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A central challenge in systems biology today is to understand the
network of interactions among biomolecules and, especially, the
organizing principles underlying such networks. Recent analysis
of known networks has identified small motifs that occur ubiqui-
tously, suggesting that larger networks might be constructed in the
manner of electronic circuits by assembling groups of these smaller
modules. Using a unique process-based approach to analyzing
such networks, we show for two cell-cycle networks that each of
these networks contains a giant backbone motif spanning all the
network nodes that provides the main functional response. The
backbone is in fact the smallest network capable of providing the
desired functionality. Furthermore, the remaining edges in the net-
work form smaller motifs whose role is to confer stability properties
rather than provide function. The process-based approach used in
the above analysis has additional benefits: It is scalable, analytic
(resulting in a single analyzable expression that describes the beha-
vior), and computationally efficient (all possible minimal networks
for a biological process can be identified and enumerated).

biological network | Boolean network | modulization and motif |
process centric analysis

Micro-biological networks are representations of biological
processes involving transformation of molecular species
through a sequence of interactions. Graphically, each biologically
active kind of molecule is a “node,” and interactions between
molecules is represented by connections called “edges.” A central
theme in systems biology is to reveal the intricate relationship
among network structure, dynamical properties, and biological
function (1-6). Consider for example the 11-molecule cell-cycle
network model for the budding yeast cell described in ref. 3 and
shown here in Fig. 1B. Even a modest sized network like this one
captures important questions about the architecture of biological
networks: What do different parts of the network contribute to
the network’s function and its dynamic behavior? Can the same
functionality be achieved with a smaller network (fewer edges)?
What effect would a simpler network have on the biological
stability (robustness)? Is the network irreducible, or can it be
described by an assemblage of smaller modules?

Prior work on network decomposition—understanding a
network’s components—has focused on two types of analysis.
The first, which we will call motif occurrence analysis, examines
all possible small motifs with two, three, or four nodes and by
searching for these motifs in known networks, identifies those
motifs that occur most frequently across all known networks
(7-9). The assumption is that frequently occurring motifs then
form a useful building block or module that confers some func-
tionality or property. The second type of work, which we will call
motif function analysis, focuses more closely on network function
or dynamics. This approach starts with a given network and its
known dynamic behavior (the function of the network) and, by
removing the edges in a small motif, tries to characterize the
effect of the motif. The thinking here is if the removal of a motif
results in a loss of function, the motif can be said to contribute to
the function. Note that, because any subset of connected edges
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can be a plausible motif, the number of trials needed for a
systematic search of all motifs grows exponentially large, a lim-
itation that also afflicts the motif-occurrence approach. These
approaches leave open the question: Do networks contain large
motifs that are a primary determining factor in achieving a net-
work’s function?

In this paper, we present a unique approach to decomposition
that addresses the above large-motif question in the affirmative.
This approach, which we call process-based analysis, starts by
characterizing the space of all possible networks that provide
the desired function (process) and then identifies, among these,
the minimal networks (with the fewest edges). These minimal
networks, it turns out, are few in number and capture the primary
functionality—the removal of any single edge from a minimal
network destroys the network’s function. Thus, such a minimal
network forms a giant backbone motif whose edges touch all
the nodes and every edge of which is needed to maintain the
original network’s functionality.

One advantage of identifying possible large backbone motifs
becomes clear when examining the remaining edges in the
network. For the two examples we study—cell-cycle models of
the budding and fission yeast—the remaining edges form small
motifs whose purpose is readily apparent. These small motifs
do not provide the network’s main function but instead confer
stability properties: They either make the network more robust
to perturbation (more states lead to the main attractor) or
strengthen the dynamics (more states lead to the main trajectory).

The approach and conclusions we present is not without lim-
itations, however. Perhaps the biggest limitation is the fact that
we rely on the Boolean model, which abstracts away molecular
concentrations into two molecular states “on” (active) or “off”
(inactive). Furthermore, interactions are modeled as either
stimulatory or inhibitory. We note that such assumptions are
standard in the Boolean model (1, 10, 11), which is often used
in place of models based on differential equations to elicit high-
er-level network properties.

