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Outline

• Verification and Validation
• History and motivation
• Spin
• Promela language
• Promela model
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Verification vs. Validation

• Software verification is often confused with 
software validation

• Software verification is a verification of 
conformance to the specification

• Software validation is a validation of the 
compliance with the requirements
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Common Design Flaws

• Deadlock
• Livelock
• Underspecification
• Overspecification
• Violations of constraints
• Assumptions about speed
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Diagnosing Design Flaws

• Complexity makes design flaws difficult to 
uncover.

• Engineers often use simplified models 
(prototypes) for design verification.

• Abstract models can also be used to verify 
concurrent systems.
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What is Model Checking?

• Use a simplified model of our system.
• Verify the system exhaustively.
• Automatically check that given properties 

hold in all possible states.
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System Development
System
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Model
Checking
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System State Based Analysis

• Complete state space must be represented
• State space defined by significant variables
• Each integer variable has 232 distinct 

possibilities. Two such variables have 264

possibilities.
• In concurrent protocols, the number of 

states usually grows exponentially with the 
number of processes.
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State Space Capture

• System is the asynchronous composition of 
processes

• For each state the successor states are 
enumerated using the transition relation of 
each process
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Reducing Complexity

• Problem: state space explosion!
• Automatic state space compression and 

reduction by SPIN.
• Manual reduction techniques by the 

designer.
– We need to find the smallest sufficient model of 

our system.
– Biggest challenge!
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If it is so constrained, is it of any 
use?

• Many protocols are finite state.
• Many programs or procedure are finite state 

in nature. Can use abstraction techniques.
• Sometimes possible to decompose a 

program, and prove part of it by model 
checking and part by theorem proving.

• Many techniques to reduce the state space 
explosion (Partial Order Reduction).
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Alternating Bit Protocol
mtype = {MSG, ACK};
chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};
proctype sender(chan in, chan out)
{

bit sendbit, recvbit;
do
:: out!MSG, sendbit ->

in?ACK, recvbit
if
:: recvbit == sendbit ->

sendbit = 1-sendbit
:: else
fi

od
}

proctype receiver(chan in, chan out)
{

bit recvbit;
do
:: in?MSG, recvbit ->

out!ACK, recvbit
od

}

init
{

run sender(toS, toR);
run receiver(toR, toS);

}
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What is this all about?

• SPIN
– On-the-fly verifier developed at Bell-labs 

by Gerard Holzmann and others

• Promela
– Modeling language for SPIN
– Targeted at asynchronous systems
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“First Computer Bug”
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History
• Work leading to SPIN started in 1980

– First bug found on Nov 21, 1980 by Pan
– One-pass verifier for safety properties

• Succeeded by 
– Pandora (82)
– Trace (83)
– SuperTrace (84)
– SdlValid (88)
– SPIN (89)



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 6

PROMELA and SPIN George Blankenship 16

SPIN

• SPIN (Simple PROMELA Interpreter)
– Tool for analyzing the logical consistency of concurrent systems.
– Takes a PROMELA model as input.

• Model-checker.
• Based on automata theory.
• Allows LTL or automata specification
• Efficient (on-the-fly model checking, partial order 

reduction).
• Developed in Bell Laboratories.
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SPIN  Features
• “press on the button” verification (model 

checker) 
• efficient implementation
• graphical user interface (Xspin)
• used for research and industry
• contains more than two decades research on 

advanced computer aided verification 
(many optimization algorithms) 
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The language of SPIN

• Called Promela
• The expressions are from C.
• The communication is from CSP.
• The constructs are from Guarded 

Command.



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 7

PROMELA and SPIN George Blankenship 19

Command Line Tools

• Spin
– Generates the Promela code for the LTL 

formula
– Generates the C source code

• Pan (Process Analyzer)
– Performs the verification

• Has many compile time options to enable different 
features

• Optimized for performance
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Xspin
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Simulator
• Spin can also be used as a simulator

– Simulated the Promela program
• It is used as a simulator when a 

counterexample is generated
– Steps through the trace
– The trace itself is not “readable”

• Can be used for random and manually 
guided simulation as well
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XSpin Features

• Graphical front-end to the SPIN model 
checker.

• Features:
– Editor
– Syntax checking
– Simulation
– Verification
– Requirements specification
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XSpin Screenshot
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Types of Properties

• Invalid end-states (deadlock)
• Assertion violations
• Unreachable code
• Liveness properties

– Non-progress cycles
– Acceptance cycles

• Linear Temporal Logic (LTL) formulae
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Spin capabilities
• Interactive simulation

– For a particular path
– For a random path

• Exhaustive verification
– Generate C code for verifier
– Compile the verifier and execute
– Returns counter-example

• Lots of options for fine-tuning
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Spin overall structure
XSpin

Front-end

Promela
Parser

LTL Parser and
Translator

Syntax
Error

Reports

Interactive
Simulation

Verifier
Generator

Optimized Model
Checker (ANSI C)

Executable
Verifier

Counter  Example
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PROMELA
• PROMELA (Process/Protocol Meta Language)

– Specification language to model finite-state systems.
– Dynamic creation of concurrent processes.
– Communication via synchronous or asynchronous message channels.
– Non-deterministic (you’ll see!).

