
CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 1

Implementation
Validation

George Blankenship 1

CSCI 234

Design of Internet Protocols:
Implementation Validation

George Blankenship

Implementation
Validation

George Blankenship 2

Outline

• Validation verses Implementation
• Design validation
• System behavior
• Claims of correctness
• State analysis

Implementation
Validation

George Blankenship 3

Validation vs. Implementation

• Generality
• Validation Models

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 2

Implementation
Validation

George Blankenship 4

Design Validation: Correctness
• Absence of deadlock, livelock, no improper terminations
• A good design is provable free of deadlocks
• Verifying even the simplest of protocol properties, e.g., absence

of deadlock, is PSPACE hard even for a finite state model

• Complexity can be attacked from two directions:
• Using a relatively simple formalism for specifying correctness requirements
• A method for reducing the complexity of models

• PROMELA is the formalism used.

Implementation
Validation

George Blankenship 5

Levels of Complexity
• Simple level (most frequently used requirements) e.g.,

absence of deadlock
– Requirements expressed straightforwardly and checked

independently
– Can be analyzed mechanically with fast algorithms even for very

large systems.
• More complicated requirements e.g., absence of livelock

– Expressed independently
– Independent computational expense when validated mechanically
– Very sophisticated requirements, most expensive to check

Implementation
Validation

George Blankenship 6

Safety - Liveness Properties
Safety

– “nothing bad ever happens”
– example: system invariance
– x is always less than y

• Model checker will
search for any possible
execution that leads to
the violation of a
safety property

Liveness
– “something good eventually happens”
– example: responsiveness
– eventually a response is generated

• Model checker will search for
any possible execution in
which the “good thing” can
be postponed indefinitely

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 3

Implementation
Validation

George Blankenship 7

Reasoning about Behavior
• PROMELA models: number of possible behaviors is

finite
• Two types of claims for behavior:

– Inevitable
– Impossible

• these two types of claims are duals
– if something is inevitable then the opposite is impossible
– if something is impossible then the opposite is inevitable
– if we have a logic, we can turn one claim into another by

logical negation

Implementation
Validation

George Blankenship 8

Behavior Types

• To state that a given behavior is inevitable, we state
that all deviant behaviors are impossible

• An execution sequence is a finite ordered set of states
• A state in defined by the specification of all values,

all control flow points of running processes, and the
contents of message channels

• The behavior of a validation model is defined by the
set of all execution sequences it can perform

Implementation
Validation

George Blankenship 9

Valid States
• A PROMELA model M with a finite ordered set of

states is valid IFF M satisfies the following criteria
• First state of the sequence is the initial state of M with:

– all variables initialized to zero
– all message channels empty
– only the init process active and set in its initial state

• If M is placed in the state with ordinal i, there is at
least one executable statement that can bring it to the
state with ordinal i+1

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 4

Implementation
Validation

George Blankenship 10

Sequence Types
• An execution sequence is terminating if:

– no state occurs more than once in the sequence
– model M contains no executable statements when

placed in the last state of the sequence.

• An execution sequence is cyclic if:
– all states except the last one are distinct, and the last

state of the sequence is equal to one of the earlier states
• The union of all states included in the system behavior is

called the set of reachable states of the model.

Implementation
Validation

George Blankenship 11

Claims of Correctness

• Model correctness claims can be built
up from simple propositions

• A proposition is a Boolean
condition on the state of the system

Implementation
Validation

George Blankenship 12

Syntax For Expressing Correctness
Properties

• correctness properties
– Reachable states (generic safety properties)
– A sequences of states (generic liveness properties)

• (Promela)
– assertions

• local process assertions
• system invariants

– end-state labels
• to define proper termination points of processes

– accept-state labels
• when looking for acceptance cycles

– progress-state labels
• when looking for non-progress cycles

– never claims
– trace assertions

Properties of sequence of states

Properties of states

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 5

Implementation
Validation

George Blankenship 13

• Ordering of propositions different from ordering of statements
In a proctype:
• A sequential ordering of two statements implies that the second

statement is to be executed after the first one terminates.
• No assumptions about relative speeds of concurrently executing

processes. So: after means …. eventually after
In a temporal claim:
• A sequential ordering of two propositions defines an immediate

consequence.
• An important requirement that applies to terminating sequences is

absence of deadlock

Ordering of Propositions

Implementation
Validation

George Blankenship 14

Assertions
• Correctness criteria expressed as Boolean conditions

that can be satisfied when a process reaches a given
state

assert(condition)

• Always executable, if condition is true no effect!
• Validity is violated if there is at least one execution

sequence in which the condition is false when the
assert statement becomes executable.