These general limitations notwithstanding, our particular ap-
proach provides several benefits. First, as a natural consequence
of the technique, the collection of all possible networks that
produce a given behavior is characterized by a single equation
that directly reveals useful structure: For example, edges that
are necessary for function are identified by algebraically factoring
the equation. Second, the equation can be analyzed to enumerate
all minimal networks (possible backbone motifs), as we do in this
paper. These turn out to be small enough in number to identify
which one is actually present in the given network. Third, the
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existence of a solution to the equation can be solved very effi-
ciently (in polynomial time), which suggests that the technique
will scale efficiently to larger numbers of nodes. Finally, and
importantly, the equation allows one to quickly categorize edges
into three useful types: edges that are rigid (the edges common to
all minimal networks), edges that are interchangeable (these
edges can be substituted by alternatives but are essential for
the process), and supplemental (these are not essential to func-
tion but confer stability properties).

The above categorization of edges is independently useful be-
cause it allows one to immediately identify edges that contribute
to function and those that contribute to stability. For the budding
yeast network, this leads to an additional insight about how small
motifs help control the separation of cell-cycle phases.

Methods
The Boolean Network Model. The starting point for our model is a collection of
N kinds of interacting molecules, each of which at any given time is modeled
as either “on” (active, or highly expressed) or “off” (inactive). Then, at any
given time, the system of N molecules is in a system- or network-state, and
over time the system dynamically changes from state to state depending on
the interactions between the molecules. Thus, from a given start state, there
is a well-defined sequence of system states that end up in a stable system
state often called an attractor. We term this sequence or trajectory of such
system states a Boolean process, examples of which are shown in Figs. 1A and
2A for the budding yeast and fission yeast cell-cycles, respectively. Given the
initial cell-cycle state, the outcome of the network is a well-defined trajectory
of states that correspond to different phases of the cell cycle. Such a trajec-
tory can thus be considered the cell-cycle function of the network. More
formally, let s;(t) € {0,1} denote the state of molecule i and S(t) =
(51(t),...,sn(t)) the state of the system at time t. Here, time is assumed to
be discrete: t = 0,1,2,... and thus a molecule possibly changes state in a time
step. A sequence of such systems states, S* = 5(0),5(1),...,.S(T — 1) is what
we have termed a Boolean process. Intuitively, in biological terms, a Boolean
process corresponds to discretized time-course data. Thus, a sequence of
microarray snapshots taken for a system of molecules taken over a time
course can be converted into this Boolean form by noting which molecules
are active and which are not.

The dynamics of a Boolean network (BN) model (determining the next
state from the current state) can be described as follows (3):

1 Zaﬁsj >0
J
Sl(t+1):{0 Zaﬂsj<0 [1]
J
Si(t) Zaj,»s]- =0
J

where (aj;) is a N x N matrix encoding the network structure. The diagonal
entries, aj;, take the value —1 (self degradation), 1 (self activation), or 0 (no
action). The nondiagonal entries, aj; (j # i), take the value —y, 1, or 0, depend-
ing on whether node j inhibits, activates, or does not interact with node i.

The parameter y models the relative dominance of inhibition over stimu-
lation. Because inhibition is dominant over stimulation for most biomolecular
interactions, one prefersy > 1. Moreover, the network dynamics is usually not
sensitive to the value of y (the network topology is more important than
the actual interaction strength). For the budding yeast network, the cases y =
3,4,5,---,00 produce exactly the same dynamics and are only slightly different
from the cases y = 1, 2. For the fission yeast network, the cases y = 2,3,4,---,c0
produce exactly the same dynamics and are only slightly different from the
cases y = 1. We therefore follow the “dominant inhibition” assumption
(12, 13, 14) by setting y = . This assumption renders a simpler, logical repre-
sentation of (Eq. 1), namely:

