CSCI 234 - Design of Internet Protocols Implementation Validation

CSCI 234

Design of Internet Protocols:
Implementation Validation

George Blankenship

Implementation George Blankenship 1
Validation

Outline

« Validation verses Implementation
 Design validation

« System behavior

« Claims of correctness

« State analysis

Implementation George Blankenship 2
Validation

Validation vs. Implementation

LAND-SURFACE ™
..., MODEL

» Generality
 Validation Models

Implementation George Blankenship 3
Validation

George Blankenship 1

CSCI 234 - Design of Internet Protocols

Design Validation: Correctness

» Absence of deadlock, livelock, no improper terminations
» A good design is provable free of deadlocks
» Verifying even the simplest of protocol properties, e.g., absence
of deadlock, is PSPACE hard even for a finite state model
NL C P C NP C PSPACE
» Complexity can be attacked from two directions:
« Using a relatively simple formalism for specifying correctness requirements
« A method for reducing the complexity of models
PROMELA is the formalism used.

.

Implementation George Blankenship
Validation

Levels of Complexity

« Simple level (most frequently used requirements) e.g.,
absence of deadlock
— Requirements expressed straightforwardly and checked
independently
— Can be analyzed mechanically with fast algorithms even for very
large systems.
More complicated requirements e.g., absence of livelock
— Expressed independently
— Independent computational expense when validated mechanically
— Very sophisticated requirements, most expensive to check

Implementation George Blankenship 5
Validation

Implementation Validation

Safety - Liveness Properties

Safety Liveness
— “nothing bad ever happens” — “something good eventually happens”
— example: system invariance — example: responsiveness
— xis always less than y — eventually a response is generated

* Model checker will ¢ Model checker will search for

search for any possible any possible execution in
execution that leads to which the “good thing” can

the violation of a be postponed indefinitely
safety property

Implementation George Blankenship 6
Validation

George Blankenship

CSCI 234 - Design of Internet Protocols Implementation Validation

Reasoning about Behavior

¢ PROMELA models: number of possible behaviors is
finite

e Two types of claims for behavior:
— Inevitable
— Impossible

« these two types of claims are duals
— if something is inevitable then the opposite is impossible
— if something is impossible then the opposite is inevitable

— if we have a logic, we can turn one claim into another by
logical negation

Implementation George Blankenship 7
Validation

Behavior Types

» To state that a given behavior is inevitable, we state
that all deviant behaviors are impossible

» An execution sequence is a finite ordered set of states

« A state in defined by the specification of all values,
all control flow points of running processes, and the
contents of message channels

* The behavior of a validation model is defined by the
set of all execution sequences it can perform

Implementation George Blankenship 8
Validation

Valid States

¢ A PROMELA model M with a finite ordered set of
states is valid IFF M satisfies the following criteria

First state of the sequence is the initial state of M with:
— all variables initialized to zero

— all message channels empty
— only the init process active and set in its initial state

 If M is placed in the state with ordinal i, there is at
least one executable statement that can bring it to the
state with ordinal i+1

Implementation George Blankenship 9
Validation

George Blankenship 3

CSCI 234 - Design of Internet Protocols Implementation Validation

Sequence Types

» An execution sequence is terminating if:
— no state occurs more than once in the sequence
— model M contains no executable statements when
placed in the last state of the sequence.
» An execution sequence is cyclic if:

— all states except the last one are distinct, and the last
state of the sequence is equal to one of the earlier states

« The union of all states included in the system behavior is
called the set of reachable states of the model.

Implementation George Blankenship 10
Validation

Claims of Correctness

» Model correctness claims can be built
up from simple propositions

* A proposition is a Boolean
condition on the state of the system

Implementation George Blankenship 1
Validation

Syntax For Expressing Correctness
 Properties
* correctness properties

— Reachable states (generic safety properties)
— A sequences of states (generic liveness properties)
« (Promela)

— assertions
« local process assertions
* system invariants

— end-state labels | Properties of sequence of states |
« to define proper termination points of processes

— accept-state labels
+ when looking for acceptance cycles

— progress-state labels
« when looking for non-progress cycles

— never claims

— trace assertions
Implementation George Blankenship 12
Validation

George Blankenship 4

CSCI 234 - Design of Internet Protocols Implementation Validation

Ordering of Propositions

» Ordering of propositions different from ordering of statements

In a proctype:

¢ A sequential ordering of two statements implies that the second
statement is to be executed after the first one terminates.

