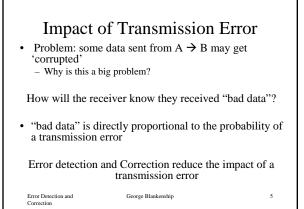


- Data may distorted (bit inversion)
- Data may be deleted (unrecognizable)
- Data may be added (merged messages)
- Data may be reordered (queuing delays)


George Blankenship

3

Error Detection and Correction

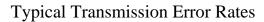
Place of Errors (Layered Model)

- All errors are bit-based
- Bit insertion and distortion takes place at Physical Layer (PHY) transmission errors
- Data Link (DL) Layer, provides welldefined service interface to the Network Layer and recovers from transmission errors
- Network Layer and above suffer from implementation (software/hardware) errors Error Detection and Correction
 George Blankenship
 4

Handling Transmission Errors

• Example:

Error Detection and Correction


- "hello, world" is the data
- "hzllo, world" received (detect? correct?)
- "xello, world" received (detect? correct?)
- "jello, world" received (detect? correct?)
- what about similar analysis with "caterpillar"?

6

- Required: error detection
- Helpful: *error correction*

George Blankenship

George Blankenship

Number of errors caused by data transmission is (typically) **orders of magnitude larger** than number of errors caused by hardware failures within computer systems

 Bit error probability (internal circuits) 	< 10 ⁻¹⁵
 Average error probability (optical cables) 	< 10 ⁻¹²
 Average error probability (coaxial cables) 	< 10 ⁻⁶
- Average error probability (switched telephone lines)	10-4 - 10-5
 Wireless channels are worse 	

George Blankenship

7

8

Error Detection and Correction

Root Causes of Transmission Errors

- Not completely unpredictable or unaccountable
- Two main causes:

– Linear distortion of the original data

(caused by attenuation)

– Non-linear distortion

(caused by echoes, cross-talks, white and impulse noise)

• Errors usually occur in bundles: burst error

George Blankenship

Error Detection and Correction

Error Measurement

- Several ways error characteristics can be expressed
 - Long-term average Bit Error Rate (BER)
 - Percentage of time BER does not exceed a given threshold value
 - Percentage of error-free seconds
- For the design of error control methods, the BER provides an indication of expected performance and the requirement for error control (detection and correction)

George Blankenship

9

Error Detection and Correction

Error Detection & Correction Assume error rate of 0.1% (BER) BER predicts that there will be one error for every 100 data items Average sentence of text: 125 characters (125 x 8 bits) One error every sentence of text EDC techniques IF receiver detects error and (perhaps) requests sender to retransmit (detection and retransmission) Receiver detects and corrects error without re-transmission (detection and correction - forward error correction)

Error Control Objective

- Main requirement for error control methods is to increase the reliability of transmissions
- Error control cannot impact the BER
- Error control must impact the effect of the BER
- No error control method can reduce the impact of the BER to 0 or be expected to catch all errors that can possibly occur

The probability of an undetected error is non-zero

Error Detection and Correction George Blankenship

"The Weakest Link"

- If channel error rate already lower than that of peripheral equipment, any error control scheme would
 Degrade performance
 - Degrade performance
 Decrease protocol reliability
- If the channel error is higher than that of peripheral equipment, any error control for messages between the peripherals would
 Degrade performance
 - Degrade performance
 Decrease protocol reliability
- Concentrate on the area with the highest impact on system reliability

George Blankenship

12

11

Error Detection and Correction

Appropriate Error Control

- An effective error control scheme should match the error characteristics of the channels
- Examples:
 - If a channel only produces insertion errors, a protocol protecting against deletions is useless
 - If a channel produces independent, single-bit errors with a relatively low probability, a simple parity scheme can surpass most sophisticated error control methods

George Blankenship

13

14

Error Detection and Correction

Error Model

• P_b (BER): probability a bit is received inverted

• P_i : Probability a block of size F is received correctly

 $P_{I} = (1 - P_{b})^{F}$ - (*P*_b=10⁻⁶) *P*_I=.999 (1000 bit block), .99 (10000 bit block)

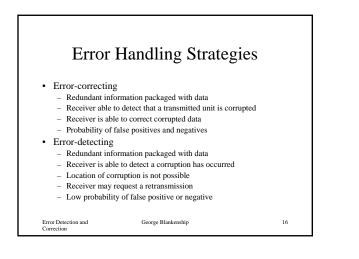
 P_2 : Probability that a PDU will be received with undetected error