sit+1) = (Z(Sj(t)gji) + 5;()r +W&)H(W), [2]
P i

where rj; represents a putative inhibitory (red) edge from node j to node i, gj;
represents a putative stimulatory (green) edge from node j to node i,
addition represents the Boolean operator OR, and multiplication represents
AND; the bar on a variable represents NOT.
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Satisfiability of the Network Equation. Because, in principle, each pair of nodes
might have a green or red edge between them, the number of variables is of
the order of N2. For the 11-node cell-cycle example, it is possible to write
down the equation by hand and simplify the equation sufficiently to find
solutions. However, we now show how the solution can be automated by
an algorithm that exploits the fact that the equations [2] are nodewise
independent (because they do not share any variables). Next, let
I(t) = {j: 5;(t) = 1} the states that are "on” at time t. The steps in the algo-
rithm are:

1. // |dentify those edges that cannot be red
/] because they would interfere with a 0 — 1
// or 1 - 1 transition:
CannotBeRed = @
NoEdge = @
for all t such that s;(t) = 1
foralljei(t-1)
CannotBeRed«CannotBeRed U{j}
2. // ldentify those cases where self-degradation
/' is necessary.
for all t such that s;(t—1) =1, s;(t) =0
if I(t — 1) C CannotBeRed
SelfDegradation<true
NoEdge«<—NoEdge UI(t — 1)
3. // Now assign red edges
for all j € /(t — 1) - CannotBeRed - NoEdge
rji<1
4. // Next, identity edges that cannot be green.
for all t such that s;(t—1) =0, s;(t) =0
if /(t— 1) has no red edges
// None of them can be green,
/I else s;(t) would be 1.
CannotBeGreen<CannotBeGreen U/(t — 1)
for all t such that s;(t—1) =1, s;(t) =0
if /(t — 1) has no red edges
and not SelfDegradation = true
// None of them can be green,
// else s;(t) would be 1.
CannotBeGreen«<CannotBeGreen UI(t — 1)
5. // Assign the remaining to green.
for all j € CannotBeRed - NoEdge - CannotBeGreen

gji<1

Finally, note that once the edges have been identified, we “run” the
network on the process to see if it is consistent with the process. If not,
no solution exists.

The above algorithm identifies whether a solution exists in polynomial
time (O(MN?)).

Solving the Network Equation. Because the state variables S(t) are known
from the biological process, Eq. 2, for t=0,1,.-,T — 1, are used to infer
the network connections to node j. As illustrated by the example in S/
Appendix, the equations can be simplified because many variables are al-
ready factored out. The simplified equations are then solved by enumeration.

The number of solution networks is called the designability of the process
(5); the idea is that a process with many network solutions is likely to be more
favored in nature because it would be easier for an evolutionary process to
create. Nochomovitz and Li (5) compute the designability (for very small net-
works) using time-consuming exhaustive enumeration, while our approach
can compute the designability directly from the equation. For example,
the budding yeast process has a designability of 2.84 x 103", whereas the
fission yeast process has a designability of 9.61 x 102".

Minimal Networks and Edge Classification. An obvious question is: What is the
smallest network that solves the equation? Such a minimal network serves as
the backbone motif discussed earlier. Again, we can enumerate all such mini-
mal networks to identify which minimal network (backbone) is present in a
given network (see S/ Appendix). For example, there are 108,864 minimal
networks that arise from analyzing the budding yeast cell-cycle process
(Fig. 14), among which one and only one is contained in the budding yeast
network.

Network Dynamical Properties. To study the dynamical properties of putative
networks, we use two well-known measures of robustness. Both are based on
constructing the state-transition graph or attractor-basin portrait, an exam-
ple of which (for the budding yeast) is shown in Fig. 3. The figure also shows
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0 0 0 0 1 1 0 0 START
1 1 1 0 1 1 0 31
1 1 1 1 1 0 G1
1 1 1 0 G1
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= '
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1 0 0 0
0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0o 1 1 1 0 0 0 10 1 1 G2
6 0o 0o o0 1 0 0 1 10 1 1 M
" 70 0 0 0 0 0 1 0 0 0 1 M
a 8 0 0 0 0 11 1 0o 1 0 0 M
9 0 0 0 0 11 0 0o 1 0 0 G1
0w 0 0 0 0 10 0 0o 1 0 0 G1
im0 0 0 0 10 0 0o 1 0 0 G1