« No assumptions about relative speeds of concurrently executing
processes. So: after means eventually after

In a temporal claim:

A sequential ordering of two propositions defines an immediate
consequence.

< An important requirement that applies to terminating sequences is
absence of deadlock

Implementation George Blankenship 13
Validation

Assertions

« Correctness criteria expressed as Boolean conditions
that can be satisfied when a process reaches a given
state

assert(condition)
« Always executable, if condition is true no effect!

« Validity is violated if there is at least one execution
sequence in which the condition is false when the
assert statement becomes executable.

Implementation George Blankenship 14
Validation

Assertion Claim

-Wetrytoclaimthat pyte state = 1;

when process proctype AQ) {
A(Q)completes the (Staiet: l)t-i 1
Sstate = state + 5
value of state assert(state == 2)
must be 2 and when 3
process) proctype BQ{
B()completes it (state =="1) —>
must be 0 state = state - 1;
’ assert(state == 0)
— Is the claim true or
false? init {run AQ; run BO}
Implementation George Blankenship 15

Validation

George Blankenship 5

CSCI 234 - Design of Internet Protocols Implementation Validation

System Invariants

* Boolean conditions

« If true in initial system state remain true in all reachable
states.

(independently of the execution sequence that leads to each specific state)

proctype monitor () { assert(invariant)
» Once an instance of monitor has been started, it
executes independently of the rest of the system; assert
statement executable precisely once for every state of
the system

Implementation George Blankenship 16
Validation

Deadlocks

« In a finite state system, all execution
sequences either terminate or they cycle
back to a previously visited state.

 Terminating sequences are not necessarily
deadlocks.

« Distinguish between expected, proper, end-
states and unexpected ones.

Implementation George Blankenship 17
Validation

Unexpected States

» Unexpected end-states include cases of incomplete
protocol specification.

— i.e.: the unspecified reception.

» The final state in a terminating execution sequence
must minimally satisfy the following:

— Every process instantiated has terminated

— All message channels are empty

Implementation George Blankenship 18
Validation

George Blankenship 6

CSCI 234 - Design of Internet Protocols Implementation Validation

End-State

 Not all processes necessarily terminate.

* We must be able to identify individual process states as
proper end-states.

 This is done with end-state labels:
proctype dijkstra(Q)

{
end: do
: semalp -> sema?v
od
3

« A state labeled end is a proper end-state

» Every process instantiated has either terminated or has reached a
state marked as a proper end-state.

Implementation George Blankenship 19
Validation

Bad Cycles

 Progress States
— Finite sequence of states leading to an end state
— Computation moving towards completion

* Non-progress States

— Finite sequence of states not leading to end
state

— No apparent movement towards completion

Implementation George Blankenship 20
Validation

Progress-States

» Marked states are called progress-states

 Based on explicit marking of states:

 There are no infinite behaviors of only unmarked
states.

— Execution sequences that violate the above correctness claim are
called non-progress cycles

» There are no infinite behaviors that include

marked states.

— Execution sequences that violate the latter claim are called
livelocks.

Implementation George Blankenship 21
Validation

George Blankenship 7

CSCI 234 - Design of Internet Protocols

Non-Progress Cycles

« A progress-state label marks a state that must be executed for the
protocol to make progress.
¢ Semaphore example: label the successful passing of a semaphore test

as “progress”
proctype dijkstraQ) {

end: do
: semalp ->
progress: sema?v
od
3

« By marking the progress state we express the correctness criteria that
passing the semaphore guard cannot be postponed infinitely long.

Implementation George Blankenship 22
Validation

Implementation Validation

Livelock

« An acceptance-state label is any label starting with the
letter sequence “accept”
proctype dijkstra(Q)

end: do
: semalp —>
accept: sema?v
od
3
« We claim we cannot cycle through a series of p and v
operations. This claim is false.
« We can either prove it is false manually, or we can use an
automated validator to provide a counter-example.

Implementation George Blankenship 23
Validation

Temporal Claim

« Supposed we want to express the temporal claim:
“every state in which property P is true is followed by a
state in which property Q is true.”
« Two different interpretations of “follows” are possible:
— immediately follows
— eventually follows
« No assumption can be made in PROMELA about relative
timing of process execution.
« Temporal claims define temporal ordering of properties of
states.

Implementation George Blankenship 24
Validation

George Blankenship

CSCI 234 - Design of Internet Protocols

Temporal Claim as Impossible

« For every state in which property P is true is followed by a
state in which property Q is true

¢ We could write: P->Q

« Since all our correctness criteria are based on properties
that are claimed to be impossible, the temporal claims we
use must also express ordering of properties that are
impossible.

