
CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 1

Formal Validation George Blankenship 1

CSCI 234

Design of Internet Protocols:
Formal Validation

George Blankenship

Formal Validation George Blankenship 2

Outline

• Construction of a Formal Validation
• File Transfer Protocol
• Assumptions
• Transfer phases
• Model assumptions
• Modeling protocol layers

Formal Validation George Blankenship 3

Construction of a Formal Validation
• Build a high level prototype and verify

that the design criteria are met
• Protocol design is an iterative process.

Not likely to be correct first time
around

• Each time a design phase is completed,
be convinced it is error-free

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 2

Formal Validation George Blankenship 4

File Transfer Protocol

• A point-to-point protocol
• One sender and one receiver
• Provides end-to-end service

between two users on two different
machines

Formal Validation George Blankenship 5

4 Elements of the Protocol
1. Service Specification

a. connection establishment
b. termination
c. recovery from transmission errors
d. flow control strategy

2. Transfer ASCII text files
3. Low undetected bit error probability
4. User able to abort a file transfer in progress and

protocol able to recover from message loss

Formal Validation George Blankenship 6

Channel Assumptions

• Full-duplex transfer
– voice grade telephone lines

• Ignore networking issues
– i.e. routing

• Minimal time for message to travel is
approx 0.15 seconds

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 3

Formal Validation George Blankenship 7

Protocol Vocabulary
• Initiate a file transfer

transfer(file_descriptor)

• Interrupt a transfer in progress
Abort

• Message to the source file server to verify the file and size
open(file_descriptor)

• Connection is made with the remote file server
connect(size)

• Message to remote file server to create a new file of the given size
create(size)

• Message from remote file server to indicate whether an open or a create
request is accepted or rejected

accept(size)
reject(size)

Formal Validation George Blankenship 8

Transfer Process Phases

1. Establishment of a connection with
the local file server

2. Establishment of a connection with
the remote file server

3. Transfer of data
4. Orderly termination of the connection

Formal Validation George Blankenship 9

Connection Between File Servers
• Two steps

1. Initialization of the flow control protocol
2. A handshake with the remote system using the

connect and accept or reject message

• The synchronization of local and remote
flow control protocols is necessary to
guarantee that they agree on the initial
sequence numbers to be used

– A handshake using the message Sync and its
acknowledgment sync_ack

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 4

Formal Validation George Blankenship 10

Data Transfer
• We need messages for retrieving the data from the

file server and transmitting them to the remote
system

data(cnt, ptr)

• To signify the end of the transmission
eof

• Completion of a file transfer
close

• A simple flow control discipline that
acknowledges correctly received data

ack

Formal Validation George Blankenship 11

Message Format
• Messages minimally require:

– a type field
– optional data field

• Messages carry:
– sequence numbers
– checksum

struct {

unsigned type : 4;
unsigned seqno : 2;

unsigned char data[376];

unsigned char checksum[2];

} message;

Formal Validation George Blankenship 12

Procedure Rules
• Consider only the semantics of the protocol

ignoring the syntax
• Layers
• Design divided into several layers:

– Presentation layer: the user interacts with this
layer

– Session layer: controls the transfer itself
– Data link layer: assumed that it can lose

messages but not distort them

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 5

Formal Validation George Blankenship 13

Protocol Environment
• User process
• File server
• Data link
• Can be two user processes, one on each end of

the data link
– Users can submit a transfer request at any time
– After transfer request, originating user may also decide to abort a

transfer
– User waits for a response from the lower protocol layers, signaling

success or failure of a completed transfer

Formal Validation George Blankenship 14

User Layer
P proctype user_process(bit n){

user_to_pres[n]!transfer;
if

:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done
:: use_to_pres[n]!abort->goto Aborted

fi;
Aborted:
if

:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done

fi;
Done: skip
}

n - identifies the user and the channels that it accesses
transfer - a message ordinarily carry a parameter that points to the file transferred
#define QSZ N /* queue size */
chan use_to_pres[2] = [QSZ] of { byte };
chan pres_to_use[2] = [QSZ] of { byte };
chan pres_to_ses[2] = [QSZ] of { byte };
chan ses_to_pres[2] = [QSZ] of {byte,byte};
chan ses_to_flow[2] = [QSZ] of {byte,byte};
chan flow_to_ses[2] = [QSZ] of {byte,byte};
chan dll_to_flow[2] = [QSZ] of {byte,byte};
chan flow_to_dll[2] = [QSZ] of {byte,byte};

Formal Validation George Blankenship 15

Channels

• Channels for the synchronous communication
between the session layer and the file server

chan ses_to_fsrv[2] = [0] of { byte };
chan fsrv_to_ses[2] = [0] of { byte };

• Ten different types of message channels
• One copy being instantiated for each side of the

connection

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 6

Formal Validation George Blankenship 16

File Server/Presentation
• An incoming file transfer begins

with a create message.
• The file server responds with an

accept or a reject message.

