
CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 1

PROMELA and SPIN George Blankenship 1

CSCI 234

Design of Internet Protocols: 
PROMELA and SPIN
George Blankenship

PROMELA and SPIN George Blankenship 2

Outline

• Verification and Validation
• History and motivation
• Spin
• Promela language
• Promela model

PROMELA and SPIN George Blankenship 3

Verification vs. Validation

• Software verification is often confused with 
software validation

• Software verification is a verification of 
conformance to the specification

• Software validation is a validation of the 
compliance with the requirements



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 2

PROMELA and SPIN George Blankenship 4

Common Design Flaws

• Deadlock
• Livelock
• Underspecification
• Overspecification
• Violations of constraints
• Assumptions about speed

PROMELA and SPIN George Blankenship 5

Diagnosing Design Flaws

• Complexity makes design flaws difficult to 
uncover.

• Engineers often use simplified models 
(prototypes) for design verification.

• Abstract models can also be used to verify 
concurrent systems.

PROMELA and SPIN George Blankenship 6

What is Model Checking?

• Use a simplified model of our system.
• Verify the system exhaustively.
• Automatically check that given properties 

hold in all possible states.



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 3

PROMELA and SPIN George Blankenship 7

System Development
System
Concept

Analysis

Design

Implementation

Testing

Maintenance

Model
Checking

PROMELA and SPIN George Blankenship 8

System State Based Analysis

• Complete state space must be represented
• State space defined by significant variables
• Each integer variable has 232 distinct 

possibilities. Two such variables have 264

possibilities.
• In concurrent protocols, the number of 

states usually grows exponentially with the 
number of processes.

PROMELA and SPIN George Blankenship 9

State Space Capture

• System is the asynchronous composition of 
processes

• For each state the successor states are 
enumerated using the transition relation of 
each process



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 4

PROMELA and SPIN George Blankenship 10

Reducing Complexity

• Problem: state space explosion!
• Automatic state space compression and 

reduction by SPIN.
• Manual reduction techniques by the 

designer.
– We need to find the smallest sufficient model of 

our system.
– Biggest challenge!

PROMELA and SPIN George Blankenship 11

If it is so constrained, is it of any 
use?

• Many protocols are finite state.
• Many programs or procedure are finite state 

in nature. Can use abstraction techniques.
• Sometimes possible to decompose a 

program, and prove part of it by model 
checking and part by theorem proving.

• Many techniques to reduce the state space 
explosion (Partial Order Reduction).

PROMELA and SPIN George Blankenship 12

Alternating Bit Protocol
mtype = {MSG, ACK};
chan toS = [2] of {mtype, bit};
chan toR = [2] of {mtype, bit};
proctype sender(chan in, chan out)
{

bit sendbit, recvbit;
do
:: out!MSG, sendbit ->

in?ACK, recvbit
if
:: recvbit == sendbit ->

sendbit = 1-sendbit
:: else
fi

od
}

proctype receiver(chan in, chan out)
{

bit recvbit;
do
:: in?MSG, recvbit ->

out!ACK, recvbit
od

}

init
{

run sender(toS, toR);
run receiver(toR, toS);

}



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 5

PROMELA and SPIN George Blankenship 13

What is this all about?

• SPIN
– On-the-fly verifier developed at Bell-labs 

by Gerard Holzmann and others

• Promela
– Modeling language for SPIN
– Targeted at asynchronous systems

PROMELA and SPIN George Blankenship 14

“First Computer Bug”

PROMELA and SPIN George Blankenship 15

History
• Work leading to SPIN started in 1980

– First bug found on Nov 21, 1980 by Pan
– One-pass verifier for safety properties

• Succeeded by 
– Pandora (82)
– Trace (83)
– SuperTrace (84)
– SdlValid (88)
– SPIN (89)



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 6

PROMELA and SPIN George Blankenship 16

SPIN

• SPIN (Simple PROMELA Interpreter)
– Tool for analyzing the logical consistency of concurrent systems.
– Takes a PROMELA model as input.