Implementation
Validation

George Blankenship 15

Assertion Claim
– We try to claim that

when process
A()completes the
value of state
must be 2 and when
process
B()completes it
must be 0

– Is the claim true or
false?

byte state = 1;
proctype A() {
(state == 1) ->

state = state + 1;
assert(state == 2)
}

proctype B(){
(state == 1) ->

state = state - 1;
assert(state == 0)
}

init {run A(); run B()}

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 6

Implementation
Validation

George Blankenship 16

System Invariants
• Boolean conditions
• If true in initial system state remain true in all reachable

states.
(independently of the execution sequence that leads to each specific state)

proctype monitor () { assert(invariant)
• Once an instance of monitor has been started, it

executes independently of the rest of the system; assert
statement executable precisely once for every state of
the system

Implementation
Validation

George Blankenship 17

Deadlocks

• In a finite state system, all execution
sequences either terminate or they cycle
back to a previously visited state.

• Terminating sequences are not necessarily
deadlocks.

• Distinguish between expected, proper, end-
states and unexpected ones.

Implementation
Validation

George Blankenship 18

Unexpected States
• Unexpected end-states include cases of incomplete

protocol specification.
– i.e.: the unspecified reception.

• The final state in a terminating execution sequence
must minimally satisfy the following:

– Every process instantiated has terminated

– All message channels are empty

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 7

Implementation
Validation

George Blankenship 19

End-State
• Not all processes necessarily terminate.
• We must be able to identify individual process states as

proper end-states.
• This is done with end-state labels:

proctype dijkstra()
{
end: do
:: sema!p -> sema?v
od
}

• A state labeled end is a proper end-state
• Every process instantiated has either terminated or has reached a

state marked as a proper end-state.

Implementation
Validation

George Blankenship 20

Bad Cycles

• Progress States
– Finite sequence of states leading to an end state
– Computation moving towards completion

• Non-progress States
– Finite sequence of states not leading to end

state
– No apparent movement towards completion

Implementation
Validation

George Blankenship 21

Progress-States
• Marked states are called progress-states
• Based on explicit marking of states:
• There are no infinite behaviors of only unmarked

states.
– Execution sequences that violate the above correctness claim are

called non-progress cycles

• There are no infinite behaviors that include
marked states.
– Execution sequences that violate the latter claim are called

livelocks.

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 8

Implementation
Validation

George Blankenship 22

Non-Progress Cycles
• A progress-state label marks a state that must be executed for the

protocol to make progress.
• Semaphore example: label the successful passing of a semaphore test

as “progress”
proctype dijkstra() {

end: do

:: sema!p ->

progress: sema?v

od

}

• By marking the progress state we express the correctness criteria that
passing the semaphore guard cannot be postponed infinitely long.

Implementation
Validation

George Blankenship 23

Livelock
• An acceptance-state label is any label starting with the

letter sequence “accept”
proctype dijkstra()
{
end: do
:: sema!p ->
accept: sema?v
od
}

• We claim we cannot cycle through a series of p and v
operations. This claim is false.

• We can either prove it is false manually, or we can use an
automated validator to provide a counter-example.

Implementation
Validation

George Blankenship 24

Temporal Claim
• Supposed we want to express the temporal claim:

“every state in which property P is true is followed by a
state in which property Q is true.”

• Two different interpretations of “follows” are possible:
– immediately follows
– eventually follows

• No assumption can be made in PROMELA about relative
timing of process execution.

• Temporal claims define temporal ordering of properties of
states.