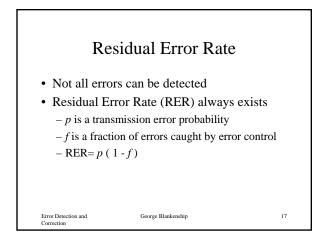
 $P_2 = 1 \text{-} P_1 \label{eq:P2}$ - t(P2000 haseundetected error

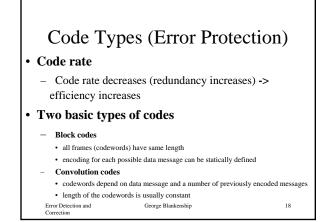
Transmission Error Detection

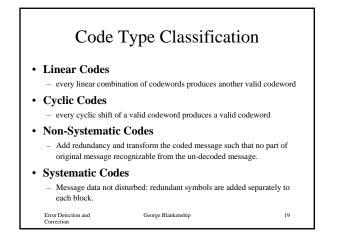
• Most important transmission errors show up as data:

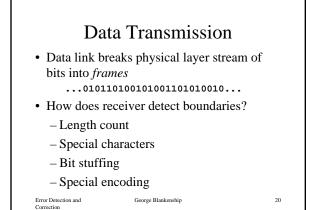
George Blankenship

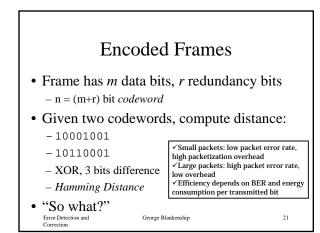

- Insertion
- Distortion

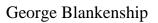

Error Detection and Correction

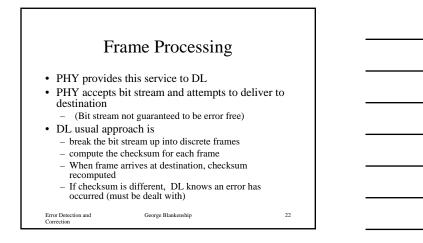

- Methods to verify data consistency
 - Duplication (voting)
 - Seal (signature)
 - Reordering (predictable pattern)

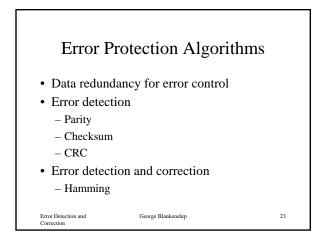

15

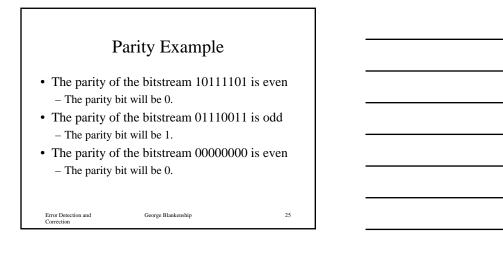

George Blankenship

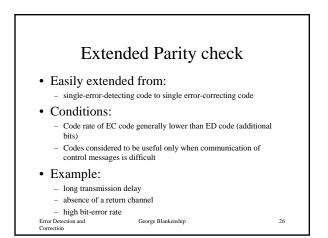


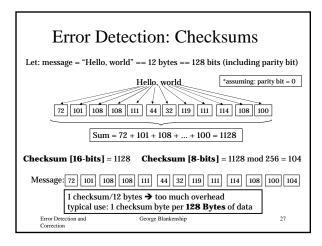




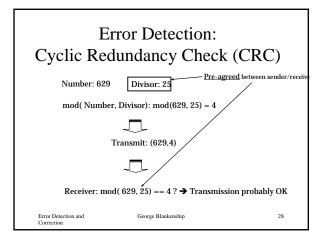




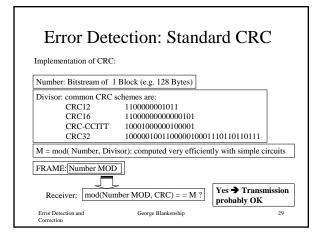


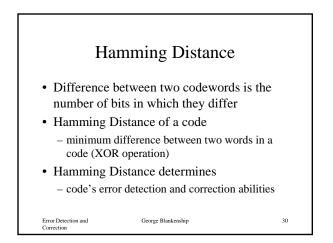


Error Det	ection: Parity
Error detection: some information is add PARITY	ed to message, that allows checking for errors.
• Even parity: value of par	ich character, called parity bit: ity bit is set to make total number of 1's even. ty bit is set to make total number of 1's odd.
Example: (ASCII) W: 1010 111 (odd parity) W: 0 1010 111 (even parity) W: 1 1010 111	Ne Start Bats Party Bap fonce Hyst
Error Detection and Correction	George Blankenship 24