• Model-checker.
• Based on automata theory.
• Allows LTL or automata specification
• Efficient (on-the-fly model checking, partial order 

reduction).
• Developed in Bell Laboratories.

PROMELA and SPIN George Blankenship 17

SPIN  Features
• “press on the button” verification (model 

checker) 
• efficient implementation
• graphical user interface (Xspin)
• used for research and industry
• contains more than two decades research on 

advanced computer aided verification 
(many optimization algorithms) 

PROMELA and SPIN George Blankenship 18

The language of SPIN

• Called Promela
• The expressions are from C.
• The communication is from CSP.
• The constructs are from Guarded 

Command.



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 7

PROMELA and SPIN George Blankenship 19

Command Line Tools

• Spin
– Generates the Promela code for the LTL 

formula
– Generates the C source code

• Pan (Process Analyzer)
– Performs the verification

• Has many compile time options to enable different 
features

• Optimized for performance

PROMELA and SPIN George Blankenship 20

Xspin

PROMELA and SPIN George Blankenship 21

Simulator
• Spin can also be used as a simulator

– Simulated the Promela program
• It is used as a simulator when a 

counterexample is generated
– Steps through the trace
– The trace itself is not “readable”

• Can be used for random and manually 
guided simulation as well



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 8

PROMELA and SPIN George Blankenship 22

XSpin Features

• Graphical front-end to the SPIN model 
checker.

• Features:
– Editor
– Syntax checking
– Simulation
– Verification
– Requirements specification

PROMELA and SPIN George Blankenship 23

XSpin Screenshot

PROMELA and SPIN George Blankenship 24

Types of Properties

• Invalid end-states (deadlock)
• Assertion violations
• Unreachable code
• Liveness properties

– Non-progress cycles
– Acceptance cycles

• Linear Temporal Logic (LTL) formulae



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 9

PROMELA and SPIN George Blankenship 25

Spin capabilities
• Interactive simulation

– For a particular path
– For a random path

• Exhaustive verification
– Generate C code for verifier
– Compile the verifier and execute
– Returns counter-example

• Lots of options for fine-tuning

PROMELA and SPIN George Blankenship 26

Spin overall structure
XSpin

Front-end

Promela
Parser

LTL Parser and
Translator

Syntax
Error

Reports

Interactive
Simulation

Verifier
Generator

Optimized Model
Checker (ANSI C)

Executable
Verifier

Counter  Example

PROMELA and SPIN George Blankenship 27

PROMELA
• PROMELA (Process/Protocol Meta Language)

– Specification language to model finite-state systems.
– Dynamic creation of concurrent processes.
– Communication via synchronous or asynchronous message channels.
– Non-deterministic (you’ll see!).

• Language for asynchronous programs
– Dynamic process creation
– Processes execute asynchronously
– Communicate via shared variables and message channels

• Races must be explicitly avoided
• Channels can be queued or rendezvous

– Very C like



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 10

PROMELA and SPIN George Blankenship 28

Finite Systems Only!

• No unbounded data.
• No unbounded message channels.
• No unbounded processes.
• No unbounded process creation.

PROMELA and SPIN George Blankenship 29

Variables and Types

• Five different (integer)  basic types. 
• Arrays
• Records (structs)
• Type conflicts are detected  at runtime
• Default initial value of basic variables (local 

and global)  is 0. 

PROMELA and SPIN George Blankenship 30

Variables
• Variables should be  declared 
• Variables can be given a value by:

– assignment 
– argument passing
– message passing

• Variables can be used in  expressions
• Most arithmetic, relational,  and logical operators 

of  C/Java are supported



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 11

PROMELA and SPIN George Blankenship 31

Data Types

• Basic : bit/bool, byte, short, int, chan
• Arrays: fixed size

– byte state[20];
– state[0] = state[3 * i] + 5 * state[7/j];

• Symbolic constants
– Usually used for message types
– mtype = {SEND, RECV};

PROMELA and SPIN George Blankenship 32

Basic Types (integer)

