
Object-Oriented Design Creational Patterns

George Blankenship 1

Creational Patterns George Blankenship 1

CSCI 253

Object Oriented Design:
Creational Patterns
George Blankenship

Creational Patterns George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Creational Patterns George Blankenship 3

The Elements of a Design Pattern
• The pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Design Creational Patterns

George Blankenship 2

Creational Patterns George Blankenship 4

The Singleton Pattern: The Problem
Ensure that a class has exactly one instance and provide a
global point of access to it

- There can be only
one print spooler, one
file system, one window
manager in a standard
application
- There is only one
game board in a
monopoly game; one
maze in a maze-game

Monopoly Board

: Monopoly Board : Monopoly Board

Creational Patterns George Blankenship 5

The Singleton Pattern Participant &
Collaboration

• Participant:
• Singleton:

– is responsible for creating and storing its own unique
instance

– defines an Instance operation that lets clients access its
unique instance

• Collaboration:
– the “class level” Instance operation will either return or

create and return the sole instance; a “class level” attribute
will contain either a default indicating there is no instance
yet or the sole instance

Creational Patterns George Blankenship 6

Control Unique Existance

Object-Oriented Design Creational Patterns

George Blankenship 3

Creational Patterns George Blankenship 7

Exception Definition

class SingletonException extends
RuntimeException {
// new exception type for singleton classes
public SingletonException() {super();}
// new exception type with description
public SingletonException(String s) {super(s);}
}

Creational Patterns George Blankenship 8

PrintSpooler Class
class PrintSpooler {

//this is a prototype for a printer-spooler class
//such that only one instance can ever exist
static boolean instance_flag=false; //true if 1 instance
public PrintSpooler() throws SingletonException {

if (instance_flag)
throw new SingletonException("Only one spooler allowed");

else
instance_flag = true; //set flag for 1 instance

System.out.println("spooler opened");
}

//---
public void finalize() {

instance_flag = false; //clear if destroyed
}

}

Creational Patterns George Blankenship 9

Print Spooler Creation
public class singleSpooler {

static public void main(String argv[]) {
PrintSpooler pr1, pr2;
//open one spooler--this should always work
System.out.println("Opening one spooler");
try{pr1 = new PrintSpooler();}
catch (SingletonException e) {System.out.println(e.getMessage());}
//try to open another spooler --should fail
System.out.println("Opening two spoolers");
try {pr2 = new PrintSpooler();}
catch (SingletonException e) {System.out.println(e.getMessage());}

}
}

Object-Oriented Design Creational Patterns

George Blankenship 4

Creational Patterns George Blankenship 10

The Singleton Pattern Consequences
• + Controlled access to sole instance : because the Singleton

class encapsulates its sole instance it can have strict control
• + Reduced name space: is an improvement over polluting the

names space with global variables that store sole instances
• + Permits refinement of operations and representation: the

Singleton class may be subclassed and the application can be
configured with an instance of the class you need at run time

• + Permits a variable number of instances: the same approach
can be used to control the number of instances that can exist; an
operation that grants access to the instance(s) must be provided

• + More flexible than using class operations only

Creational Patterns George Blankenship 11

The Singleton Pattern
Implementation

• Ensuring a unique instance:
– the constructors or new operations must be protected or overridden to

avoid that other instances are made accidentally by user code
• Subclassing the Singleton class:

– the main issue is installing a unique instance of the desired subtype at run
time

– when all subclasses are known beforehand the Instance operation can be
a conditional and create the right instance depending on some parameter
or explicit user input

– when the subclasses are not known beforehand a register can be used: all
subclasses register an instance in it; the Instance operation picks the
correct instance out of it

Creational Patterns George Blankenship 12

The Prototype Pattern: The Problem
Specify the kinds of objects to create using a prototypical
instance and create new instances by copying this prototype

- when an application needs
the flexibility to be able to
specify the classes to
instantiate at run time

- when instance of a class
have only very few different
combinations of state

Object-Oriented Design Creational Patterns

George Blankenship 5

Creational Patterns George Blankenship 13

Music Sheet

Creational Patterns George Blankenship 14

Participants

Creational Patterns George Blankenship 15

The Prototype Pattern Participants
an Collaborations

• Prototype: declares an interface for cloning itself

• ConcretePrototype: implements an operation for cloning
itself

• Client: creates a new object by asking the prototype to clone
itself

• Client asks a Prototype to clone itself

Object-Oriented Design Creational Patterns

George Blankenship 6

Creational Patterns George Blankenship 16

Cloning
private void sendMessage(String body, HL7Connection connection, int transportId) {

boolean newMessage = true;
Message message = new
Message(mshDataOut.getSentControlID(),connection.getRemoteStation(),body);
if(message.getMessageACK()) { // does the message require an accept ACK

