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Outline

• Validation verses Implementation
• Design validation
• System behavior
• Claims of correctness
• State analysis
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Validation vs. Implementation

• Generality
• Validation Models
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Design Validation: Correctness
• Absence of deadlock, livelock, no improper terminations
• A good design is provable free of deadlocks
• Verifying even the simplest of protocol properties, e.g., absence 

of deadlock, is PSPACE hard even for a finite state model

• Complexity can be attacked from two directions:
• Using a relatively simple formalism for specifying correctness requirements
• A method for reducing the complexity of models

• PROMELA is the formalism used.
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Levels of Complexity
• Simple level (most frequently used requirements) e.g., 

absence of deadlock
– Requirements expressed straightforwardly and checked 

independently
– Can be analyzed mechanically with fast algorithms even for very 

large systems.
• More complicated requirements e.g., absence of livelock

– Expressed independently
– Independent computational expense when validated mechanically
– Very sophisticated requirements, most expensive to check
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Safety - Liveness Properties
Safety

– “nothing bad ever happens”
– example: system invariance
– x is always less than y

• Model checker will 
search for any possible 
execution that leads to 
the violation of a 
safety property

Liveness
– “something good eventually happens”
– example: responsiveness
– eventually a response is generated

• Model checker will search for 
any possible execution in 
which the “good thing” can 
be postponed indefinitely
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Reasoning about Behavior
• PROMELA models: number of possible behaviors is 

finite
• Two types of claims for behavior:

– Inevitable
– Impossible

• these two types of claims are duals
– if something is inevitable then the opposite is impossible
– if something is impossible then the opposite is inevitable
– if we have a logic, we can turn one claim into another by 

logical negation
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Behavior Types

• To state that a given behavior is inevitable, we state 
that all deviant behaviors are impossible

• An execution sequence is a finite ordered set of states
• A state in defined by the specification of all values, 

all control flow points of running processes, and the 
contents of message channels

• The behavior of a validation model is defined by the 
set of all  execution sequences it can perform
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Valid States
• A PROMELA model M with a finite ordered set of 

states is valid IFF M satisfies the following criteria
• First state of the sequence is the initial state of M with:

– all variables initialized to zero
– all message channels empty
– only the init process active and set in its initial state

• If M is placed in the state with ordinal i, there is at 
least one executable statement that can bring it to the 
state with ordinal i+1
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Sequence Types
• An execution sequence is terminating if:

– no state occurs more than once in the sequence
– model M contains no executable statements when 

placed in the last state of the sequence.

• An execution sequence is cyclic if:
– all states except the last one are distinct, and the last 

state of the sequence is equal to one of the earlier states
• The union of all states included in the system behavior is 

called the set of reachable states of the model.
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Claims of Correctness

• Model correctness claims can be built 
up from simple propositions

• A proposition is a Boolean 
condition on the state of the system
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Syntax For Expressing Correctness 
Properties

• correctness properties
– Reachable states (generic safety properties)
– A sequences of states (generic liveness properties)

• (Promela)
– assertions

• local process assertions
• system invariants

– end-state labels
• to define proper termination points of processes

– accept-state labels
• when looking for acceptance cycles

– progress-state labels
• when looking for non-progress cycles

– never claims
– trace assertions

Properties of sequence of states

Properties of states
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• Ordering of propositions different from ordering of statements
In a proctype:
• A sequential ordering of two statements implies that the second 

statement is to be executed after the first one terminates.
• No assumptions about relative speeds of concurrently executing 

processes. So:   after means …. eventually after
In a temporal claim:
• A sequential ordering of two propositions defines an immediate

consequence.
• An important requirement that applies to terminating sequences is 

absence of deadlock

Ordering of Propositions
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Assertions
• Correctness criteria expressed as Boolean conditions 

that can be satisfied when a process reaches a given 
state

assert(condition)

• Always executable, if condition is true no effect!
• Validity is violated if there is at least one execution 

sequence in which the condition is false when the 
assert statement becomes executable.
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Assertion Claim
– We try to claim that 

when process
A()completes the 
value of state 
must be 2 and when 
process
B()completes it 
must be 0

– Is the claim true or 
false?

byte state = 1;
proctype A() {
(state == 1) -> 

state = state + 1;
assert(state == 2)
}

proctype B(){
(state == 1) ->

state = state - 1;
assert(state == 0)
}

init {run A(); run B()}



CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 6

Implementation 
Validation

George Blankenship 16

System Invariants
• Boolean conditions
• If true in initial system state remain true in all reachable 

states.
(independently of the execution sequence that leads to each specific state)

proctype monitor () { assert(invariant) 
• Once an instance of monitor has been started, it 

executes independently of the rest of the system; assert 
statement executable precisely once for every state of 
the system
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Deadlocks

• In a finite state system, all execution 
sequences either terminate or they cycle 
back to a previously visited state.

• Terminating sequences are not necessarily 
deadlocks.

• Distinguish between expected, proper, end-
states and unexpected ones.

Implementation 
Validation

George Blankenship 18

Unexpected States
• Unexpected end-states include cases of incomplete 

protocol specification. 
– i.e.: the unspecified reception.