[-232-1.. 232–1]int msg; 

[-216-1.. 216–1] short s1, s2;

[0..255] byte counter; 

[0..1] bool flag; 

[0..1]bit turn=1;

Value rangeDeclarations

PROMELA and SPIN George Blankenship 33

Arrays

• <type> <array name>[<array size];
• byte a[27];  // array a can hold 27 bytes
• bit flags[4]; // array flags can hold 4 bits
• Same as C/C++
• Array index starts at 0 
• Array index ends at size-1



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 12

PROMELA and SPIN George Blankenship 34

Expressions

• Arithmetic: +, -, *, /, %
• Comparison: >, >=, <, <=, ==, !=
• Boolean: &&, ||, !
• Assignment:  =
• Increment/decrement: ++, --

PROMELA and SPIN George Blankenship 35

Records
• Type definition defines records (structure)

typedef MyRecord {
short f1; byte  f2; 
} 

• Variable declaration defines variable
MyRecord rr;

• Values are reference field by field
rr.f1 = …
rr.f2 = …
byte a = rr.f2;

PROMELA and SPIN George Blankenship 36

Message types and channels
• Message type is enumeration declaration

<type name>={<value list>}
• mtype = {OK, READY, ACK, ERROR}

– #define OK = 1;
– #define READY=2;
– #define ACK=3
– #define ERROR=4

• mtype Mvar = ACK



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 13

PROMELA and SPIN George Blankenship 37

Channels
• Channel defines queue that is used to pass messages 

between processes
chan <name>=[<size>] of {<message record>}

• chan Ng=[2] of {mtype, byte, byte},
Next=[0] of {byte}

• Enqueue a message – blocks if channel has no space
<name>!<record fields>

• Dequeue a message – blocks if channel is empty
<name>?<variables to receive fields>

• Ng!OK(5,4); /* send message type OK with data 5 and 4
Ng!OK,5,4;   /* same as OK(5,4)

• Ng?OK(byte0,byte1); /* store data if type is OK

PROMELA and SPIN George Blankenship 38

Delimiters
• Semi-colon is used a statement separator 

not a statement terminator
• Last statement does not need semi-colon
• Often replaced by -> to indicate causality 

between two successive statements

(a == b); c = c + 1
(a == b) -> c = c + 1

PROMELA and SPIN George Blankenship 39

Statements
• The body of a process consists of a sequence of  

statements
• A statement is either 

– executable: the statement can  be executed 
immediately

– blocked: the statement cannot be executed
• Executable/blocked depend on the global state of 

the system.



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 14

PROMELA and SPIN George Blankenship 40

Executable Statements

• An assignment is always executable
• An expression is also a statement; it is 

executable if it  evaluates to non-zero
– 2 < 3 always executable
– x < 27 only executable if value of x is 

smaller 27
– 3 + x executable if x is not equal to –3

PROMELA and SPIN George Blankenship 41

Executability
• The body of a process consists of a series of 

statements.
• Statements are either executable or blocked.
• No difference between conditions and statements

– Execution of every statement is conditional 
on its executability

– Executability is the basic means of 
synchronization

• Declarations and assignments always executable
• Conditionals are executable when they hold
• The following are the same

while (a != b) skip
(a == b)

(x < y)

i = 3

ch!MSG

ch?msg

PROMELA and SPIN George Blankenship 42

Statements
• The skip statement is always executable
• A run statement is only executable if a new 

process can be  created (the number of 
processes is bounded)

• A printf statement is always executable
• Statements in a sequence are  separated by a  

semi-colon: “;”
• A given statement in a sequence isn’t 

executable until previous statement executed



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 15

PROMELA and SPIN George Blankenship 43

Sample
int x;
proctype A( ) {
int y=1;
skip;
run N( );
x=2;
x>2 && y==0;
skip; 

} 

Can only become
executable if some
other process makes
x greater than 2

Executable if 
N can  be 
created...