Fig. 1. Budding yeast. (A) The time course of the 11 nodes as a representation of the cell-cycle process. (B) The full cell-cycle network. (C) The backbone
subnetwork contained in the full network. (D) The supplemental edges are characterized by various feedback loops. The edges rog and r; 1o are shown
as dashed lines because they are shared with the backbone.
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t S1 S9 83 S4 S5 56 S7 88 S9

0 1 0 1 1 0 0 1 0 0 START
1 0 0 0 0 0 0 1 0 0 G1/S
2 0 1 0 0 0 0 1 0 0 G2
3 0 1 0 0 0 0 0 1 0 G2
4 0 1 0 0 0 1 0 1 0 G2/M
5 0 1 0 0 1 1 0 1 0 G2/M
6 0 0 0 0 1 0 0 1 1 M

7 0 0 1 1 0 0 1 0 1 M

8 0 0 1 1 0 0 1 0 0 G1
9 0 0 1 1 0 0 1 0 0 Gl
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Fig. 2. Fission yeast. (A) The time course of the nine nodes as a representation of the cell-cycle process. (B) The full cell-cycle network. (C) The backbone
subnetwork contained in the full network. (D) The remaining edges are characterized by mutual inhibitive loops. The edge r3, is shown as dashed line because
it is shared with the backbone.
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the sequence of states corresponding to the process, the main trajectory (or
process) through the transition graph. The first and most commonly used
measure is the basin size B: the number of states that converge to the main
attractor. A large basin is considered an indication of stability (3) because a
perturbation in state results in a convergent path to the main attractor.

A more refined measure of robustness is suggested in ref. 3, based on
observing that it is not sufficient to require a perturbed state to converge
to the attractor but rather to require a perturbed state to return to the main
trajectory. One way to quantify this idea is to compute the trajectory overlap
W using the trajectory of states from every single state to its attractor. In
Fig. 5B, for example, there is a larger trajectory overlap than in Fig. 54, which
correlates with the fact that most states go through the main process. In ref.
3, a quantity w, (n = 1,2,---,2V) was defined for each of the 2V network states
that measures the overlap of its trajectory with all other trajectories. The
overlap of all trajectories was defined to be W = (w,), where the average
was over all network states (3). Note that our focus is the main attractor
A*, hence, W = (w,)), where the average is over the basin of A*.

What can these measures tell us? Clearly, high values of B and W are
desirable—an indication that there is a single strong trajectory to the main
attractor and that perturbations almost always lead back to this trajectory.
Below, we will examine how our edge classification relates to these measures.

Model Systems Studied.
We applied our methods to the cell-cycle networks of the budding
yeast (Saccharomyces cerevisiae) and fission yeast (Schizosacchar-
omyces pombe) cells. The Boolean model for the budding yeast
cell cycle is from (3) and is shown in Fig. 1B. The network has
N = 11 nodes and 34 edges. The cell-cycle process is represented
by the sequence of states depicted in Fig. 14, the last of which is
the main attractor 4* with a large basin size 1875 (91.6%) of the
total 2V = 2048 states).

The Boolean network for fission yeast is from ref. 15, which has
N =9 nodes and 26 edges (Fig. 2B). The biological process is
shown in Fig. 24. Here, the main attractor has a basin size of
416, about 81.3% of the total 2V = 512 states.

Results

The Backbone Motif and Smaller Motifs. We applied Eq. 2 to the
budding and fission processes of Figs. 14 and 24, respectively,
and obtained the following results:

* Budding yeast. The equation for the budding yeast yielded
108,864 minimal networks, each with 23 edges, one (and only
one) of which is a complete subset of the full network in Fig. 1B.
This minimal network, the backbone motif, is shown in Fig. 1C.
Upon analyzing the remaining 11 edges, shown in Fig. 1D, we
find a negative feedback loop (g7 77.10), a positive feedback
loop (g10.11 &11.10)> and three mutual-inhibition loops (rs o
r105), (ro.10 '109), and (rgg rog).

