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The ground state of the spin-i nearest-neighbor Heisenberg quantum antiferromagnet on the 
KagomC lattice probably lacks &in order; therefore, conventional spin-wave analysis 
breaks down. To ascertain the ground state, we instead use a systematic l/n expansion with 

.SU(n) fermions. Two distinct states occur in the large-n limit, depending on the size 
of the biquadratic interaction z When ?=O, there are an infinite number of degenerate. 
ground states consisting of disconnected dimers. At finite n, however, this degeneracy is 
broken by local resonance. In qontrast, a globally resonating chiral spin-liquid phase with no 
spin-Peierls modulation-is. the likely large-n ground state at sufficiently large f For 
intermediate values of J, a phase transition from the dimer state to the chiral phase occurs as 
the temperature &-eases. At a higher temperature, there is a second transition to a 
paramagnetic state. We comment on the possibility that these phases are experimentally 
realized by the nuclear magneti.q.motients of a second layer of 3He atoms lying on a graphite 
surface. 

Novel ground states of low-spin quantum antiferro- 
magnets may arise on low-dimensional, highly frustrated 
lattices. If spin order is absent, the usual spin-wave expan- 
sion about the ordered state-breaks down and other means 
must be employed to find the ground &ate. (By spin order 
we mean the existence of a local spin moment. N6el order 
on the square lattice is the simplest example of such or- 
der.) The spin-4 nearest-neighbor Heisenberg antiferro- 
magnet on the two-dimensional KagomC lattice exhibits 
these features: The small value of the spin, the low coor- 
dination number (z&4), and the frustrating interactions 
all work against the formation of spin order. Indeed, exact 
diagonalization studies of clusters of up to 21 sites suggest 
that the local spin moment vanishes.* However, it is dif- 
ficult to extract the nature of the order (or lack thereof) 
that occurs in the thermodynamic limit from these studies. 
Here, we report on a different approach that relies on a 
systematic expansion in powers of l/n, where n labels a 
generalization of the physical SU(2) spin to an antisym- 
metric, self-conjugate, representation of the group SU( n). 
[Note that n > 2 does not correspond to a higher-spin rep- 
resentation of SU(2).] This technique was previously ap- 
plied to the square lattice Heisenberg antiferromagnet, but 
it is particularly well suited for the KagomC problem be- 
cause spin order never’ occurs in the exactly solvable 
large-n limit.’ Though the expansion parameter is of order 
1 for the real problem, our approach makes definite pre- 
dictions about possible ordering and the phase diagram 
that can then be tested by other means. 

ten as a four-fermion interaction involving the SU(n> de- 
struction and creation operators c,, and cp, where x labels 
the lattice site and a: = 1,2,..., n is the flavor index. It is then 
decomposed via a Hubbard-Stratonovich transformation 
by introducing complex fields xXY that live on the links of 
the lattice. The phases of the xXY fields transform as spatial 
gauge fields under local U( 1) gauge transformations of the 
ferinions; and the time component of the gauge field ap- 
pears in the guise of a Lagrange multiplier field (I&) that 
enforces the local particle-number constraint (n/2 fermi- 
ons livl on each site, where ~1~ is an even integer). The 
large-n solution then corresponds to the problem of finding 
the saddle point of the following functional integral repre- 
sentation for the partition function: 

Z= s I&I [4lev - n&&541. 

Here, the effective action is given by an integral over the 
Grassman fields: 

ew - ~S&741 = s [dc*l Idclew - Nx,~,c*,cl, 

where the imaginary time action is 

+ 2 (2) lxxy12 + Cwv*ncxa + H.c.) . 1 
WY) \J 1 - 

I 
Many different SU(n) generalizations of the spin-i The implicit sum over the repeated flavor index makes 