PROMELA and SPIN George Blankenship 44

assert(<expression>);
• The assert statement is always executable
• If <expr> evaluates to zero, SPIN will exit with 

an error, as  the <expr>“has been violated”
• The assert statement is often used to check 

whether certain properties are valid in a state
• proctype monitor() { assert(n <= 3); }
• proctype receiver() { ...

toReceiver ? msg;
assert(msg !=ERROR);
... }

PROMELA and SPIN George Blankenship 45

if-statement

if :: choice1 -> stat1.1; stat1.2; stat1.3; ... 
:: choice2 -> stat2.1; stat2.2; stat2.3; ...
:: ... 
:: choicen -> statn.1; statn.2; statn.3; ... 

fi; 



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 16

PROMELA and SPIN George Blankenship 46

if-statement
• If there is at least one choicei (guard) executable, 

the if statement is executable and SPIN non-
deterministically chooses

• If no choicei is executable, the if-statement is 
blocked

• The operator “->”is equivalent to “;”
• The else guard is always executable
• Guard need not be exhaustive or mutually 

exclusive

PROMELA and SPIN George Blankenship 47

do-loops

do
:: choice1 -> stat1.1; stat1.2; stat1.3; ... 
:: choice2 -> stat2.1; stat2.2; stat2.3; ...
:: ... 
:: choicen -> statn.1; statn.2; statn.3; ... 

od; 

PROMELA and SPIN George Blankenship 48

do-loops
• With respect to the choices, a do statement 

behaves in the  same way as an if statement
• However, instead of ending the statement at the 

end of the  chosen list of statements, a do-
statement repeats the choice  selection

• The (always executable) break statement exits a 
do-loop  statement and transfers control to the 
end of the loop



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 17

PROMELA and SPIN George Blankenship 49

goto-statement

• Transfer control to a non-sequential 
statement
goto <label >;

• Transfers execution to label
• Each Promela statement might be labeled
• Quite useful in modeling communication 

protocols 

PROMELA and SPIN George Blankenship 50

Interleaving Semantics
• Promela processes execute concurrently
• Non-deterministic scheduling of the processes
• Processes are interleaved 
• All statements are atomic; each statement is 

executed  without interleaving with other 
processes

• Each process may have several different possible 
actions enabled at each point of execution

PROMELA and SPIN George Blankenship 51

atomic-statement
• Groups statements into an atomic sequence

atomic{ st1; st2; ... stn }
• all statements are executed in a single step 

(no interleaving with statements of other 
processes) 

• is executable if st1 is executable
• if a sti is blocked, the “atomicity token” is  

(temporarily) lost and other processes may 
do a step



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 18

PROMELA and SPIN George Blankenship 52

PROMELA Model Basics

• Promela model 
consists of:
– type declarations
– channel declarations
– variable declarations
– process declarations

mtype = {MSG, ACK};
chan toS;
chan toR;
bool flag;

proctype sender()
{

…
}
proctype receiver()
{

…
}

PROMELA and SPIN George Blankenship 53

Promela Code

mtype = {MSG, ACK}; 
chan toS = ... 
chan toR = ... 
bool flag;
proctype Sender() {
... 

} 

proctype Receiver() {
... 

} 
init {
...
}

creates 
processes process body

PROMELA and SPIN George Blankenship 54

Promela Model Syntax
• Type declarations

– mtype, typedefs, constants

• Channel declarations
– chan ch= [dim] of {type, ...}
– asynchronous: dim> 0 
– rendez-vous: dim== 0

• Global variable declarations
– can be accessed  by all processes

• Process declarations
– behaviourof the processes
– local variables + statements

• [initprocess]
– initializes variables and starts processes



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 19

PROMELA and SPIN George Blankenship 55

Processes
• A process is defined by a proctype definition 
• A process executes concurrently with all other 

processes,  independent of speed of behavior 
• A process communicates with other processes  

