2�cþ
�b=a ½O2� , ½O2�c�:

(
ð30Þ

One can check that k2 can be ignored in the upper branch
of Equation 30 due to its smallness, which again demonstrates
that the pathway p1 is not important under nomoxia. The
very smallness of k2 reflects the importance of p1 under
hypoxia, for k2 exists at the denominator of the lower branch
of Equation 30.

HRE occupancy. The remaining pathways reveal how HIFa
stabilization triggers a sharp increase of HIFa:ARNT:HRE,
namely the sigmoid curve of ½S�7� versus [O2]. We conclude that
the magnitude of HIFa is crucial for the sharpness of the
curve. To show this, we need Equations 47, 48, 53, and 54. By
removing the terms that are negligible, these equations turn
into

k3½S�3�½S�4� � k4½S�5� ¼ 0; ð31Þ

k5½S�5�½S�6� � k6½S�7� ¼ 0; ð32Þ

½S�6� þ ½S�7� ¼ ½S06�; ð33Þ

½S�4� þ ½S�5� þ ½S�7� ¼ ½S04�: ð34Þ

Equation 31 holds because k15 ½S�5�½S�12� and k16 ½S�15� are far
less than k3 ½S�3�½S�4� and k4 ½S�5�. Equation 33 holds because ½S�22�
is far less than ½S�6� and ½S�7�. Equation 34 holds because ½S�15�,
½S�16�, and ½S�22� are far less than ½S�4�, ½S�5�, and ½S�7�. The validity
of the above approximations can be easily checked. For
example, for [O2]¼ 0.1, one finds k3 ½S�3�½S�4� ¼ k4 ½S�5� ¼ 1.66, k15
½S�5�½S�12� ¼ k16 ½S�15� ¼ 0.005, ½S�4� ¼ 1.19, ½S�5� ¼ 2.69, ½S�6� ¼ 0.11,
½S�7� ¼ 0.89, ½S�15� ¼ 0.23, ½S�16� ¼ 0.0016, and ½S�22� ¼ 0.0005. From
Equations 31–34, one obtains

½S�7�
2 � a½S�7� þ ½S04�½S06� ¼ 0; ð35Þ

where a ¼ a1 þ a2/ ½S�3�, a1 ¼ ½S04� þ ½S06� þ k6/k5, and a2 ¼ k4k6/
(k3k5). ½S�7� has one and only one reasonable solution

½S�7� ¼
2½S04�½S06�

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4½S04�½S06�

p ¼ 2½S04�½S06�
aþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p ; ð36Þ

where x¼ 2 ½S04�½S06�/a. Taylor expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

, yieldsffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

¼ 1� x2=2þ x4=8þ Oðx6Þ:

No matter what ½S�3� value is, x , 2 ½S04�½S06�/a1¼ 0.74, so 1�
x2/2 . 0.73 and x4/8 , 0.0375. Therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

»1 � x2/2
and

½S�7�»
½S04�½S06�

a� ½S04�½S06�=a
: ð37Þ

Under nomoxia ½S�3� is small, so a » a2/ ½S�3� and 1/a » 0.
From Equation 37 one has

½S�7�»½S04�½S06�½S�3�=a2: ð38Þ

which is also small. Under hypoxia, ½S�3� is large, and thus

1
a
¼ 1=a1

1þ a2=ða1½S�3�Þ
»

1
a1

1� a2=a1

½S�3�

� �
: ð39Þ

By substituting Equation 39 into Equation 37, one obtains
the important relation between ½S�3� and ½S�7�:

Figure 6. Simple Association and Dissociation pathways p2, p3, p4, p5, p6,

p8, and p10

The associations (dissociations) are illustrated in red (blue).
doi:10.1371/journal.pcbi.0030171.g006

Table 3. Flux through Pathways p1, p7, and p9 at [O2]¼ 0.1 and
[O2] ¼ 1.0 for the Three Sets of Parameters Given in [1]