* Fission yeast. For the fission yeast, the equation yielded 1,024
minimal networks, each with 18 edges, one (and only one) of
which is the backbone shown in Fig. 2C. Analysis of the
remaining edges shown in Fig. 2D reveals four mutually inhi-
bitory loops.

Thus, in both cases, the approach has identified for each net-
work a spanning subnetwork (the backbone motif) and several
smaller motifs. Identification of the smaller motifs was made pos-
sible when the backbone edges were removed from the network.

Thus far we have only shown how to identify the backbone and
the smaller motifs. What we have not shown yet is evidence for
our claim that the backbone network carries out the main
function while the smaller motifs confer stability properties. This
we take up next.

Edge Classification and Robustness. To see why the backbone motif
is crucial to function, we return to the edge classification
described earlier: Rigid edges are edges that must be present
in all minimal networks, supplemental edges are those whose va-
lues do not contribute to the solution of Eq. 2, and interchange-
able edges are the ones remaining (these are how the minimal
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networks differ). Any minimal network consists of all the rigid
edges and some interchangeable edges and, thus, one would like
to determine the contribution of these edges to the network’s
function.

To examine the contribution of any group of edges, we remove
the edges from the cell-cycle network and compute the robustness
measures B and W for the resulting network. We define three
types of networks that result from selective deletion of edges:
In Group I, some combination of rigid edges are removed. Simi-
larly, Group II networks consist of the networks one gets when
removing a random subset of interchangeable edges. Likewise,
Group III networks result from removing some combination of
supplemental edges.

We would expect Group II and III networks to be less robust
than the original network, while Group I networks should experi-
ence an almost total loss of function. This is indeed the case, as
shown by plotting B vs. W in Fig. 4 A and B for budding and
fission yeast, respectively.

* Rigid edges. Removing any rigid edge results in a loss of func-
tion because, by definition, any network that satisfies the given
process must contain these edges. However, one may still ask
whether the resulting (Group I) networks, even if they lack
function, still have robustness properties. The red dots in Fig. 4
Aand B represent these perturbed networks. Interestingly, they
fall into two categories. The red dots on the left are those with
severely impaired function and virtually no robustness, as one
would expect from removing backbone edges. However, the
red dots on the right (higher robustness), while nonfunctional,
still display some robustness, something that requires explana-
tion. A careful analysis of the edges involved in the right cluster
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Fig. 3. Phase transition portrait of the budding yeast network. The 1875
network states in the basin of the attractor A* are shown as red dots. The
main dynamical trajectory, colored in blue, corresponds to the normal
cell-cycle process. The other 173 states converge into six other attractors.
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Fig.4. The B and W values of perturbed networks derived from the budding yeast and fission yeast networks. Group |, Il, and lll networks are represented by
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B-W diagram for budding yeast. (B) The B-W diagram for fission yeast.

reveals edges that play a role in the early steps of the process.
Thus, their removal still leaves the latter part of the process

intact, with some degree of robustness.

* Supplemental edges. Consider the budding yeast network of
Fig. 1B and the 11 supplemental edges shown in Fig. 1D. These
11 supplemental edges, when removed in all possible combina-
tions, result in 2! = 2048 perturbed networks, each of which
will have a B and W value. These 2,048 points are plotted as
blue dots in Fig. 44. Clearly, the blue dots spread toward lower
B and W values, indicating loss of robustness. Fig. 4B confirms
the same result for the fission yeast.

* Interchangeable edges. To complete the robustness analysis, we
examine the effects of removing interchangeable edges. Recall
that these edges are needed in minimal networks, but there is
some choice in using them—every minimal network has some
(but not all) of them. For the budding yeast, there are 13 such
interchangeable edges and thus2'3 = 8,192 perturbed networks
can be created by removing a subset of them, shown by the green
dots in Fig. 44. Similarly, the green dots in Fig. 4B represent
perturbed networks for the fission yeast. Removal of some of
these edges results in both loss of robustness as well as loss
of function; in this case, the loss of robustness is more severe.