– using global (shared) variables 
– using channels

• There may be several processes of the same 
type

• Each process has its own local state

PROMELA and SPIN George Blankenship 56

Process
proctype Sender(chan in; chan out) {

bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip 
fi

od 
}

name

formal 
parameters

local variables

body

The body consist of a  
sequence of statements

PROMELA and SPIN George Blankenship 57

Process Example

byte state = 2;

proctype A() { (state == 1) -> state = 3 }

proctype B() { state = state – 1 }



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 20

PROMELA and SPIN George Blankenship 58

Process Instantiation

byte state = 2;
proctype A() { (state == 1) -> state = 3 }
proctype B() { state = state – 1 }
init { run A(); run B() }

• run can be used anywhere

PROMELA and SPIN George Blankenship 59

Parameter passing

proctype A(byte x; short foo) { 
(state == 1) -> state = foo

}
init { run A(1,3); }

• Data arrays or processes cannot be passed

PROMELA and SPIN George Blankenship 60

Variable scoping

• Global scope variables are known throughout the model
• Process local scope variables are only known within the 

process
• Parameters are only known within the process and 

initialized to passed value
• byte foo, bar, baz;

proctype A(byte foo) {
byte bar;
baz = foo + bar;

}



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 21

PROMELA and SPIN George Blankenship 61

Races and deadlock

byte state = 1;
proctype A() {

(state == 1) -> state = state + 1
}
proctype B() {

(state == 1) -> state = state – 1
}
init { run A(); run B() }

PROMELA and SPIN George Blankenship 62

Atomic Sequence

byte state = 1;
proctype A() { atomic {

(state == 1) -> state = state + 1
} }
proctype B() { atomic {

(state == 1) -> state = state – 1
} }
init() { run A(); run B() }

PROMELA and SPIN George Blankenship 63

Message Passing
• Convention: first message field often specifies message type (constant)

– Alternatively send message type followed by list of message fields in braces
– qname!expr1(expr2,expr3)
– qname?var1(var2,var3)

• Channel declaration
– chan qname = [16] of {short}
– chan qname = [5] of {byte,int,chan,short}

• Sending messages
– qname!expr
– qname!expr1,expr2,expr3

• Receiving messages
– qname?var
– qname?var1,var2,var3



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 22

PROMELA and SPIN George Blankenship 64

Message Passing Mismatch
• More parameters sent

– Extra parameters dropped

• More parameters received
– Extra parameters undefined

• Fewer parameters sent
– Extra parameters undefined

• Fewer parameters received
– Extra parameters dropped

PROMELA and SPIN George Blankenship 65

Message Passing Example

chan x = [1] of {bool, bool};
chan y = [1] of {bool};

proctype A(bool p, bool q) { x!p,q ; y?p }

proctype B(bool p, bool q) { x?p,q ; y!q }

init { run A(1,2); run B(3,4) }

PROMELA and SPIN George Blankenship 66

Executability
• Send is executable only when the channel is not 

full
• Receive is executable only when the channel is 

not empty
• A channel size reflects the ability of a channel to 

“store” a message for a future consumer
• len(qname) returns the number of messages 

currently stored in qname
• If used as a statement it will be unexecutable if 

the channel is empty



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 23

PROMELA and SPIN George Blankenship 67

Rendezvous
• Channel of size 0 defines a rendezvous port
• Can be used by two processed for a 

synchronous handshake
• No queueing
• The first process blocks
• Handshake occurs after the second process 

arrives

PROMELA and SPIN George Blankenship 68

Procedures and Recursion

• Procedures can be modeled as 
processes

• Even recursive ones
• Return values can be passed back 

to the calling process via a global 
variable or a message

PROMELA and SPIN George Blankenship 69

Timeouts

Proctype watchdog() {
do
:: timeout -> guard!reset
od

}
• timeout is a predefined global boolean that is set 

true when the entire system is deadlocked
• No absolute timing considerations



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 24

PROMELA and SPIN George Blankenship 70

Processes

• Process are created using the run statement (which 
returns the process id)

• Processes can be created  at any point in the 
execution (within any process)