Pathways p1(c1) p7(c7) p9(c9)

k-set 1 [O2] ¼ 0.1 84.45% 15.20% 0.35%

[O2] ¼ 1.0 0.09% 97.69% 2.22%

k-set 2 [O2] ¼ 0.1 86.72% 13.14% 0.14%

[O2] ¼ 1.0 0.10% 98.97% 0.93%

k-set 3 [O2] ¼ 0.1 88.20% 11.58% 0.22%

[O2] ¼ 1.0 0.08% 97.18% 2.74%

For high (low) oxygen level, HIFa is mainly degraded through pathway p7 (p1).
doi:10.1371/journal.pcbi.0030171.t003
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½S�7�»
½S04�½S06�

b1
1� 1

1þ b2½S�3�

� �
; ð40Þ

where

b1 ¼
a2
1 � ½S04�½S06�

a1

and

b2 ¼
a1

a2

a2
1 � ½S04�½S06�

a2
1 þ ½S04�½S06�

:

By substituting Equation 29 into Equation 40, one obtains

½S�7� ¼ m 1� 1
1þ kð½O2�c � ½O2�Þ

� �
; ð41Þ

where m ¼ ½S04�½S06�/b1 and k ¼ b2b2/a. It is well-known that

Equation 41 represents a sigmoid curve with m controlling
the saturation value and k controlling the sharpness. By
ignoring the small term k6/k5 in the expression of a1, one finds
m is a function of ½S04� and ½S06� only. One also finds

k ¼ �c
k3k5
k4k6

b2
a
: ð42Þ

Here

�c»
½S04�

2 þ ½S06�
2 þ ½S04�½S06�

½S04�
2 þ ½S06�

2 þ 3½S04�½S06�
ð½S04� þ ½S06�Þ:

The association (disassociation) constants k3, k5 (k4, k6) exist
in the numerator (denominator) of the term k3,k5/(k4,k6),
which implies that the higher the affinity, the sharper the
response. The third term b2/a is proportional to the HIF level.
In summary, our analysis yields

½S�7� ¼
Eq: ð38Þ ½O2�. ½O2�cþ
Eq: ð41Þ ½O2� , ½O2�c�:

(
ð43Þ

One sees that HIFa is the key to triggering the
HIFa:ARNT:HRE response. As long as the oxygen level is
greater than [O2]

c, HIFa is efficiently degraded by the pathway
p7 and maintains a very low level, and the HIFa:ARNT:HRE
level is also low (Equation 38). When the oxygen level drops
below [O2]

c, the system switches to the pathway p1, and HIFa
stabilizes with a large concentration (b2/a large). This triggers
the sharp increase of HIFa:ARNT:HRE. The smaller k2 is, the
larger b2/a, and the sharper the HRE occupancy response (see

Table 4. Comparison between Hypoxia Response Network and
Heat Shock Response Network

Hypoxia Heat Shock Characteristic

HIFa r32 Key element

PHD DnaK High affinity

ARNT RNAP Low affinity

doi:10.1371/journal.pcbi.0030171.t004

Figure 7. Steady State Values of [HIFa] and [HIFa:ARNT:HRE]

(A) The comparison between analytical and numerical solutions of [HIFa].
(B) The comparison between analytical and numerical solutions of [HIFa:ARNT:HRE].
(C) The first derivative of [HIFa] with respect to [O2].
(D) The first derivative of [HIFa:ARNT:HRE] with respect to [O2].
doi:10.1371/journal.pcbi.0030171.g007
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Figure 8). Also, the validity of our analytical approximation is
justified by the close resemblance of Figure 8B and 8C.

The three major results of Kohn [1] involve HRE occupancy
as a function of the oxygen concentration. The dependence
of the curve on ARNT, VHL, and PHD are obtained by both
simulation (Figure 9A) and analysis (Figure 9B) and are
explained as follows.