Fig. 4 also shows two special networks. The black dot indicates
the (B, W) value for the original network, while the purple dot
indicates the (B, W) value for the minimal network.

A

19 12
1

Small Motifs and Phase Regulation. We now examine some of the
small motifs exposed by the analyses of the two cell-cycle net-
works. Together, they reveal a number of valuable insights related
to regulating the phases of the cell cycle. The first is that many of
the motifs involve nodes [5, 8, 9, 10 in budding yeast (16-20)
and 2, 3, 4, 6 in fission (21-25)] known to be master regulators.
This is not surprising, but it is a confirmation that the type of
analysis presented here correlates with what is known by biolo-
gists. What one would like to know is whether motifs that involve
these molecules explain the phase-regulation role.

Consider the budding yeast motif with edges ;o and 7.
These edges prevent the simultaneous occurrence of sy = 1
and s|q = 1, a state that might be considered as a harmful overlap
of the G1 and M phases. To further analyze, we consider what
happens when this motif is removed. Fig. 54 shows the relevant
portion of the state-transition diagram (the attractor-basin por-
trait), with the process shown in blue and the (harmful) states
with (sq,519) = (1,1) shown as black dots. The minimal network
(without the regulatory motif) shows these states converging in-
dependently and directly to the attractor, whereas when the motif
is added to the minimal network we get the behavior in Fig. 5B.
Here, there are two observations to be made. The first is that
harmful states are quickly invalidated: Each harmful combination
state lasts only one step when the motif is used. The second,
equally important but different observation is that the motif

B C
1: (0,0,0,0,0,0,0,1,1,1,0)
2: (0,0,0,0,0,1,0,1,1,1,0)
3: (0,1,0,0,0,0,0,1,1,1,0)
4: (0,1,0,0,0,1,0,1,1,1,0)
5: (1,0,0,0,0,0,0,1,1,1,0)
6: (1,0,0,0,0,1,0,1,1,1,0)
7: (1,1,0,0,0,0,0,1,1,1,0)
8 (1,1,0,0,0,1,0,1,1,1,0)
9: (0,0,0,0,0,0,0,0,1,1,1)
6 10: (0,0,0,0,0,0,1,0,1,1,0)
11: (0,0,0,0,1,0,0,1,1,1,0)
) 12: (0,0,0,0,1,1,0,1,1,1,0)
7 13: (0,1,0,0,1,0,0,1,1,1,0)
14: (0,1,0,0,1,1,0,1,1,1,0)
15: (1,0,0,0,1,0,0,1,1,1,0)
16: (1,0,0,0,1,1,0,1,1,1,0)
17: (1,1,0,0,1,0,0,1,1,1,0)
18: (1,1,0,0,1,1,0,1,1,1,0)
19: (0,0,0,0,1,0,0,0,1,1,1)
20: (0,0,0,0,1,0,1,0,1,1,0)

Fig. 5. The change of trajectories caused by mutual inhibition. The middle, blue trajectory represents the budding yeast cell-cycle process S*. States with
(59510) = (1 1) are shown as black dots, including 16 initial states that are smaller. (4) In the minimal network, the states follow harmful trajectories to converge
to the attractor. There are three successive durations of (sq s19) = (1 1). (B) In the full network, the 16 initial states immediately converge to the normal cell-cycle
process. (C) The actual states represented by the black dots.
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directs the harmful states directly to the cell-cycle process
(whereas in the motif-free network, the harmful states last longer
and follow an independent path to the attractor, bypassing the
main process). Thus, it is as if the motif provides a checkpoint
to ensure that the process of cell phases is carried out both fully
and separately.