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 9

Implementation
Validation

George Blankenship 25

Temporal Claim as Impossible
• For every state in which property P is true is followed by a

state in which property Q is true
• We could write: P->Q
• Since all our correctness criteria are based on properties

that are claimed to be impossible, the temporal claims we
use must also express ordering of properties that are
impossible.

• The temporal claims are defined on complete execution
sequences. Even if a prefix of the sequence is irrelevant, it
must still be represented as a trivially-true sequence of
propositions.

Implementation
Validation

George Blankenship 26

• Thus P->Q can be expressed as:
– never { do :: skip od P->!Q }

This is the format of a temporal claim in
PROMELA

… independent of the initial sequence of
events, it is impossible for a state in which
property P is true to be followed by a state
in which property Q is true.

Never is there a P without Q

Implementation
Validation

George Blankenship 27

Never Construct
• Suppose we want to express

the temporal property that
condition1 can never
remain true infinitely long:

• We must find where
condition1 may be:

a) false initially
b) becomes true eventually
c) remains true

never {

do

:: skip

:: condition1 -> break

od;

accept: do

:: condition1

od
}

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 10

Implementation
Validation

George Blankenship 28

condition1
• skip is always true.
• when :: condition1 -> break

executes, it means condition1 turns true.
• condition1 in the second do stays true

never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}

Implementation
Validation

George Blankenship 29

P->Q FSM
• The claim contains just one more state

transition after condition1 becomes true.
• The claim is matched if there is at least one

execution sequence in which condition1
holds in two subsequent states.

• A claim can be seen as a finite state machine.
• The finite state machine above contains three

states:
– the initial state
– the state labeled accept
– normal end state

never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}

Implementation
Validation

George Blankenship 30

Livelock

• The correct version of the claim states that
it would be an error (a livelock) if the
machine can stay in the second state
infinitely long.

• The second version is that it would be an
error if the third state is reachable.

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 11

Implementation
Validation

George Blankenship 31

Never claims

• Never claims in combination with
acceptance-state labels can express also the
absence of non-progress cycles.

• The complexity of finding non-progress
cycles directly with progress-state labels is
smaller than the expense of the validation of
a claim that specifies the same property.

Implementation
Validation

George Blankenship 32

Message Loss
• Modeled explicitly with clauses that can steal an

incoming message before it is processed.
• Claim: “it is always true that when the sender

transmits a message, the receiver will eventually
accept it.”

• The claim is a four-state machine:
– the initial state
– the two states that were labeled
– the normal end state

Implementation
Validation

George Blankenship 33

System State Recognition
never {
do

:: len(receiver) == 0
:: receiver?[msg0] ->
goto accept0

:: receiver?[msg1] ->
goto accept1

od;
accept0:
do

:: !Receiver[2]:P0
od;
accept1:
do

:: !Receiver[2]:P1
od;
}

• At least one of the three conditions
must be true in the initial system
state.

• The claim remains in this state as
long as receiver is empty.

• If receiver contains msg0 or
msg1, it will change state to either
accept0 or accept1.

• Once a transition is made, the claim
can only remain in that state if the
receiver process will never accept a
message with the same sequence
number.

CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 12

Implementation
Validation

George Blankenship 34

Process State Recognition
never {

do
:: len(receiver) == 0
:: receiver?[msg0] -> goto

accept0
:: receiver?[msg1] -> goto

accept1

od;

accept0:
do

:: !Receiver[2]:P0

od;

accept1:
do

:: !Receiver[2]:P1

od;
}

The receiver never passes the
state labeled P0.

• The pid of init is 0, Sender is
1, and Receiver is 2.

• Receiver[2] refers to the
receiver process.

• Receiver[2]:P0 refers to
that Receiver is currently in
state labels P0.

Implementation
Validation

George Blankenship 35

Exercise
a) How many reachable states do you

predict will the following naive
Promela model generate?

b) Will the simulation terminate?
c) Estimate the total number of

reachable states that should be
inspected in an exhaustive
verification. Is it a finite number?
Will a verification run terminate?

d) What would happen if you had
declared the variable to be a short
instead of a byte ?

init {
byte i = 0;
do :: i = i+1
od
}