• If the request is accepted zero or
more data messages follow.

• The file server falls back into its
initial state upon reception of the
final eof or close (on abort).

• Important at this level is when data
can be passed, not which data will
be passed

proctype fserver(bit n) {
int fd, size, ptr, cnt;
do
:: ses_to_fsrv[n]?create(size)->

if /*nondeterministic choice*/
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->
do
:: ses_to_fsrv[n]?data(cnt,ptr)
:: ses_to_fsrv[n]?eof->break /*abort*/
:: ses_to_fsrv[n]?close -> break
od

fi
:: ses_to_fsrv[n]?open(fd)-> /* outgoing */
...

od
}

Formal Validation George Blankenship 17

Presentation Layer
• Reasons for transfer to fail
1. Local system busy serving an

incoming file transfer
2. Local server rejects the request, e.g.,

file does not exist
3. Remote server rejects the request,

e.g., no space
4. Collision between incoming and

outgoing transfer requests
5. Transfer aborted by the user
• Reasons 1 and 4 are transient, may

disappear if request is repeated.

#define FATAL 1 /* failure type */

#define NON_FATAL 2 /* repeatable */
#define COMPLETE 3 /* success */

proctype present(bit n){
byte status, uabort;

IDLE:
do
:: use_to_pres[n]?transfer ->uabort = 0;goto TRANSFER
:: use_to_pres[n]?abort -> skip /* ignore */
od;

TRANSFER:
pres_to_ses[n]!transfer;
do
:: use_to_pres[n]?abort ->

if
:: (!uabort) ->uabort = 1;use_to_pres[n]!abort
:: (uabort) -> skip
fi

:: ses_to_pres[n]?accept -> goto DONE;
:: ses_to_pres[n]?reject(status) ->

if
:: (status == FATAL || uabort) ->goto FAIL
:: (status == NON_FATAL &&!uabort) ->goto

TRANSFER
fi

od;
DONE:

pres_to_use[n]!accept;
goto IDLE;

FAIL:
pres_to_use[n]!reject;
goto IDLE;

}

Formal Validation George Blankenship 18

Presentation Layer Assumption

• The main assumption the presentation layer
makes about the session layer is that it will
eventually respond to a transfer request with
either an accept or a reject message.

CSCI 234 - Design of Internet Protocols Formal Validation

George Blankenship 7

Formal Validation George Blankenship 19

Session Layer
• Mediator between

presentation and link layer
• Message arriving at data

link is queued to session
then to presentation

• Message created by
presentation is queued to
session and then queued to
link

proctype session(bit n) {
bit toggle;
byte type, status;

IDLE:
do
:: pres_to_ses[n]?type ->

if
:: (type == transfer) -> goto DATA_OUT
:: (type != transfer) -> /* ignore */
fi

:: flow_to_ses[n]?type ->
if
:: (type == connect) -> goto DATA_IN
:: (type != connect) ->/* ignore */
fi

od;
DATA_OUT:

...
DATA_IN:

...
}

DATA_IN:
ses_to_fsrv[n]!create;
do
:: fsrv_to_ses[n]?reject -> ses_to_flow[n]!reject;goto IDLE
:: fsrv_to_ses[n]?accept -> ses_to_flow[n]!accept;break
od;
... incoming data transfer ...
... close connection etc. ...

Formal Validation George Blankenship 20

Data Link Layer

• Data link is protected with
an error detection
protocol. Can arbitrarily
omit messages from the
sequence that is passed,
using some hidden oracle
to decide the fate of each
message

• This can be modeled as a
nondeterministic choice

proctype data_link(){
byte type, seq;
do
:: flow_to_dll[0]?type,seq ->

if
:: dll_to_flow[1]!type,seq
:: skip /* lose */
fi

:: flow_to_dll[1]?type,seq ->
if
:: dll_to_flow[0]!type,seq
:: skip /* lose */
fi

Od
}

Formal Validation George Blankenship 21

Correctness Requirements
• As a correctness requirement for the presentation layer we will identify

its valid end-states.
• There is only one valid end-state, the IDLE state.
• We replace IDLE with endIDLE.
• This is the state the presentation layer has to be when a transfer

terminates.
• Provided that the assumptions about the user layer and session layer

are true, it is possible to show that this requirement is satisfied.
• We look at the possibilities:
• The presentation layer may block in several statements, however,

according to the assumptions about the user and session layers none of
those statements can remain nonexecutable forever