• Language for asynchronous programs
– Dynamic process creation
– Processes execute asynchronously
– Communicate via shared variables and message channels

• Races must be explicitly avoided
• Channels can be queued or rendezvous

– Very C like
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Finite Systems Only!

• No unbounded data.
• No unbounded message channels.
• No unbounded processes.
• No unbounded process creation.
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Variables and Types

• Five different (integer)  basic types. 
• Arrays
• Records (structs)
• Type conflicts are detected  at runtime
• Default initial value of basic variables (local 

and global)  is 0. 
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Variables
• Variables should be  declared 
• Variables can be given a value by:

– assignment 
– argument passing
– message passing

• Variables can be used in  expressions
• Most arithmetic, relational,  and logical operators 

of  C/Java are supported
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Data Types

• Basic : bit/bool, byte, short, int, chan
• Arrays: fixed size

– byte state[20];
– state[0] = state[3 * i] + 5 * state[7/j];

• Symbolic constants
– Usually used for message types
– mtype = {SEND, RECV};
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Basic Types (integer)

[-232-1.. 232–1]int msg; 

[-216-1.. 216–1] short s1, s2;

[0..255] byte counter; 

[0..1] bool flag; 

[0..1]bit turn=1;

Value rangeDeclarations
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Arrays

• <type> <array name>[<array size];
• byte a[27];  // array a can hold 27 bytes
• bit flags[4]; // array flags can hold 4 bits
• Same as C/C++
• Array index starts at 0 
• Array index ends at size-1
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Expressions

• Arithmetic: +, -, *, /, %
• Comparison: >, >=, <, <=, ==, !=
• Boolean: &&, ||, !
• Assignment:  =
• Increment/decrement: ++, --
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Records
• Type definition defines records (structure)

typedef MyRecord {
short f1; byte  f2; 
} 

• Variable declaration defines variable
MyRecord rr;

• Values are reference field by field
rr.f1 = …
rr.f2 = …
byte a = rr.f2;
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Message types and channels
• Message type is enumeration declaration

<type name>={<value list>}
• mtype = {OK, READY, ACK, ERROR}

– #define OK = 1;
– #define READY=2;
– #define ACK=3
– #define ERROR=4

• mtype Mvar = ACK
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Channels
• Channel defines queue that is used to pass messages 

between processes
chan <name>=[<size>] of {<message record>}

• chan Ng=[2] of {mtype, byte, byte},
Next=[0] of {byte}

• Enqueue a message – blocks if channel has no space
<name>!<record fields>

• Dequeue a message – blocks if channel is empty
<name>?<variables to receive fields>

• Ng!OK(5,4); /* send message type OK with data 5 and 4
Ng!OK,5,4;   /* same as OK(5,4)

• Ng?OK(byte0,byte1); /* store data if type is OK
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Delimiters
• Semi-colon is used a statement separator 

not a statement terminator
• Last statement does not need semi-colon
• Often replaced by -> to indicate causality 

between two successive statements

(a == b); c = c + 1
(a == b) -> c = c + 1

PROMELA and SPIN George Blankenship 39

Statements
• The body of a process consists of a sequence of  

statements
• A statement is either 

– executable: the statement can  be executed 
immediately

– blocked: the statement cannot be executed
• Executable/blocked depend on the global state of 

the system.
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Executable Statements

• An assignment is always executable
• An expression is also a statement; it is 

executable if it  evaluates to non-zero
– 2 < 3 always executable
– x < 27 only executable if value of x is 

smaller 27
– 3 + x executable if x is not equal to –3
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Executability
• The body of a process consists of a series of 

statements.
• Statements are either executable or blocked.
• No difference between conditions and statements

– Execution of every statement is conditional 
on its executability

– Executability is the basic means of 
synchronization

• Declarations and assignments always executable
• Conditionals are executable when they hold
• The following are the same

while (a != b) skip
(a == b)

(x < y)

i = 3

ch!MSG

ch?msg
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Statements
• The skip statement is always executable
• A run statement is only executable if a new 

process can be  created (the number of 
processes is bounded)

• A printf statement is always executable
• Statements in a sequence are  separated by a  

semi-colon: “;”
• A given statement in a sequence isn’t 

executable until previous statement executed
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Sample
int x;
proctype A( ) {
int y=1;
skip;
run N( );
x=2;
x>2 && y==0;
skip; 