Message m = (Message) message.clone();
connection.queueMessageCx(m); }

if(message.getApplicationACK()) { // does message require an application ACK
Message m = (Message) message.clone();
connection.queueMessageAx(m); }

if(mshDataOut.getType().equals("ACK") && // is message accept ACK
ackDataOut.getCode().charAt(0)=='C') {
newMessage = false;

} else newMessage = true;
try {

connection.sendMessage(message.getControlId(),body);
if(connection.hasActiveFSM())
connection.getFSM().execute(FSMeventTypes.FSM_MESSAGE_SENT.ordinal());

} catch (ChameleonException e) {
trace.exception(e,"(sendMessage) while trying to send message to remote host");

}
}

Creational Patterns George Blankenship 17

The Clone

// Clone a copy – variant of constructor for Message
public Message clone() {

Message m = new Message(controlId,station,body);
m.setMessageACK(this.messageACK);
m.setApplicationACK(this.applicationACK);
return m;

}

Creational Patterns George Blankenship 18

The Prototype Pattern
Consequences (1)

• + Hides the concrete product classes from the client: clients can
work with application specific classes without modification

• + Products can be added and removed at run-time: new concrete
products can be incorporated by just registering them with the
client

• + Specifying new objects by varying values: new kinds of
objects are effectively defined by instantiating a specific class,
filling in some of the instance variables and registering this as a
prototype

• + Specifying new objects by varying structure: complex user-
defined structures can be registered as prototypes as well and
used over and over again by cloning them

Object-Oriented Design Creational Patterns

George Blankenship 7

Creational Patterns George Blankenship 19

The Prototype Pattern
Consequences (2)

• + Reduced subclassing: as opposed to the Factory Method
pattern that often produces a hierarchy of creator classes that
mirrors the hierarchy of ConcreteProducts

• + Configuring an application with classes dynamically: when
the run-time environment supports dynamic loading of classes
the prototype pattern is a key to exploiting these facilities in
static languages (the constructors of the dynamically loaded
classes cannot be addressed statically, instead the run-time
environment creates automatically a prototype instance that the
application can use through a prototype manager)

• - Implementing the Clone operation: is difficult when the classes
under consideration already exist or when the internals include
objects that do not support copying or have circular references

Creational Patterns George Blankenship 20

The Prototype Pattern
Implementation

• Using a prototype manager: when the number of prototypes in a system is not
fixed it is best to use a registry of available prototypes

• Implementing the clone operation: many languages have some support for
implementing the clone operator (copy constructors in C++, copy method in
Smalltalk, save + load in systems that support these) but in itself they do not
solve the shallow / deep copy issue

• Initialising clones: some clients are happy with the clone as it is, others will
want to initialise the clone; passing parameters to the clone operation
precludes a uniform cloning interface; either use state changing operation
that are provided on the clone immediately after cloning or provide a
Initialise method

• In languages that treat classes as first class objects the class object itself is
like a prototype for creating instances of each class

Creational Patterns George Blankenship 21

Title
Hello you!

The Builder Pattern: The Problem
Separate the construction of a complex object from its
representation so that the same construction process can
create different representations

- a RTF reader that can
convert into many
different formats
- a parser that
produces a complex
parse tree

Title
Hello you!

<P>Title</P>

<I><P>Hello you!</P></I></BODY>
</HTML>

Save-as command
of Word

Object-Oriented Design Creational Patterns

George Blankenship 8

Creational Patterns George Blankenship 22

RTF Reader

Creational Patterns George Blankenship 23

The Builder Pattern Participants
• Builder: specifies an abstract interface for creating parts of a

Product
• ConcreteBuilder:

– constructs and assembles parts of the Product by implementing the
Builder interface

– defines and keeps track of the representation it creates
– provides an interface for retrieving the product

• Director: constructs an object using the Builder interface
• Product:

– Represents the complex object under construction
– Includes classes that define the constituent parts including the interfaces

for assembling the parts into the final result

Creational Patterns George Blankenship 24

Builder Participants

Object-Oriented Design Creational Patterns

George Blankenship 9

Creational Patterns George Blankenship 25

The Builder Pattern Collaboration

• The client creates the Director object and configures it
with the desired Builder object

• Director notifies the builder whenever a part of the
product should be built

• Builder handles requests from the director and adds
parts to the product

• The client retrieves the product from the builder

Creational Patterns George Blankenship 26

Collaboration

Creational Patterns George Blankenship 27

Multichoice GUI
• We would like to have a display that is

easy to use for either a large number of
funds (such as stocks) or a small
number of funds (such as mutual
funds).