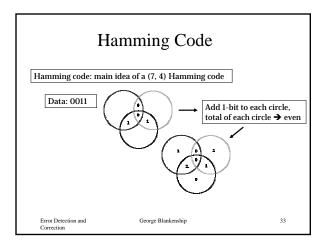




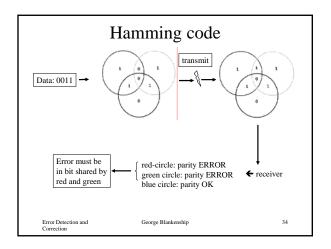


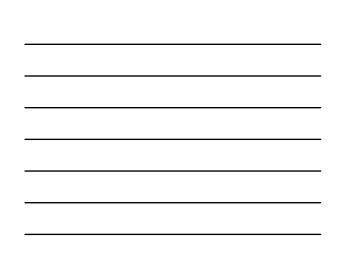
Error Correction: Hamming

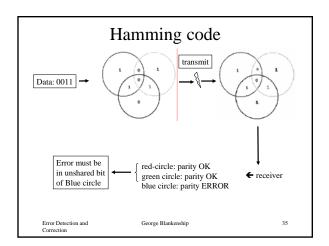
• Add code words to the data

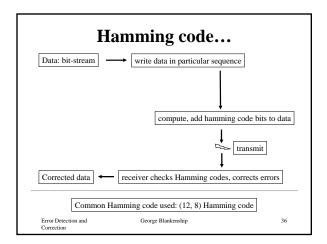

Error Detection and Correction

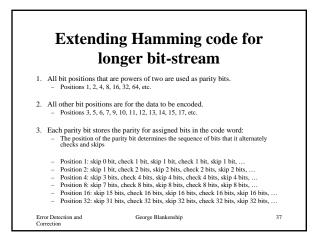
- Code words identify that data has not been modified with a reasonable probability of undetected error
- Code words can be used to identify probable location of modification with an significant probability of an undetected error

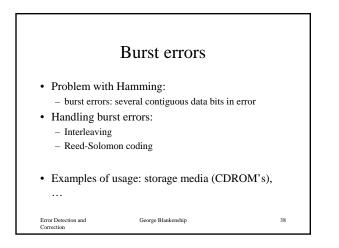

George Blankenship


31


Hamming Distance
Hamming distance of n
Any combination of up to n-1 bit errors per codeword can be detected
Any combination of up to (n-1)/2 errors per codeword can be corrected







Error Detection and Correction

Error Detection and Correction

Hash Function

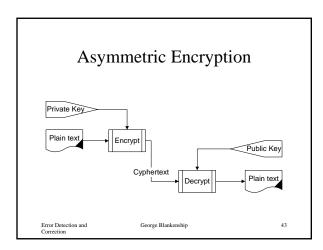
- A hash function H is a transformation that takes an input m and returns a fixed-size string, which is called the hash value h (that is, h = H(m)).
- It is desirable for the hash value to be unique for each input, but relative size of *m* and *h* usually prevent uniqueness

George Blankenship

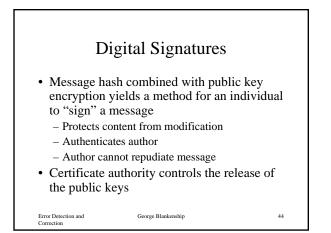
```
Message Hash
Message hash is a seal of message, change to message would generate new hash value
Hash is appended to message to allow recipient to validate content
Hash is encrypted to prevent re-computation of hash after modification of message
Encryption key is signature of author
```

George Blankenship

Public Key Encryption


- Central problem of encryption is key management
- It is impossible to distribute a random key for each possible dialog worldwide using symmetric key encryption
- Asymmetric key encryption allows each source to have a random key

George Blankenship


42

40

41