Summary

We have presented a technique based on the Boolean model to
decompose a network into motifs and then applied this technique
to two cell-cycle networks. For each network, one of these motifs
turns out to be a large backbone motif that spans all the network
nodes and carries the main functionality of the network. The re-
maining edges form smaller motifs that contribute to the stability
of the network. Furthermore, the technique enables a classifica-
tion of edges that helps in identifying the purpose of the smaller
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motifs. The results suggest that for new networks, one may be
able to rapidly identify their backbone structure and the hypothe-
size the function of the remaining interactions. Because the tech-
nique characterizes the class of networks producing a given
process, it may be used to reduce the search space for the network
inference problem where the goal is to infer the network from
expression data. Note that the technique is scalable and compu-
tationally efficient and may be applied to larger networks.
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An example for solving the network equation We use node 6 of the budding yeast network as an example to explain the Boolean
equations and their solutions. The following table is reproduced from Fig. 1(a) in the main text, where the states of node 6
are highlighted in red.

Time CIln3 MBF SBF ClInl,2 Cdhl Swi5 Cdc20/14 Clb5,6 Sicl Clbl,2 Meml1/SFF  Phase

t 51 S22 53 54 S5 S6 s7 s8 89 S10 s11

0 1 0 0 0 1 0 0 0 1 0 0 START
1 0 1 1 0 1 0 0 0 1 0 0 G1
2 0 1 1 1 1 0 0 0 1 0 0 G1
3 0 1 1 1 0 0 0 0 0 0 0 G1
4 0 1 1 1 0 0 0 1 0 0 0 S
5 0 1 1 1 0 0 0 1 0 1 1 G2
6 0 0 0 1 0 0 1 1 0 1 1 M
7 0 0 0 0 0 0 1 0 0 0 1 M
8 0 0 0 0 1 1 1 0 1 0 0 M
9 0 0 0 0 1 1 0 0 1 0 0 Gl
10 0 0 0 0 1 0 0 0 1 0 0 Gl
11 0 0 0 0 1 0 0 0 1 0 0 Gl

For each state transition, we can write a Boolean equation according to Eq. (2), where addition and multiplication represent
OR and AND operations, respectively. With ¢ = 6 thereafter, the equations are:

0
! 71+ 750 + 79 + G5391:95:90; = 1 [S-1]
0

***** S.2
l T2; + 73 + T5: + T9i + §::92:93:95i99; = 1 [S.2]
T [S.3]
l T2i + 73 + T4i + T5i + 795 + §1,92:93:94,95:99; = 1
0
! T2i + 730 + T4i + G4192:93:94; = 1 [S-4]
0

***** S.5
l T2i + 73 + T4; +78i + 9;,02:93:94:98; = 1 [ ]
[N —— = [S.6]
! T2i + 730 + Tai + Tsi + 710 + 711, + G4392:93:94:98:910,:911,0 = 1
T ——— G [S.7]
! Tai + 17 + 180 + 710, + 711, + 9:394:97:98:910,i911, = 1
0

T7iT S.8

1 T7it11,i (gis + g7 + g11,6) = 1 [ ]
1
! T5iT7iT9i (Tis + gsi + g7i + goi) = 1 [S.9]
1
1 T5i + T9i + T4iG5;99; = 1 [S.10]
0
l T5i + 79i + G4 95:90; = 1 [S.11]
0
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From Egs. (S.8) and (S.9) one obtains r5; = r7; = r9; = r11,; = 0. After substituting them into the above equations, one
has

18 + 9919599 1 [S.12]

72; + 73i + 91:92:93:95:99: = 1 [S.13]

72i + 730 + T4i + 4:92:93:94:95:90; = 1 [S.14]

T2i +73i + 740 + 53929394 = 1 [S.15]

r2i + 73 + 740 + 780 + §:,92,93:94:9s; = 1 [S.16]
T2i +73i + Tai + 780 + T10,i + 4:92:93:94i98:910,:911: = 1 [S.17]
Tai +78i + 710, + §i194i97:98:910,i911,; = 1 [S.18]
gii +gri 9110 = 1 [S.19]

Tii+gsi + g +9go: = 1 [S.20]

Tiig5:99s = 1 [S.21]

9:i95:99; = 1 [8‘22]