• We want some sort of a multiple-
choice display so that we can select
one or more funds to plot.

• If there is a large number of funds,
we’ll use a multi-choice list box and if
there are 3 or fewer funds, we’ll use a
set of check boxes.

• We want our Builder class to generate
an interface that depends on the
number of items to be displayed, and
yet have the same methods for
returning the results.

Object-Oriented Design Creational Patterns

George Blankenship 10

Creational Patterns George Blankenship 28

multiChoice Class
abstract class multiChoice {
//This is the abstract base class that are the parent for the listbox and checkbox

choice panels
Vector choices; //array of labels

//--
public multiChoice(Vector choiceList) {

choices = choiceList; //save list
}

//to be implemented in derived classes
abstract public Panel getUI(); //return a Panel of components
abstract public String[] getSelected(); //get list of items
abstract public void clearAll(); //clear selections

}

Creational Patterns George Blankenship 29

Choice Panel Classes

class listboxChoice extends multiChoice
– Create a list box for a large number of choices

class checkBoxChoice extends multiChoice
– Create a set of check boxes for small number of

choices

Creational Patterns George Blankenship 30

Panel Generation
class choiceFactory {

multiChoice ui;
//This class returns a Panel containing a set of choices displayed by one of several UI

methods.
public multiChoice getChoiceUI(Vector choices) {

if(choices.size() <=3) //return a panel of checkboxes
ui = new checkBoxChoice(choices);

else //return a multi-select list box panel
ui = new listboxChoice(choices);

return ui;
}

}

Object-Oriented Design Creational Patterns

George Blankenship 11

Creational Patterns George Blankenship 31

Create Connection (Client)
/**

* Creates a new client connection and adds it to the list of connections
* Single object to control the priveately created objects
*
* @return connection
*/
public HL7Connection addClientConnection(String host, int port) throws ChameleonException
{

HL7Connection newConnection = new HL7Connection(host,port);
newConnection.client = true;
newConnection.open = false;
newConnection.clientSocket = null;
newConnection.serverSocket = null;
newConnection.serverClientSocket = null;
ClientOpen thread = new ClientOpen(newConnection);
thread.start();

return newConnection;
}

Creational Patterns George Blankenship 32

Create Connection (Server)
/**

* Creates a new server listener and adds it to the list of connections
* Single object to control the priveately created objects
* Starts the listening thread
*
* @param port is the listening port
* @return connection
*/

public HL7Connection addServerConnection(String host, int port) throws ChameleonException
{

HL7Connection newConnection = new HL7Connection(host,port);
newConnection.client = false;
newConnection.open = false;
newConnection.clientSocket = null;
newConnection.serverSocket = null;
newConnection.serverClientSocket = null;
ServerListen thread = new ServerListen(newConnection);
thread.start();

return newConnection;
}

Creational Patterns George Blankenship 33

The Builder Pattern Consequences
• + Lets you vary the product’s internal representation:

the directors uses the abstract interface provided by the builder
for constructing the product; to change the products
representation, just make a new type of builder

• + Allows reuse of the ConcreteBuilders: all code for
construction and representation is encapsulated; different
directors can use the same ConcreteBuilders

• + Gives finer control over the construction process: in
other creational patterns, construction is often in one shot; here
the product is constructed step by step under the director’s
guidance giving fine control over the internal structure of the
resulting product

Object-Oriented Design Creational Patterns

George Blankenship 12

Creational Patterns George Blankenship 34

The Builder Pattern Implementation
• Assembly and construction interfaces:

– The Builder interface must be general enough to allow the construction
of products for all kinds of ConcreteBuilders

– The model for construction and assembly is a key design issue
• Why no abstract class for products?:

– In the common case, the products can differ so greatly in their
representation that little is to gain from giving different products a
common parent class

– Because the client configures the Director with the appropriate
ConcreteBuilder, the client knows the resulting products