} 

Can only become
executable if some
other process makes
x greater than 2

Executable if 
N can  be 
created...
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assert(<expression>);
• The assert statement is always executable
• If <expr> evaluates to zero, SPIN will exit with 

an error, as  the <expr>“has been violated”
• The assert statement is often used to check 

whether certain properties are valid in a state
• proctype monitor() { assert(n <= 3); }
• proctype receiver() { ...

toReceiver ? msg;
assert(msg !=ERROR);
... }
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if-statement

if :: choice1 -> stat1.1; stat1.2; stat1.3; ... 
:: choice2 -> stat2.1; stat2.2; stat2.3; ...
:: ... 
:: choicen -> statn.1; statn.2; statn.3; ... 

fi; 
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if-statement
• If there is at least one choicei (guard) executable, 

the if statement is executable and SPIN non-
deterministically chooses

• If no choicei is executable, the if-statement is 
blocked

• The operator “->”is equivalent to “;”
• The else guard is always executable
• Guard need not be exhaustive or mutually 

exclusive
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do-loops

do
:: choice1 -> stat1.1; stat1.2; stat1.3; ... 
:: choice2 -> stat2.1; stat2.2; stat2.3; ...
:: ... 
:: choicen -> statn.1; statn.2; statn.3; ... 

od; 
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do-loops
• With respect to the choices, a do statement 

behaves in the  same way as an if statement
• However, instead of ending the statement at the 

end of the  chosen list of statements, a do-
statement repeats the choice  selection

• The (always executable) break statement exits a 
do-loop  statement and transfers control to the 
end of the loop
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goto-statement

• Transfer control to a non-sequential 
statement
goto <label >;

• Transfers execution to label
• Each Promela statement might be labeled
• Quite useful in modeling communication 

protocols 
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Interleaving Semantics
• Promela processes execute concurrently
• Non-deterministic scheduling of the processes
• Processes are interleaved 
• All statements are atomic; each statement is 

executed  without interleaving with other 
processes

• Each process may have several different possible 
actions enabled at each point of execution
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atomic-statement
• Groups statements into an atomic sequence

atomic{ st1; st2; ... stn }
• all statements are executed in a single step 

(no interleaving with statements of other 
processes) 

• is executable if st1 is executable
• if a sti is blocked, the “atomicity token” is  

(temporarily) lost and other processes may 
do a step
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PROMELA Model Basics

• Promela model 
consists of:
– type declarations
– channel declarations
– variable declarations
– process declarations

mtype = {MSG, ACK};
chan toS;
chan toR;
bool flag;

proctype sender()
{

…
}
proctype receiver()
{

…
}
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Promela Code

mtype = {MSG, ACK}; 
chan toS = ... 
chan toR = ... 
bool flag;
proctype Sender() {
... 

} 

proctype Receiver() {
... 

} 
init {
...
}

creates 
processes process body
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Promela Model Syntax
• Type declarations

– mtype, typedefs, constants

• Channel declarations
– chan ch= [dim] of {type, ...}
– asynchronous: dim> 0 
– rendez-vous: dim== 0

• Global variable declarations
– can be accessed  by all processes

• Process declarations
– behaviourof the processes
– local variables + statements

• [initprocess]
– initializes variables and starts processes
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Processes
• A process is defined by a proctype definition 
• A process executes concurrently with all other 

processes,  independent of speed of behavior 
• A process communicates with other processes  

– using global (shared) variables 
– using channels

• There may be several processes of the same 
type

• Each process has its own local state
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Process
proctype Sender(chan in; chan out) {

bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip 
fi

od 
}

name

formal 
parameters

local variables

body

The body consist of a  
sequence of statements
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Process Example

byte state = 2;

proctype A() { (state == 1) -> state = 3 }

proctype B() { state = state – 1 }
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Process Instantiation

byte state = 2;
proctype A() { (state == 1) -> state = 3 }
proctype B() { state = state – 1 }
init { run A(); run B() }

• run can be used anywhere
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Parameter passing

proctype A(byte x; short foo) { 
(state == 1) -> state = foo

}
init { run A(1,3); }

• Data arrays or processes cannot be passed
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Variable scoping

• Global scope variables are known throughout the model
• Process local scope variables are only known within the 

process
• Parameters are only known within the process and 

initialized to passed value
• byte foo, bar, baz;

proctype A(byte foo) {
byte bar;
baz = foo + bar;

}
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Races and deadlock

byte state = 1;
proctype A() {

(state == 1) -> state = state + 1
}
proctype B() {

(state == 1) -> state = state – 1
}
init { run A(); run B() }
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Atomic Sequence

byte state = 1;
proctype A() { atomic {

(state == 1) -> state = state + 1
} }
proctype B() { atomic {

(state == 1) -> state = state – 1
} }
init() { run A(); run B() }
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Message Passing
• Convention: first message field often specifies message type (constant)

