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Outline

• Concurrent Processes
• Locks
• Synchronization
• Semaphores
• Producer/Consumer Algorithms
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Introduction

• What is a Concurrent Process?
– Multiple users access databases and use 

computer systems simultaneously.
– An airline reservation system used by travel 

agents and reservation clerks concurrently.
• Why Concurrent Process?

– Better transaction throughput and response time
– Better utilization of resource
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Concurrent Transactions

interleaved processing parallel processing

t1 t2 t1 t2

time
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CPU2
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Oops, something’s wrong
• Reserving a seat for a flight
• If concurrent access to data in DBMS, two users may 

try to book the same seat simultaneously
Agent 1 finds
seat 35G empty

Agent 2 finds
seat 35G empty

time

Agent 1 sets
seat 35G occupied

Agent 2 sets
seat 35G occupied

Concurrency George Blankenship 6

Debit Transactions
• Problems can occur when concurrent transactions 

execute in an uncontrolled manner.
• A, originally equals to 100, after the execution of  

T1 and T2, A is supposed to be 100+10-8=102

Read(A)
A=A-8

Write(A)

Read(A)
A=A+10

Write(A)

T2T1

Minus 8 from AAdd 10 To A

92

110

100

100

100

100

Value of A on the 
disk
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Concurrency Control Through 
Locks

• Lock: variable associated with each data item
– Describes status of item with regard to operations that can be 

performed on it
• Binary locks: 

– Locked
– unlocked

• Multiple-mode locks: 
– Read lock
– Write lock
– Unlocked

• Each data item can be in only one of the lock states
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Two Operations
T1

read_lock(Y);
read_item(Y);
unlock(Y);
write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2
read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Let’s assume serial schedule S1: T1;T2
Initial values: X=20, Y=30  → Result: X=50, Y=80
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Locks Alone Don’t Do the Trick!

T1

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Non-serializable! Result: X=50, Y=50

unlocked too early!

Let’s run T1 and T2 in interleaved fashion
Schedule S
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Basic Two-Phase Locking

• Consistent locking order imperative to avoid 
concurrency problems

• Two phases to execution schedules
– Phase I – acquire locks
– Phase II – unlock locks
– Once Phase II has begun, no locks may be acquired

• Residual issues
– reduction of concurrency
– Deadlock
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Example
T1’

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2’
read_lock(X);
read_item(X);
write_lock(Y);
unlock(X);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

• Both T1’ and T2’ follow the 2PL protocol
• Any schedule including T1’ and T2’ is guaranteed to be serializable
• Limits the amount of concurrency
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Conservative Two-Phase Locking

• Lock all items needed BEFORE  execution 
begins by predeclaring its read and write set

• If any of the items in read or write set is 
already locked (by other transactions), 
transaction waits (does not acquire any 
locks)

• Deadlock free but not very realistic
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Strict Two-Phase Locking

• Transaction does not release its write locks until 
AFTER it aborts/commits

• Not deadlock free but guarantees recoverable 
schedules

• strict schedule: transaction can neither read/write 
X until last transaction that wrote X has 
committed/aborted

• Most popular variation of two-phase locking
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Residual Issues

• Concurrency control subsystem is 
responsible for inserting locks at right 
places into your transaction
– Strict two-phase locking is widely used
– Requires use of waiting queue

• All two-phase locking protocols guarantee 
serializability

• Does not permit all possible serial schedules

Concurrency George Blankenship 15

Traffic Intersections
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Command Execution

Another
Command?

Execute
Command

No
Exit Loop

Yes

Enter Loop

Another
Command?

No
Exit Loop

Yes

Enter Loop

Wait for Child
to Terminate

Execute
Command

Execute
Command

…

(a) UNIX Shell (b) Windows Command Launch

fork()code CreateProcess()code
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Synchronizing Multiple Threads 
with a Shared Variable

…

Wait runTime
seconds

Initialize

CreateThread(…)

runFlag=FALSE

Terminate

Thread Work

Exit

runFlag?
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Critical Sections
shared double balance;

Code for p1 Code for p2
. . . . . .

balance = balance + amount; balance = balance - amount;
. . . . . .

balance+=amount balance-=amount

balance
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Time Slice Execution
…
load  R1, balance
load  R2, amount

…
load  R1, balance
load  R2, amount
sub   R1, R2
store R1, balance
…

add   R1, R2
store R1, balance
…

Timer interrupt

Timer interrupt

Execution of p1 Execution of p2
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Mutual Exclusion

• Only one process can be in the critical section at a 
time

• There is a race to execute critical sections
• The sections may be defined by different code in 

different processes
– ∴ cannot easily detect with static analysis

• Without mutual exclusion, results of multiple 
execution are not determinate

• Need an OS mechanism so programmer can 
resolve races
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Disabling Interrupts
shared double balance;

Code for p1 Code for p2
disableInterrupts(); disableInterrupts();
balance = balance + amount; balance = balance - amount;
enableInterrupts(); enableInterrupts();

• Interrupts could be disabled arbitrarily long
• Really only want to prevent p1 and p2 from 

interfering with one another; this blocks all pi

• Try using a shared “lock” variable
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Using a Lock Variable

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;
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Busy Wait Condition

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;
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Unsafe “Solution”
shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;

• Worse yet … another race condition …
• Is it possible to solve the problem?
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Atomic Lock Manipulation
enter(lock) { exit(lock) {
disableInterrupts(); disableInterrupts();

/* Loop until lock is TRUE */ lock = FALSE;
while(lock) { enableInterrupts();
/* Let interrupts occur */ }
enableInterrupts();
disableInterrupts();

}
lock = TRUE;
enableInterrupts();

}

• Bound the amount of time that interrupts are disabled
• Can include other code to check that it is OK to assign 
a lock
• … but this is still overkill …
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Processing Two Components
shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2
. . . . . .