• Empty methods as default in Builder:
– In C++ the build methods are intentionally not pure virtual member

functions but empty methods instead; this allows clients to overwrite only
the operations they are interested in

Creational Patterns George Blankenship 35

The Factory Method Pattern: The
Problem

Define an interface for creating an object but let
subclasses decide which class to instantiate

Framework (toolkit) uses
abstract classes to define
and maintain
relationships between
objects and is
responsible for creating
the objects as well

Also known as : Virtual constructor

Creational Patterns George Blankenship 36

Factory Method Mechanics

• x is a base class and classes xy and xz are derived from it.
• The factory is a class that decides which of these subclasses to return depending on

the arguments you give it.
• The getClass method receives the value abc, and that returns an instance of the class

x.
• Each instance has the same methods, but different implementations.
• The instance decision is entirely embedded in the factory and could be very complex

but is often quite simple; the factory manufactures the object.

Object-Oriented Design Creational Patterns

George Blankenship 13

Creational Patterns George Blankenship 37

Entry Form

• Entry form that allows the user to enter a name
either as “firstname lastname” or “lastname,
firstname”

• Simplifying assumption that the name order is
indicated by the existence of a comma between
the last and first name.

Creational Patterns George Blankenship 38

Factory Method Class
class NameFactory {
// returns an instance of LastFirst or FirstFirst
// depending on whether a comma is found

static public Namer getNamer(String entry) {
int i = entry.indexOf(","); //comma determines name order
if (i>0)

return new LastFirst(entry); //return one class
else

return new FirstFirst(entry); //or the other
}

}

Creational Patterns George Blankenship 39

Factory Method Worker Classes
class FirstFirst extends Namer { //split first last

public FirstFirst(String s) {
int i = s.lastIndexOf(" "); //find sep space
if (i > 0) {

first = s.substring(0, i).trim(); //left is first name
last =s.substring(i+1).trim(); //right is last name

} else {
first = “”; // put all in last name
last = s; // if no space

}
}

}
class LastFirst extends Namer { //split last, first

public LastFirst(String s) {
int i = s.indexOf(","); //find comma
if (i > 0) {

last = s.substring(0, i).trim(); //left is last name
first = s.substring(i + 1).trim(); //right is first name

} else {
last = s; // put all in last name
first = ""; // if no comma

}
}

}

Object-Oriented Design Creational Patterns

George Blankenship 14

Creational Patterns George Blankenship 40

Name Divider Example

Callback for “Enter name:”
Namer name =

Name.getName(EnterName.getText())
name is LastFirst object
FirstName.setText(name.firstName());
LastName.setText(name.lastName());

Creational Patterns George Blankenship 41

GUI Widgets

Creational Patterns George Blankenship 42

Toolset Generation

Object-Oriented Design Creational Patterns

George Blankenship 15

Creational Patterns George Blankenship 43

Factory Method Classes

• Creator is parent
– May use static method FactoryMethod()
– May be instantiated as a Factory object

• Set of ConcreateCreator classes used to create ConcreteProduct (objects)

Creational Patterns George Blankenship 44

The Factory Method Pattern
Consequences

• + Eliminates the need to bind application specific
classes into your code

• - Clients might have to subclass the Creator class just
to create a particular ConcreteProduct object

• + Provides hooks for subclasses: the factory method gives
subclasses a hook for providing an extended version of an object

• + Connects parallel class hierarchies: a clients can use
factory methods to create a parallel class hierarchy (parallel
class hierarchies appear when objects delegate part of their
responsibilities to another class)

Creational Patterns George Blankenship 45

Factory Method Pattern Implementation

• Two major varieties are
– (1) the Creator class is an abstract class and does not provide an

implementation for the factory method it declares; the subclasses are
required to provide the implementation

– (2) the Creator class is a concrete class and provides a default for the
implementation of the factory method; the factory method just brings the
flexibility for subclasses to create different objects

• Factory Methods can be parameterised with something that
identifies the object to create (the body is then a conditional);
overriding a parameterised factory method makes it easy to
selectively extend or change the products that are created

• Use naming conventions that make clear that you are using
factory methods

Object-Oriented Design Creational Patterns

George Blankenship 16

Creational Patterns George Blankenship 46

The Abstract Factory Pattern: The
Problem

Provide an Interface for creating families of related or
dependent objects without specifying their concrete classes