SU( 2) antiferromagnet are possible on unfrustrated, bipar- each term in the action of order n. By choice of gauge, 
tite lattices; however, those approaches based on (pX can be set to zero. The integration over the fermions can 
Schwinger bosons require different representations of in principle be done exactly (since they appear only at 
SU( n) on the two sublattices and therefore do not work on quadratic order) and the problem of finding the correct 
the Kagomk lattice. In contrast, the fermionic path- saddle point reduces to one of determining the static con- 
integral approach works on all lattices and we employ it figuration of the xXxy fields which minimizes the effective 
here. Since this method was discussed in some detail in action. Clearly, xXY functions as the order parameter. Since 
Ref. 2, we limit our discussion to key points. The nearest- it is invariant under global SU(n) transformations, spin 
neighbor Heisenberg spin-spin coupling JSx-Sy is first writ- order is impossible in the large-n limit. 
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In a remarkable paper,3 Rokhsar proved that the best 
saddle-point configuration on almost all lattices consists of 
a dimer covering of the lattice. That is, lxXYl is nonzero 
(and equal to 3= J/2) on one and only one of the links 
attached to each site. Rokhsar’s proof applies to the 
KagomC lattice, and since the coordination number z=4, 
only 4 of the links are nonzero in this phase. The dimer- 
ization corresponds to spin-Peierls modulation since only 
spins connected by a dimer are correlated via a singlet 
bond. There are, however, an infinite number of ways to 
lay down the dimers and all of these states are degenerate 
in the large-n limit. 

To ascertain how l/n corrections break this degener- 
acy, we follow Read and Sachdev4 and expand the effective 
action for the xXY fields in fluctuations QXY about any 
given dimer configuration J&. The order n(6x)2 contri- 
bution was calculated in Ref. .4 for the square lattice, but 
does not lift the dimer degeneracy on the Kagome lattice. 
It merely corrects the free energy (which is order n) by a 
constant of order 1 since ( (6~)~) = O( l/n). The first 
term that removes some degeneracy occurs at order 
n (6~) 3 in the effective action expansion and involves hexa- 
gons that have dimers on three of the links and fluctuations 
on the remaining three links. Clearly, this term contributes 
to the total free energy only at second order [that is, 
n2( (a~)~)] because the quadratic part of the effective ac- 
tion is invariant under SxXY -) - Z&. Since it is second 
order, it always lowers the free energy (by an amount of 
order l/n). Indeed, the hexagon behaves like the benzene 
molecule: Both lower. their energy through resonance. 
Other corrections to the free energy appear at order l/n, 
but are independent of the dimer configuration. 

Thus, the I/n term picks patterns which maximize the 
number of hexagons with three dimers. A simple counting 
argument now shows that the maximum fraction of such 
hexagons (we call them “perfect hexagons”) is 4. Let N3, 
N3d, NC, and N6p be, respectively, the number of triangles, 
triangles without a dimer which we call “defect triangles,” 
hexagons, and perfect hexagons. It was shown in Ref. 5 
that Nsd = iN3 for any dimer. covering. According to the 
observation that (1) exactly three defect triangles are at- 
tached to every perfect hexagon, and (2) none of six near- 
est hexagons around a perfect one can be perfect (and, 
consequently, no two perfect hexagons will share a com- 
mon defect triangle), we have 3Nep < N3& Combining these 
observations and using N3 .= 2N6, we obtain Nep < 2 Ne 

Further constraints on the 12 second-nearest hexagons 
around a central perfect one reveal how to construct pat- 
terns with the maximum fraction. First of all, only six of 
these 12 hexagons. are potential sites for another perfect 
hexagon. The six hexagons that are separated from the 
central perfect one by two triangles (“bow ties”) cannot 
support a perfect hexagon because the site in the center of 
the bow tie will not be attached to a dimer. Second, if we 
link the center of the central perfect hexagon to the centers 
of the two next closest possible perfect ones by two straight 
lines, then the angle between lines has to be either 120” or 
180”. These two local rules generate various patterns which _. - 
we classify by the size of the respective unit cells. Note that 

HG. 1. Unit cells with the maximum 
fraction of perfect hexagons where 
the thick lines denote dimers. (a) 1% 
site unit cell with perfect hexagons 
that form a oblique lattice. (b) 36site 
unit cell with perfect hexagons that 
form a honeycomb lattice. 

configurations that differ by a rotation of the three dimers 
on a perfect hexagon by 60” are energetically equivalent at 
order l/n. We draw one of the several patterns for the 
smallest possible unit cell (18 sites) and one pattern fitting 
in’ the next smallest unit cell (36 sites) in Fig. 1. 