From Egs. (S.21) and (S.22) one obtains 7;; = 1 and gs; = go; = 0, which yields g7; = 1 and g1; = 0 after their substitution
into Eq. (S.20) and (S.12), respectively. The above equations are further simplified to

r2i +73i + 9293 = 1

T2 + 730 + 740 + 203,94 = 1

r2i + 30 + 740 +78i +02,93,94:9ss = 1
rai+7rsi + 110 = 1

To solve the above equations, one needs only to enumerate nodes 2, 3, 4, 8, and 10. We first enumerate node 2, which has
three possibilities: ro; = 1 (red edge), g2; = 1 (green edge), or no; = 1 (no edge). Note that we have introduced a new variable
Nji =TjiG; The substitution of r2; = 1 yields

1.

T4; + T8i + 710,

The substitution of ga; = 1 yields

r3i =
73 + T4;
T3 + T4 + T8

Tai +T8i + 7100 =

Il
o e e

The substitution of na; = 1 yields

T3 + §4i = 1
r3i +T4i + 78 + 94,95 = 1
rai +rsi + 7110 = L
As can be seen from above, the equations are greatly simplified after each substitution. We then successively enumerate other

nodes 3, 4, 8, and 10, until the solutions are complete. In total there are 432 solutions, which is the designability of node 6. In
the following we list four solutions as an example:

N13M2iN3i71iN5iTii J7iN8iM9iN10,iN11,i = 1, [S.23]

N1iN2iN3iNaiN5i T3 G773 N9iN10,iMN11, = 1, [S.24]

N1iN2iN3iN4 N5 T3 §7iN8IMNYi ' 10,1M 11, = 1, [S.25]
and

T1iT2ig3:7 1iM5iTiG7iT 5 T9iN10,ig11,i = L. [S.26]

Edge classification The edges can be classified according to their importance in the solutions.

The rigid edges are those absolutely required edges. For node i = 6, they are r;; and g7;, which are shown in red in Egs.
(S.23-5.26).

The interchangeable edges are those edges that can be replaced by each other. For node ¢ = 6, only one of the three edges
T43, T8i, and 710,; is required. They are thus interchangeable edges, shown in green in Eqs. (S.23-S.26).

The supplemental edges are not mandatory for the biological process. For example, Eq. (S.26) is still a solution after the
blue edges are changed into n1i, n2;, n3i, No;, and ni1,;. The blue edges are thus supplemental edges.

All the rigid edges and one set of interchangeable edges constitute a minimal solution. For node i = 6, Egs. (S.23-S.25)
are all minimal solutions, whereas Eq. (S.26), which consists of some supplemental edges, is not.
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Minimal networks. Table S.1 summarizes the minimal solutions (rigid and interchangeable edges) of all the nodes of the budding
yeast network. A minimal network can be constructed by selecting one minimal solution from every node. There are 108,864

minimal networks in total.

Node Rigid Interchangeable

1 - (r11)*, (rs1), (ro1)

2 (912)* (r102)", (7r11,2)

3 (913)" (r10,3)%, (111,3)

4 - (934 744)",(g24 744),(g24 774),(g34 T74)

5 (Ta5)* (955), (g75)", (911,5)

6 (66 g76)" (110,6)"; (r46) (rs6)

7 - (r77 911,7)%, (157 g10,7), (157 911,7), (767
g11,7), (re7 g10,7), (ro7 g10,7), (To7 911,7)

8 - (928 778 T98)*,(9gss 58 T78),(gss 778 To8)
(928 58 778), (928 758 T88), (928 788 T98),
(938 758 778), (938 758 T88), (938 778 T98),
(938 788 T98), (948 758 778), (gas 778 T08)

9 (ra9)* (999), (g979)*, (g11,9)

10 | (77,10 g8,10)* -

11

(98,11 m11,11)*

TABLE S.1: The rigid and interchangeable edges of all the nodes of the budding yeast network.

The edges with asterisks are present in the cell cycle network of budding yeast proposed by Li et

al [3].
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