- A GUI toolkit that
supports multiple look-
and-feel standards
- Achieve portability of
an application across
different windowing
systems

Also known as : Kit

Creational Patterns George Blankenship 47

Widget Factory

Creational Patterns George Blankenship 48

The Abstract Factory Pattern
Participants

• AbstractFactory: declares an interface for operations that create
abstract product objects

• ConcreteFactory: implements the operations to create concrete
product objects

• AbstractProduct: declares an interface for a type of product
object

• ConcreteProduct: defines a product object to be created by the
corresponding concrete factory; implements the AbstractProduct
interface

• Client: uses only interfaces declared by AbstractProduct and
AbstractFactory

Object-Oriented Design Creational Patterns

George Blankenship 17

Creational Patterns George Blankenship 49

Participant Map

Creational Patterns George Blankenship 50

The Abstract Factory Pattern
Collaboration

• AbstractFactory defers creation of product objects to
its ConcreteFactory subclass

• A single instance of a ConcreteFactory is created at
run-time; this concrete factory creates product objects
having a particular implementation

Creational Patterns George Blankenship 51

UI Look and Feel

String laf =
UIManager.getSystemLookAndFeelClassName();
try {UIManager.setLookAndFeel(laf);}
catch (UnsupportedLookAndFeelException exc)

{System.err.println("UnsupportedL&F: " + laf);}
catch (Exception exc)

{System.err.println("Error loading " + laf);}

Object-Oriented Design Creational Patterns

George Blankenship 18

Creational Patterns George Blankenship 52

The Abstract Factory Pattern
Conseq. (1)

• + Isolates concrete classes: the AbstractFactory
encapsulates the responsibility and the process to create product
objects, it isolates clients from implementation classes; clients
manipulate instances through their abstract interfaces, the
product class names do not appear in the client code

• + Makes exchanging product families easy: the
ConcreteFactory class appears only once in an application -that
is, where it is instantiated- so it is easy to replace; because the
abstract factory creates an entire family of products the whole
product family changes at once

Creational Patterns George Blankenship 53

The Abstract Factory Pattern
Conseq. (2)

• + Promotes consistency between products: when
products in a family are designed to work together it is
important for an application to use objects from one family only;
the abstract factory pattern makes this easy to enforce

• +- Supporting new types of products is difficult:
extending abstract factories to produce new kinds of products is
not easy because the set of Products that can be created is fixed
in the AbstractFactory interface; supporting new kinds of
products requires extending the factory interface which involves
changing the AbstractFactory class and all its subclasses

Creational Patterns George Blankenship 54

The Abstract Factory Pattern
Implement. (1)

• Factories as singletons: an application needs only one instance
of a ConcreteFactory per product family, so it is best to
implement this as a singleton

• Creating the products:
– AbstractFactory only declares an interface for creating products, it is up

to the ConcreteFactory subclasses to actually create products
– The most common way to do this is use a factory-method for each

product; each concrete factory specifies its products by overriding each
factory-method; it is simple but requires a new concrete factory for each
product family even if they differ only slightly

– An alternative is to implement the concrete factories with the prototype
pattern; the concrete factory is initialised with a prototypical instance of
each product and creates new products by cloning

Object-Oriented Design Creational Patterns

George Blankenship 19

Creational Patterns George Blankenship 55

The Abstract Factory Pattern
Implement. (2)

• Defining extensible factories:
– a more flexible but less safe design is to provide AbstractFactory with a

single “make” function that takes as a parameter (a class identifier, a
string) the kind of object to create

– is easier to realise in a dynamically typed language than in a statically
typed language because of the return type of this “make” operation

– can for example be used in C++ only if all product objects have a
common base type or if the product object can be safely coerced into the
type the client that requested the object expects; in the former the
products returned all have the same abstract interface and the client will
not be able to differentiate or make assumptions about the class of the
product

Creational Patterns George Blankenship 56

The Design Patterns
• The Factory Pattern is used to choose and return an instance of a class

from a number of similar classes based on data you provide to the
factory.

• The Abstract Factory Pattern is used to return one of several groups of
classes. In some cases it actually returns a Factory for that group of
classes.

• The Builder Pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of
which way the objects are assembled is achieved using a Factory.

• The Prototype Pattern copies or clones an existing class rather than
creating a new instance when creating new instances is more expensive.

• The Singleton Pattern is a pattern that insures there is one and only one
instance of an object, and that it is possible to obtain global access to that
one instance.