ARNT dependence. We need only to analyze the pathway
p9. The amount of ARNT does not affect the shape of the
response curve or the location of the sharp transition,
because p9 is the pathway for HRE expression, while p7 is
responsible for the sharpness. HIFa:ARNT would not be
generated without ARNT and there would not be expressions
of HRE for any level of oxygen. At high oxygen levels, the
concentrations are similar because HRE occupancy is low
anyway. At low oxygen levels, low levels of ARNT will give low
HIFa:ARNT and then low HRE occupancy.

VHL dependence. VHL is present in both p7 and p9. At
high oxygen levels, one should analyze p7 because it is the
major pathway for HIFa degradation. The VHL source will
affect the upstream HIFa. If VHL concentration is low, it
cannot degrade HIFa fast, and the system yields high HRE
occupancy. At low oxygen levels, p1 is the major pathway for
HIFa degradation, which does not depend on VHL.

PHD dependence. One interesting property relates to the
different locations of the transition. Using the criterion
identified by the alternative model without reaction k2, we

can calculate the transition locations as shown in Figure 9B3
for different PHD values. The results are the same as in
Figure 9A3. As a matter of fact, considering the p9 pathway
only yields a much simpler analytical solution that is also
accurate. This further simplification is due to the fact that the
expression of HIFaOH:ARNT:HRE is always negligible.
The present model of the hypoxia response network is

probably an oversimplified one. Nevertheless, it serves as an
important starting point, from both theoretical and exper-
imental perspectives, before a more detailed model can be
understood. The present model will be gradually expanded
and analyzed, with the input of more quantitative data from
future experiments. One advantage of EPA is that the method
can easily incorporate mechanistic details as soon as they
become available [16]. There are various molecular interac-
tions that can be added to the model. For example, it was
demonstrated that HIF influences mitochondrial function by
inducing pyruvate dehydrogenase kinase 1 (PDK1) to suppress
the tricarboxylic acid (TCA) cycle and thus the aerobic
respiration. Then the respiration shifts to be anaerobic,
whereby the oxygen resource can be preserved to promote cell
survival under hypoxic environment [32–34]. Another subject
we are interested in is the inclusion of ROS in the network. It
has been established that ROS affects HIFa degradation
through Fe2þ [7–10]. The direct hydroxylation of HIFa by
oxygen requires Fe2þ. Under hypoxia conditions, however,
ROS increases dramatically and consistently removes Fe2þ via

Figure 8. Different HIF and HRE Occupancy Responses at Different k2 Values

(A) is obtained by the analytical solution Equation 29; (B) is obtained by the analytical solution Equation 41; (C) is obtained by the numerical integration
of Equations 1–13; (A) and (B) reveal how HIFa controls HRE occupancy: the larger the HIFa level is, the sharper the HRE occupancy response. The
validity of our analytical method is demonstrated by the close resemblance of (B) and (C).
doi:10.1371/journal.pcbi.0030171.g008
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oxidation to Fe3þ. Together with the shortage of oxygen, this
makes the HIFa degradation through the VHL pathway even
more difficult. Consequently, the transition would be faster
and sharper. Analysis should focus on the explanation of the
coexistence of two oxygen sensing components, a matter that
does not appear to be settled as yet.

To obtain the dynamical response when the oxgen changes
continuously in time, Equations 1–13 (the full model) are
integrated. Figure 10 shows the temporal changes of [HIFa]
and [HIFa:ARNT:HRE] as responses to the oxygen decreasing
from 1.0 to 0.1 with different rates. One sees that [S3] and [S7]
increase prominently only after [O2] decreases below [O2]

c.
The faster [O2] decreases, the more rapid the responses are. In
particular, when [O2] abruptly jumps from 1.0 to 0.1, the
responses ensue promptly. However, it is worth noting that
one cannot tell practically how fast the responses are because
the time scale is unknown. Indeed, the model is dimensionless
and no units are given. Nevertheless, the sharp curves
illustrate that the responses are very sensitive to the oxygen
concentration and imply that the system can provide a timely
response under hypoxia. Physiologists have long been puzzled
by the ceaseless HIFa cycle, characterized by both abundant
generation and efficient degradation, which seems to be a
highly wasteful process. Our analysis provides a reasonable
explanation. To deal with a sudden environmental change
from nomoxia to hypoxia, an organism must respond in time