• The final state in a terminating execution sequence 
must minimally satisfy the following:

– Every process instantiated has terminated

– All message channels are empty
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End-State
• Not all processes necessarily terminate.
• We must be able to identify individual process states as 

proper end-states.
• This is done with end-state labels:

proctype dijkstra()
{
end:  do
:: sema!p -> sema?v
od
}

• A state labeled end is a proper end-state
• Every process instantiated has either terminated or has reached a 

state marked as a proper end-state.
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Bad Cycles

• Progress States
– Finite sequence of states leading to an end state
– Computation moving towards completion

• Non-progress States
– Finite sequence of states not leading to end 

state
– No apparent movement towards completion
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Progress-States
• Marked states are called progress-states
• Based on explicit marking of states:
• There are no infinite behaviors of only unmarked 

states.
– Execution sequences that violate the above correctness claim are

called non-progress cycles

• There are no infinite behaviors that include 
marked states.
– Execution sequences that violate the latter claim are called 

livelocks.
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Non-Progress Cycles
• A progress-state label marks a state that must be executed for the 

protocol to make progress.
• Semaphore example: label the successful passing of a semaphore test 

as “progress”
proctype dijkstra() {

end: do

:: sema!p -> 

progress:  sema?v

od

}

• By marking the progress state we express the correctness criteria that 
passing the semaphore guard cannot be postponed infinitely long.
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Livelock
• An acceptance-state label is any label starting with the 

letter sequence “accept”
proctype dijkstra()
{
end:  do
:: sema!p -> 
accept:       sema?v
od
}

• We claim we cannot cycle through a series of p and v
operations. This claim is false.

• We can either prove it is false manually, or we can use an 
automated validator to provide a counter-example.
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Temporal Claim
• Supposed we want to express the temporal claim:

“every state in which property P is true is followed by a 
state in which property Q is true.”

• Two different interpretations of “follows” are possible:
– immediately follows
– eventually follows

• No assumption can be made in PROMELA about relative 
timing of process execution.

• Temporal claims define temporal ordering of properties of 
states.
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Temporal Claim as Impossible
• For every state in which property P is true is followed by a 

state in which property Q is true
• We could write: P->Q
• Since all our correctness criteria are based on properties 

that are claimed to be impossible, the temporal claims we 
use must also express ordering of properties that are 
impossible.

• The temporal claims are defined on complete execution 
sequences. Even if a prefix of the sequence is irrelevant, it 
must still be represented as a trivially-true sequence of 
propositions.
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• Thus P->Q can be expressed as:
– never { do :: skip od P->!Q }

This is the format of a temporal claim in 
PROMELA

… independent of the initial sequence of 
events, it is impossible for a state in which 
property P is true to be followed by a state 
in which property Q is true.

Never is there a P without Q
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Never Construct
• Suppose we want to express 

the temporal property that 
condition1 can never 
remain true infinitely long:

• We must find where 
condition1 may be:

a) false initially
b) becomes true eventually
c) remains true

never {

do

:: skip

:: condition1 -> break

od;

accept: do

:: condition1

od
}
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condition1
• skip is always true.
• when :: condition1 -> break

executes, it means condition1 turns true.
• condition1 in the second do stays true

never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}
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P->Q FSM
• The claim contains just one more state 

transition after condition1 becomes true.
• The claim is matched if there is at least one 

execution sequence in which condition1 
holds in two subsequent states.

• A claim can be seen as a finite state machine.
• The finite state machine above contains three 

states:
– the initial state
– the state labeled accept
– normal end state

never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}
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Livelock

• The correct version of the claim states that 
it would be an error (a livelock) if the 
machine can stay in the second state 
infinitely long.

• The second version is that it would be an 
error if the third state is reachable.



CSCI 234 - Design of Internet Protocols Implementation Validation

George Blankenship 11

Implementation 
Validation

George Blankenship 31

Never claims

• Never claims in combination with 
acceptance-state labels can express also the 
absence of non-progress cycles.

• The complexity of finding non-progress 
cycles directly with progress-state labels is 
smaller than the expense of the validation of 
a claim that specifies the same property.
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Message Loss
• Modeled explicitly with clauses that can steal an 

incoming message before it is processed.
• Claim: “it is always true that when the sender 

transmits a message, the receiver will eventually 
accept it.”

• The claim is a four-state machine:
– the initial state
– the two states that were labeled
– the normal end state
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System State Recognition
never {
do

:: len(receiver) == 0
:: receiver?[msg0] -> 
goto accept0

:: receiver?[msg1] -> 
goto accept1

od;
accept0:
do

:: !Receiver[2]:P0
od;
accept1:
do

:: !Receiver[2]:P1
od;
}

• At least one of the three conditions 
must be true in the initial system 
state.

• The claim remains in this state as 
long as receiver is empty.

• If receiver contains msg0 or 
msg1, it will change state to either 
accept0 or accept1.

• Once a transition is made, the claim 
can only remain in that state if the 
receiver process will never accept a 
message with the same sequence 
number.
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Process State Recognition
never {

do
:: len(receiver) == 0
:: receiver?[msg0] -> goto

accept0
:: receiver?[msg1] -> goto

accept1

od;

accept0:
do

:: !Receiver[2]:P0

od;

accept1:
do

:: !Receiver[2]:P1

od;
}

The receiver never passes the 
state labeled P0.

• The pid of init is 0, Sender is 
1, and Receiver is 2.

• Receiver[2] refers to the 
receiver process.

• Receiver[2]:P0 refers to 
that Receiver is currently in 
state labels P0.
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Exercise
a) How many reachable states do you 

predict will the following naive 
Promela model generate? 

b) Will the simulation terminate? 
c) Estimate the total number of 

reachable states that should be 
inspected in an exhaustive 
verification. Is it a finite number? 
Will a verification run terminate? 

d) What would happen if you had 
declared the variable to be a short 
instead of a byte ? 

init {
byte i = 0; 
do :: i = i+1 
od
} 