« The temporal claims are defined on complete execution
sequences. Even if a prefix of the sequence is irrelevant, it
must still be represented as a trivially-true sequence of
propositions.

Implementation George Blankenship 25
Validation

Implementation Validation

Never is there a P without Q
» Thus P->Q can be expressed as:
—never { do :: skip od P->I1Q }
This is the format of a temporal claim in
PROMELA

... independent of the initial sequence of
events, it is impossible for a state in which
property P is true to be followed by a state
in which property Q is true.

Implementation George Blankenship 26
Validation

Never Construct

* Suppose we want to express ever ¢
the temporal property that do
conditionl can never 2oskip
remain true infinitely long: © conditiont > break

od;
* We must find where accept: do
conditionl may be: o conaeent
a) false initially ¥
b) becomes true eventually
C) remains true
Implementation George Blankenship 27

Validation

George Blankenship

CSCI 234 - Design of Internet Protocols Implementation Validation

conditionl

= skip is always true.

* when :: conditionl -> break
executes, it means conditionl turns true.

= conditionl in the second do stays true

never {
do
oz skip
: conditionl -> break
od;
accept:
conditionl
bs
Implementation George Blankenship 28

Validation

P->Q FSM

« The claim contains just one more state
transition after conditionl becomes true.

« The claim is matched if there is at least one

. N A g never {
execution sequence in which conditionl do
holds in two subsequent states. :: skip
« A claim can be seen as a finite state machine. :: conditionl -> break
The fini hine ab ins th od
.
e finite state machine above contains three . ot
states: conditionl
— the initial state 3
— the state labeled accept
— normal end state
Implementation George Blankenship 29
Validation

« The correct version of the claim states that
it would be an error (a livelock) if the
machine can stay in the second state
infinitely long.

» The second version is that it would be an
error if the third state is reachable.

Implementation George Blankenship 30
Validation

George Blankenship 10

CSCI 234 - Design of Internet Protocols

Never claims

 Never claims in combination with
acceptance-state labels can express also the
absence of non-progress cycles.

» The complexity of finding non-progress
cycles directly with progress-state labels is
smaller than the expense of the validation of
a claim that specifies the same property.

Implementation George Blankenship 31
Validation

Implementation Validation

Message Loss
» Modeled explicitly with clauses that can steal an
incoming message before it is processed.

 Claim: “it is always true that when the sender
transmits a message, the receiver will eventually
accept it.”

* The claim is a four-state machine:
—the initial state
—the two states that were labeled
—the normal end state

Implementation George Blankenship 32
Validation

System State Recognition

never {
do

:: len(receiver) == 0

11 receiver?[msg0] ->
goto acceptO

11 receiver?[msgl] ->
goto acceptl

At least one of the three conditions
must be true in the initial system
state.

The claim remains in this state as

od; long as receiver is empty.
acceptO: If receiver contains msg0 or
do msgl, it will change state to either
:: IReceiver[2]:PO acceptO or acceptl.
od; Once a transition is made, the claim
acceptl: can only remain in that state if the
do receiver process will never accept a
:: IReceiver[2]:P1 message with the same sequence
od; number.
3
Implementation George Blankenship 33
Validation

George Blankenship

11

CSCI 234 - Design of Internet Protocols

Implementation Validation

Process State Recognition
never {
do
:: len(receiver) == 0 .
11 receiver?[msg0] -> goto The receiver never passes the
accept0 state labeled PO .
:: receiver?[msgl] -> goto
od: aceeptl « The pid ofinitis 0, Sender is
’ 1, and Receiver is 2.
accept0: = Receiver[2] refersto the
do receiver process.
<2 IReceiver[2]:PO = Receiver[2]:PO refersto
od; that Receiver is currently in
R state labels PO.
acceptl:
do
:: 'Receiver[2]:P1
od;
}
Implementation George Blankenship 34
Validation
Exercise
a) How many reachable states do you
predict will the following naive init {
Promela model generate? .
b) Will the simulation terminate? byte i=0;
c) Estimate the total number of do:ri=i+1
reachable states that should be d
inspected in an exhaustive 0
verification. Is it a finite number? }
Will a verification run terminate?
d) What would happen if you had
declared the variable to be a short
instead of a byte ?
Implementation George Blankenship 35
Validation

George Blankenship

12