Although we have not examined higher-order (beyond 
l/n) corrections, we fully expect these terms will break the 
remaining degeneracy and select out a phase with finite 
degeneracy. These terms involve increasingly large reso- 
nance patterns that eventually link the unit cells together. 
Thus, the dimers should solidify at zero temperature into a 
crystalline solid built out of unit cells constructed accord- 
ing to the above rules. Clearly, this long-range dimer order 
will melt at a nonzero temperature since the dimers do not 
break a continuous symmetry, but rather the discrete two- 
dimensional lattice translational symmetry. 

As we mentioned earlier, there are actually many dif- 
ferent SU(n> generalizations of our SU(2) Hamiltonian. 
Even in the context of our fermionic path-integral ap- 
proach, we can add a nearest-neighbor biquadratic term to’ 
then Hamiltonian, without changing the physical SU(2) 
limit because 2 ( S,S,J2 = - ( 3 /2)S,S, + const for 
spin f. Clearly, adding the biquadratic interaction 2 just 
amounts to a trivial renormalization of the usual bilinear 
spin-exchange constant J (at least if 7~ W; otherwise, the 
system becomes a ferromagnet) . But for n > 2 this interac- 
tion represents new processes that simultaneously inter- 
change two flavors of fermions on one site with two on 
another neighboring site. Thus, the inclusion of the biqua- 
dratic term furnishes us with a one-parameter family of 
SU(n) theories with the same SU(2) limit. For J>O the, 
bi-quadratic term frustrates spin-Peierls order because it 
favors states that spread out singlet correlations uniformly 
on all the links. Indeed, upon decomposing the biquadratic 
term via a two-stage Hubbard-Stratonovich transforma- 
tion* (by introducing new real-valued link fields QXY), we 
discover that “flux’‘-type states with uniform lxXYl are vi- 
able. (Bicubic, biquartic, and higher terms can also be in- 
cluded, but do not lead to any other new ground states. ) If 
such a state persists down to n=2, then it realizes Ander- 
son’s resonating valence bonds (RVB) in the sense that 

5963 J. Appl. Phys., Vol. 69, No. 8,15 April 1991 J. B. Marston and C. Zen9 5963 

Downloaded 06 Dec 2002 to 128.148.60.17. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



each spin on a site participates equally in singlet correla- 
tions on all four links emanating from the site. 

We study the crossover from the spin-Peierls phase to 
the globally resonating RVB states by integrating out the 
fermions in a number of different trial configurations of the 
xXY and Qp,, fields. Since we are also interested in the effect 
of nonzero temperatures on the crossover, we compute the 
saddle-point free energy by using a Fermi-Dirac distribu- 
tion for the fermion occupancy. The free energy per site (at 
temperature T and J= 1) is 

F(x,@) = =2an( 1x1’ - (P2/T ) - (n/2)b[~,,;T]. 

Here, a denotes the fraction of links with nonzero 1xX,); in 
this case, a = i for the spin-Peierls phase and a= 1 for the 
flux phases. Also, RX,= ( 1 + 2QX,) ‘“xx, and b[&,;T] is 
the free energy at half-filling of the fermions that move 
from site to site along the nonzero fi, links. We are as- 
suming here that IxXYl and QXY take on only two possible 
values on any given link: zero or a constant. We then 
must minimize F with respect to the ,yXY fields, but maxi- 
mize it with respect to the Cp, fields (see Ref. 2). 

The best RVB state (a= 1) we found has a flux of 
+ ?r/2 passing through the each triangle on the KagomC 

lattice and zero flux in the hexagons. At zero temperature, 
this uniform flux phase drops below the spin-Peierls state 
in energy when 3>.0.92J. It is clearly twofold degenerate 
because it breaks time-reversal symmetry (the state with 
flux - r/2 has the same energy). This state does not break 
translational or rotational symmetry, and it has no spin or 
spin-Peierls order. Rather, it is a chiral spin liquid: For 
SU( 2) the expectation value (Sl&2~S3) is nonzero and 
constant on every elementary triangle (with vertices at 
sites 1, 2, and 3). The fermion. spectrum is completely 
gapped, and so we expect the spin-spin correlation function 
to exhibit exponential decay in the chiral phase. 