• Processes start executing  after the run statement. 
• Processes can also be  created by adding active in 

front of the proctype declaration
– Parameters will be  initialized to 0

PROMELA and SPIN George Blankenship 71

Processes

• There may be several processes of the same 
proctype

• Each process has its own local state: 
– process counter(location within the proctype) –

contents of the local variables 

PROMELA and SPIN George Blankenship 72

Hello World! 
active proctype Hello( ) {

printf("Hello process, my pid is: %d\n",_pid); 
} 
init{

int lastpid;
printf("init process, my pidis: %d\n", _pid);
lastpid= run Hello();
printf("last pid was: %d\n",lastpid);

} 



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 25

PROMELA and SPIN George Blankenship 73

Concurrent Processes
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T

PROMELA and SPIN George Blankenship 74

Message Type Definition
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }

PROMELA and SPIN George Blankenship 75

XSpin Directive (show)
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 26

PROMELA and SPIN George Blankenship 76

Process Definition
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }

PROMELA and SPIN George Blankenship 77

Start Execution
mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }

PROMELA and SPIN George Blankenship 78

Execution

NC

C

T

mtype = { NONCRITICAL, TRYING, CRITICAL};
show mtype state[2];
proctype process(int id) {

beginning:
noncritical:

state[id] = NONCRITICAL;
if

:: goto noncritical;
:: true;

fi;
trying:

state[id] = TRYING;
if

:: goto trying;
:: true;

fi;
critical:

state[id] = CRITICAL;
if

:: goto critical;
:: true;

fi;
goto beginning;}

init { run process(0); run process(1); }



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 27

PROMELA and SPIN George Blankenship 79

Enabled Statements
• A statement needs to be enabled for the 

process to be scheduled.
bool a, b;

proctype p1(){

a = true;

a & b;
a = false;

}

proctype p2(){

b = false;
a & b;
b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are 
enabled only if both a and b
are true.

This statements can never 
be enabled since b is always 
false.

PROMELA and SPIN George Blankenship 80

Alternating Bit Protocol
Sender Receiver

msg0

ack0

msg1

ack1

msg0

ack0

msg1

PROMELA and SPIN George Blankenship 81

Message Error
Sender Receiver

msg0

ack1

msg0

ack0



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 28

PROMELA and SPIN George Blankenship 82

Retransmission
Sender Receiver

msg0

ack0

msg1

ack1

msg0

PROMELA and SPIN George Blankenship 83

Message and Channel Definitions

mtype = { msg0, msg1, ack0, ack1 }

chan sender = [1] of { mtype };

chan receiver = [1] of { mtype };

PROMELA and SPIN George Blankenship 84

Sender Process
active proctype Sender(){

do

::

if

:: receiver?msg0;

:: skip

fi;

do

:: sender?ack0 -> break

:: sender?ack1

:: timeout ->

if

:: receiver!msg0;

:: skip

fi;

od;

::

if

:: receiver?msg1;

:: skip

fi;

do

:: sender?ack1 -> break

:: sender?ack0

:: timeout ->

if

:: receiver!msg1;

:: skip

fi;

od;

od;

}



CSCI 234 - Design of Internet Protocols PROMELA and SPIN

George Blankenship 29

PROMELA and SPIN George Blankenship 85

Receiver Process
active proctype Receiver(){

do

::

do

:: receiver?msg0 -> sender!ack0; break;

:: receiver?msg1 -> sender!ack1

od

do

:: receiver?msg1 -> sender!ack1; break;

:: receiver?msg0 -> sender!ack0

od

od

}

PROMELA and SPIN George Blankenship 86

Lynch’s Protocol

• … a reasonable looking but inadequate scheme 
…

• Full duplex operation on two channels
• If  previous reception was error-free, the next 

message on reverse channel contains ACK, 
otherwise NAK

• If previous reception carried NAK or was in 
error, retransmit, other wise send new message

PROMELA and SPIN George Blankenship 87

Lynch’s Protocol Problems

• Cannot send ACK/NAK without data –
need to send fill

• Startup not defined – send error to start 
process

• Receiver cannot tell whether transmission is 
retransmission of properly received data or 
new data