/* Enter CS to delete elt */ /* Enter CS to update len */
enter(lock1); enter(lock2);
<delete element>; <update length>;

/* Exit CS */ /* Exit CS */
exit(lock1); exit(lock2);
<intermediate computation>; <intermediate computation>

/* Enter CS to update len */ /* Enter CS to add elt */
enter(lock2); enter(lock1);
<update length>; <add element>;

/* Exit CS */ /* Exit CS */
exit(lock2); exit(lock1);
. . . . . .
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Deadlock from Strict Two-Phase Locking
shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2
. . . . . .

/* Enter CS to delete elt */ /* Enter CS to update len */
enter(lock1); enter(lock2);
<delete element>; <update length>;
<intermediate computation>; <intermediate computation>

/* Enter CS to update len */ /* Enter CS to add elt */
enter(lock2); enter(lock1);
<update length>; <add element>;

/* Exit both CS */ /* Exit both CS */
exit(lock1); exit(lock2);
exit(lock2); exit(lock1);
. . . . . .
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Atomic Transactions

• A transaction is a list of operations
– When the system begins to execute the list, it must 

execute all of them without interruption, or
– It must not execute any at all

• Example: List manipulator
– Add or delete an element from a list
– Adjust the list descriptor, e.g., length

• Too heavyweight – need something simpler
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A Semaphore
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Dijkstra Semaphore

• Invented in the 1960s
• Conceptual OS mechanism, with no specific 

implementation defined (could be 
enter()/exit())

• Basis of all contemporary OS 
synchronization mechanisms 
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Solution Constraints

• Processes P0 and P1 enter critical sections
• Mutual exclusion

– Only one process at a time in the critical section
– Only processes competing for a critical section are 

involved in resolving who enters the section
• Fairness

– Once a process attempts to enter its critical section, it 
cannot be postponed indefinitely

– After requesting entry, only a bounded number of other 
processes may enter before the requesting process
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Solution Assumptions

• Memory read/writes are indivisible 
(simultaneous attempts result in some 
arbitrary order of access)

• There is no priority among the processes
• Relative speeds of the processes/processors 

is unknown
• Processes are cyclic and sequential
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Dijkstra Semaphore Definition

V(s): [s = s + 1]
P(s): [while(s == 0) {wait}; s = s - 1]

• Classic paper describes several software 
attempts to solve the problem
– Offered a software solution
– Proposed a simpler hardware-based solution

• A semaphore, s, is a nonnegative integer 
variable that can only be changed or tested 
by these two indivisible functions: 
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Solving the Canonical Problem

Proc_0() { proc_1() {
while(TRUE) { while(TRUE {
<compute section>; <compute section>;
P(mutex); P(mutex);

<critical section>; <critical section>;
V(mutex); V(mutex);

} }
} }

semaphore mutex = 1;
fork(proc_0, 0);
fork(proc_1, 0);
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Shared Account Balance Problem
Proc_0() { proc_1() {

. . . . . .
/* Enter the CS */ /* Enter the CS */

P(mutex); P(mutex);
balance += amount; balance -= amount;

V(mutex); V(mutex);
. . . . . .

} }

semaphore mutex = 1;

fork(proc_0, 0);
fork(proc_1, 0);
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Sharing Two Variables

semaphore s1 = 0;
semaphore s2 = 0;
fork(proc_A, 0);
fork(proc_B, 0);

proc_B() {
while(TRUE) {
/* Wait for proc_A */
P(s1);
retrieve(x);
<compute section B1>;
update(y);

/* Signal proc_A */
V(s2);
<compute section B2>;

}
}

proc_A() {
while(TRUE) {
<compute section A1>;
update(x);

/* Signal proc_B */
V(s1);
<compute section A2>;

/* Wait for proc_B */
P(s2);
retrieve(y);

}
}
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Device Controller 
Synchronization

• The semaphore principle is logically used 
with the busy and done flags in a controller

• Driver signals controller with a V(busy), 
then waits for completion with P(done)

• Controller waits for work with P(busy), then 
announces completion with V(done)
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Bounded Buffer Problem

Producer Consumer

Empty Pool

Full Pool
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Readers-Writers Problem
Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter
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Readers/Writers Problem
• Any number of readers may simultaneously 

read the file
• Only one writer at a time may write to the 

file
• If a writer is writing to the file, no reader 

may read it

Concurrency George Blankenship 41

Readers Can Share Resource

Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter
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Writers Must Have Exclusive Use
Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriter

Writer
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Solution Parameters

• First reader and writers compete for 
resource

• Last reader returns resource to open 
competition

• Writers must wait for all readers to finish
• Readers can starve writers
• Updates can be delayed without bound
• Need to give write precedence
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The Sleepy Barber

Waiting Room

Entrance to Waiting
Room (sliding door)

Entrance to Barber’s
Room (sliding door)

Shop Exit

• Barber can cut one person’s hair at a time
• Other customers wait in a waiting room
• Barber might not check waiting room
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Cigarette Smoker’s Problem

• Three smokers (processes)
• Each wish to use tobacco, papers, & 

matches
– Only need the three resources periodically
– Must have all at once

• 3 processes sharing 3 resources
– Solvable, but difficult
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Implementing Semaphores

• Minimize effect on the I/O system
• Processes are only blocked on their own 

critical sections (not critical sections that 
they should not care about)

• If disabling interrupts, be sure to bound the 
time they are disabled
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Implementing Semaphores:
Test and Set Instruction

FALSEm

Primary
Memory

…R3 …

Data
Register

CC
Register

(a) Before Executing TS

TRUEm

Primary
Memory

FALSER3 =0

Data
Register

CC
Register

(b) After Executing TS

• TS(m): [Reg_i = memory[m]; memory[m] = TRUE;]
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Using the TS Instruction

boolean s = FALSE;
. . .
while(TS(s)) ;
<critical section>
s = FALSE;
. . .

semaphore s = 1;
. . .
P(s) ;
<critical section>
V(s);
. . .
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General Semaphore
struct semaphore {
int value = <initial value>;
boolean mutex = FALSE;
boolean hold = TRUE;

};

shared struct semaphore s;

P(struct semaphore s) {
while(TS(s.mutex)) ;
s.value--;
if(s.value < 0) (
s.mutex = FALSE;
while(TS(s.hold)) ;

}
else
s.mutex = FALSE;

}

V(struct semaphore s) {
while(TS(s.mutex)) ;
s.value++;
if(s.value <= 0) (
while(!s.hold) ;
s.hold = FALSE;

}
s.mutex = FALSE;

}

Concurrency George Blankenship 50

Active/Passive Semaphores

• A process can dominate the semaphore
– Performs V operation, but continues to execute
– Performs another P operation before releasing the CPU
– Called a passive implementation of V

• Active implementation calls scheduler as part of 
the V operation.
– Changes semantics of semaphore!
– Cause people to rethink solutions
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Producer/Consumer Problem

• One or more producers are generating date 
and placing these in a buffer

• A single consumer is taking items out of the 
buffer one at time

• Only one producer or consumer may access 
the buffer at any one time
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Buffer Based Solution
• Two semaphores are used

– one to represent the amount of items in the buffer
– one to signal that it is all right to use the buffer

• Set flag to enter critical section before check other 
processes

• If another process is in the critical section when the flag is 
set, the process is blocked until the other process releases 
the critical section

• Deadlock is possible when two process set their flags to 
enter the critical section.  Now each process must wait for 
the other process to release the critical section
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Fairness

• Each process gets a turn at the critical 
section

• If a process wants the critical section, it sets 
its flag and may have to wait for its turn
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Producer Function
producer:
repeat
produce item v;
b[in] := v;
in := in + 1

forever;
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Consumer Function
consumer:
repeat
while in <= out do { nothing 
};
w := b[out];
out := out + 1;
consume item w

forever;
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Producer with Circular Buffer
producer:
repeat
produce item v;
while ( (in + 1) mod n = out) 
do { nothing };
b[in] := v;
in := (in + 1) mod n

forever;

Concurrency George Blankenship 57

Consumer with Circular Buffer
consumer
repeat
while in = out do { nothing 
};
w := b[out];
out := (out + 1) mod n;
consume item w

forever;
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Infinite Buffer

b[2] b[3] b[4]

out in

b[1] b[5] .  .  .  .

Note: shade area indicates portion of buffer that is occupied
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Message Passing

• Enforce mutual exclusion
• Exchange information

send (destination, message)
receive (source, message)
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Message Passing -
Synchronization

• Sender and receiver may or may not be 
blocking (waiting for message)

• Blocking send, blocking receive
– both sender and receiver are blocked until 

message is delivered
– called a rendezvous
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Message Passing -
Synchronization

• Nonblocking send, blocking receive
– sender continues processing such as sending 

messages as quickly as possible
– receiver is blocked until the requested message 

arrives
• Nonblocking send, nonblocking receive
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Direct Addressing
• Send primitive includes a specific identifier 

of the destination process
• Receive primitive could know ahead of time 

which process a message is expected
• Receive primitive could use source 

parameter to return a value when the receive 
operation has been performed
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Indirect Addressing
• Messages are sent to a shared data structure 

consisting of queues
• Queues are called mailboxes
• One process sends a message to the mailbox 

and the other process picks up the message 
from the mailbox
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General Message Format

Message Contents

Header

Body

Message Type
Destination ID

Source ID

Message Length
Control Info.