The state with flux r through the hexagons and flux 
7r/2 through the triangles and the state with no flux at all 
both have higher energy, regardless of the temperature. 
This result is in accord with heuristic rules found by Rokh- 
sar.6 He approaches the problem of finding the optimal flux 
states by first breaking up any lattice into its smallest 
closed polygons. He then notices that disconnected poly- 
gons with an odd number of sides (like the aforementioned 
triangles) prefer to have flux ?r/2 to minimize the fermion 
energy. Polygons. with 4m sides, where m is an integer, 
want flux r, and finally polygons with 4m + 2 sides (the 
hexagons) prefer zero flux. Indeed, we may view the zero 
flux phase as an excited state of the chiral flux state with 
defect antiflux tubes passing through the triangles that can- 
cel out the ~-/2 flux. Similarly, the phase with uniform 7~/2 
Aux in each triangle and rr in the hexagons can be seen as 
an array of flux defects passing through the hexagons. 

Rokhsar’s rules do not distinguish between the state 
with uniform ?r/2 flux per triangle and the state with a 
staggered flux of *r/2. In fact, the uniform phase is en- 
ergetically preferred. We gain some understanding of this 
fact by studying the Fermi surface of the staggered state 
with flux f -s-/2 in the upward pointing triangles and 
- r/2 in the downward ones. In the gauge in which only 

the horizontal links are imaginary (xXu = ilxl with the link 
orientation pointing either all to the left or all to the right), 
the Fermi surface (which is at zero energy because of 
particle-hole symmetry j has the shape of an isosceles. tri- 
angle with vertices at momenta (0, f %-/V5) and (~~0). Ap- 
parently, the complete gap in the fermion spectrum of the 
uniform chiral phase forces the fermions into lower energy 
states than in the staggered phase. It also means that the 
uniform chiral phase is likely to be locally stable against 
S,X.,~ perturbations at arbitrary wave vector. 

If we choose 7 to be slightly smaller than the critical 
value required to favor the chiral spin-liquid state over the 
spin-Peierls phase at zero temperature, then we find a first- 
order transition to the chiral liquid state at a nonzero tem- 
perature. For example, at f=O.9OJ the transition occurs at 
a temperature of T~0.05J. The liquid phase then survives 
up to T=J/4, where a second-order transition to a para- 
magnetic (gas) state marked by )xXYl = aXs = 0 occurs. 
(A small-IX1 expansion of the free energy shows that this 
paramagnetic transition always occurs at-T= J/4, regard- 
less of the saddle point or the value of J,’ Note that the 
entropy from different dimer configurations is of order 1, 
and so its contribution to the free energy can be neglected 
in the large-n limit.) 

The above spin-Peierls solid to chiral liquid and chiral 
liquid to paramagnetic gas transitions may correspond to 
the two peaks in the specific heat seen in an exact diago- 
nalization of a 1Zsite cluster5 and an approximate 
decoupled-cell Monte Carlo calculation,’ but further nu- 
merical work is needed to test for the existence of spin- 
Peierls or chiral order. In nature, the KagomC system may 
be realized by a second layer of ‘He atoms adsorbed onto a 
graphite substrate at a particular coverage density.5 The 
nuclear spins of the 3He atoms interact via simple antifer- 
romagnetic two-atom-exchange processes and ring ex- 
changes involving more than two atoms, but the nearest- 
neighbor Heisenberg antiferromagnet may be a good 
starting point for further studies. In fact, experiments show 
at least one peak (entropy arguments suggest there are 
actually two peaks) in the specific heat at a temperature of 
about 2.5 mK.8 It may be necessary to include other spin- 
exchange terms in a realistic model Hamiltonian,’ and the 
methods developed here can easily be applied to more com- 
plicated systems that possess global spin-rotational symme- 
try. 
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