– Alternatively send message type followed by list of message fields in braces
– qname!expr1(expr2,expr3)
– qname?var1(var2,var3)

• Channel declaration
– chan qname = [16] of {short}
– chan qname = [5] of {byte,int,chan,short}

• Sending messages
– qname!expr
– qname!expr1,expr2,expr3

• Receiving messages
– qname?var
– qname?var1,var2,var3
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Message Passing Mismatch
• More parameters sent

– Extra parameters dropped

• More parameters received
– Extra parameters undefined

• Fewer parameters sent
– Extra parameters undefined

• Fewer parameters received
– Extra parameters dropped
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Message Passing Example

chan x = [1] of {bool, bool};
chan y = [1] of {bool};

proctype A(bool p, bool q) { x!p,q ; y?p }

proctype B(bool p, bool q) { x?p,q ; y!q }

init { run A(1,2); run B(3,4) }
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Executability
• Send is executable only when the channel is not 

full
• Receive is executable only when the channel is 

not empty
• A channel size reflects the ability of a channel to 

“store” a message for a future consumer
• len(qname) returns the number of messages 

currently stored in qname
• If used as a statement it will be unexecutable if 

the channel is empty
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Rendezvous
• Channel of size 0 defines a rendezvous port
• Can be used by two processed for a 

synchronous handshake
• No queueing
• The first process blocks
• Handshake occurs after the second process 

arrives
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Procedures and Recursion

• Procedures can be modeled as 
processes

• Even recursive ones
• Return values can be passed back 

to the calling process via a global 
variable or a message
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Timeouts

Proctype watchdog() {
do
:: timeout -> guard!reset
od

}
• timeout is a predefined global boolean that is set 

true when the entire system is deadlocked
• No absolute timing considerations
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Processes

• Process are created using the run statement (which 
returns the process id)

• Processes can be created  at any point in the 
execution (within any process)

• Processes start executing  after the run statement. 
• Processes can also be  created by adding active in 

front of the proctype declaration
– Parameters will be  initialized to 0
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Processes

• There may be several processes of the same 
proctype

• Each process has its own local state: 
– process counter(location within the proctype) –

contents of the local variables 
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Hello World! 
active proctype Hello( ) {

printf("Hello process, my pid is: %d\n",_pid); 
} 
init{

int lastpid;
printf("init process, my pidis: %d\n", _pid);
lastpid= run Hello();
printf("last pid was: %d\n",lastpid);

} 
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Concurrent Processes
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T
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Message Type Definition
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }
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XSpin Directive (show)
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }
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Process Definition
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }
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Start Execution
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }
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Execution

NC

C

T

mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }
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Enabled Statements
• A statement needs to be enabled for the 

process to be scheduled.
bool a, b;

proctype p1(){

a = true;

a & b;
a = false;

}

proctype p2(){

b = false;
a & b;
b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are 
enabled only if both a and b
are true.

This statements can never 
be enabled since b is always 
false.
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Alternating Bit Protocol
Sender Receiver

msg0

ack0

msg1

ack1

msg0

ack0

msg1
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Message Error
Sender Receiver

msg0

ack1

msg0

ack0
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Retransmission
Sender Receiver

msg0

ack0

msg1

ack1

msg0
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Message and Channel Definitions

mtype = { msg0, msg1, ack0, ack1 }

chan sender = [1] of { mtype };

chan receiver = [1] of { mtype };
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Sender Process
active proctype Sender(){

do

::

if

:: receiver?msg0;

:: skip

fi;

do

:: sender?ack0 -> break

:: sender?ack1

:: timeout ->

if

:: receiver!msg0;

:: skip

fi;

od;

::

if

:: receiver?msg1;

:: skip

fi;

do

:: sender?ack1 -> break

:: sender?ack0

:: timeout ->

if

:: receiver!msg1;

:: skip

fi;

od;

od;

}



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 29

PROMELA and SPIN George Blankenship 85

Receiver Process
active proctype Receiver(){

do

::

do

:: receiver?msg0 -> sender!ack0; break;

:: receiver?msg1 -> sender!ack1

od

do

:: receiver?msg1 -> sender!ack1; break;

:: receiver?msg0 -> sender!ack0

od

od

}
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Lynch’s Protocol

• … a reasonable looking but inadequate scheme 
…

• Full duplex operation on two channels
• If  previous reception was error-free, the next 

message on reverse channel contains ACK, 
otherwise NAK

• If previous reception carried NAK or was in 
error, retransmit, other wise send new message
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Lynch’s Protocol Problems

• Cannot send ACK/NAK without data –
need to send fill

• Startup not defined – send error to start 
process

• Receiver cannot tell whether transmission is 
retransmission of properly received data or 
new data