to trigger the genes necessary for adapting to the new
environment. To achieve such a sharp response, a high HIFa
generation potential is necessary. Since the hypoxia con-
ditions are rare, an efficient degradation pathway has to be
designed to maintain a low HIFa under nomoxia. The HIFa
cycle is indeed uneconomic, but it appears useful in helping
the cell respond to sudden, unpredictable changes in its
environment.
In summary, we have obtained an accurate analytical

solution to the hypoxia response network and have provided
a complete explanation of the switch-like behavior first
observed and modeled in [1]. The first step of our analysis
applied the EPA technique to a reduced, yet complete system
that resulted in exposing ten independent pathways, allowing
us to focus on analyzing the pathways relevant to HRE
occupancy. The analysis showed that the sharp response of
HRE occupancy is due to the switch between the pathway p7
(p1) that degrades HIFa under nomoxia (hypoxia).

Materials and Methods

In following the law of mass conservation, a particular reactant
through each reaction can be written in the form of homogeneous
linear equations,

U � v ¼ 0: ð44Þ

Figure 9. Dependence of the Oxygen Response Curves on the Amounts of Protein Components in the System

The red lines in A3 and B3 represent the transition locations calculated from Equation 28.
doi:10.1371/journal.pcbi.0030171.g009
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Here U is an m 3 m stoichiometric matrix, where m is the number
of metabolites and n is the number of reactions taking place within
the network, with each element

Uij ¼
1; if row i is produced in column j;
�1; if row i is consumed in column j;
0; if row i is not presenteded in column j:

8<
:

v ¼ RN
k¼1 fkvk, where N¼ dim NulU is the dimension of the null space

of U, vk is the basis vector that corresponds to the k-th pathway, and fk
is the flux through the k-th pathway.

The determination of flux fk requires numerical calculations. Note
that vk does not depend on fk and can be obtained solely from U. That
is, one can decompose the whole network into N elementary pathways
without any ODE integration involved. The dimension of the null
space of U follows the simple equation

dimNulUþ rankU ¼ n: ð45Þ

Using Matlab (http://www.mathworks.com), the rank of this 133 19
stoichiometric matrix U is found to be nine, and the dimension of the
corresponding null space is thus ten. Also, a set (B) of ten
independent basis vectors is generated as shown in Figure 3.
However, the set is not biologically reasonable due to the negative
entries therein. By simple linear transformation, another set (P) of
ten vectors (Figure 4) is obtained whose entries are all non-negative
(either 1 or 0) and are thus biologically feasible.

Additional results. The remaining network can be solved analyti-
cally with HIFa(½S�3�) already determined. The ODE description is as
follows:

d½S4�
dt
¼ �k3½S3�½S4� þ k4½S5� þ k22½S16� � k21½S4�½S14�

d½S5�
dt
¼ k3½S3�½S4� � k4½S5� � k5½S5�½S6� þ k6½S7� � k15½S5�½S12� þ k16½S15�

d½S6�
dt
¼ �k5½S5�½S6� þ k6½S7� � k29½S16�½S6� þ k30½S22�

d½S7�
dt
¼ k5½S5�½S6� � k6½S7�

d½S22�
dt
¼ k29½S16�½S6� � k30½S22�

d½S15�
dt
¼ k15½S5�½S12� � ðk16 þ k17½O2�Þ½S15�

d½S16�
dt
¼ k17½O2�½S15� þ k21½S4�½S14� � k22½S16�

d½S12�
dt
¼ �k12½S3�½S12� þ ðk13 þ k14½O2�Þ½S13�

� k15½S5�½S12� þ ðk16 þ k17½O2�Þ½S15�

d½S13�
dt
¼ k12½S3�½S12� � ðk13 þ k14½O2�Þ½S13�

Together with the three constraints of ½S04�, ½S06�, and ½S012�, the steady
state equations are expressed as follows:

�k3½S�3�½S�4� þ k4½S�5� þ k22½S�16� � k21½S�4�½S�14� ¼ 0; ð46Þ

k3½S�3�½S�4� � k4½S�5� � k15½S�5�½S�12� þ k16½S�15� ¼ 0; ð47Þ

k5½S�5�½S�6� � k6½S�7� ¼ 0; ð48Þ

k29½S�16�½S�6� � k30½S�22� ¼ 0; ð49Þ

k15½S�5�½S�12� � k16½S�15� � k17½O2�½S�15� ¼ 0; ð50Þ

k17½O2�½S�15� þ k21½S�4�½S�14� � k22½S�16� ¼ 0; ð51Þ

½S�12� þ ½S�13� þ ½S�15� ¼ ½S012�; ð52Þ

½S�6� þ ½S�7� þ ½S�22� ¼ ½S06�; ð53Þ

½S�4� þ ½S�5� þ ½S�7� þ ½S�15� þ ½S�16� þ ½S�22� ¼ ½S04�; ð54Þ

where ½S�3� and ½S�14� have already been determined from the analysis
of p7. By some reasoning, a quartic equation

J1½S�5�
4 þ J2½S�5�

3 þ J3½S�5�
2 þ J4½S�5� þ J5 ¼ 0 ð55Þ

is derived, from which ½S�5� can be obtained. ½S�7� and ½S�22� can then be
expressed as functions of ½S�5� :

1
½S�7�
¼ F1

k22E3½S06�
þ F2
k22E3½S06�ðE2 þ E1½S�5�Þ

þ k6
k5½S06�½S�5�

; ð56Þ

½S�22� ¼ ½S06� �
k6½S�7�
k5½S�5�

� ½S�7�; ð57Þ

where

J1 ¼ H1E1I1

J2 ¼ H1E2I1 þH1E1I2 þH2I1 þH3E1I1 � ½S04�E1I1;

J3 ¼ H1E2I2 þH1E1I3 þH3E2I1 þH3E1I2 þH2I2 �H4E1I1

�H4E2I2 � ½S04�E2I1 � ½S04�E1I2;

J4 ¼ H1E2I3 þH2I3 þH3E2I2 þH3E1I3 � 2H4E2I1 � ½S04�E2I2 � ½S04�E1I3;

J5 ¼ H3E2I3 � ½S04�E2I3;

E1 ¼ k15=ðk16 þ k17½S�20�Þ;

E2 ¼ 1þ k12S3=ðk13 þ k14½S�20�Þ;

Figure 10. The Responses of [S3] and [S7] as the Oxygen Concentration

Decreases from 1.0 to 0.1

The oxygen decreases linearly, [O2] ¼ 1.0 � kt. The green, red, and blue
lines correspond to the cases k¼‘ (abrupt decrease), k¼ 0.001, and k¼
0.0001, respectively. The horizontal dotted line illustrates the critical
point [O2]c. The vertical dotted lines show that the responses become
prominent only after the oxygen concentration decreases below [O2]c.
doi:10.1371/journal.pcbi.0030171.g010
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E3 ¼ k30k5=ðk6k29Þ;

F1 ¼ k22E3 þ k4k21½S�14�=ðk3½S�3�Þ;

F2 ¼ k17½S012�½S�20�E1 þ k17k21½S�14�½S�20�½S012�E1=ðk3½S�3�Þ;

G1 ¼ k4=ðk3½S�3�Þ þ 1� E3;

G2 ¼ ðk17½S�20� þ k3½S�3�Þ½S012�E1=ðk3½S�3�Þ;

G3 ¼ ½S06� � E3k6=k5;

H1 ¼ G1 þ F1=k22;

H2 ¼ G2 þ F2=k22;

H3 ¼ G3 þ E3k6=k5;

H4 ¼ k22k6½S06�E3=k5;

I1 ¼ F1E1;

I2 ¼ F1E2 þ F2 þH4F1=½S06�;

I3 ¼ H4E2=½S06�:
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