
CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 1

Concurrency George Blankenship 1

CSCI 234

Design of Internet Protocols:
Concurrency

George Blankenship

Concurrency George Blankenship 2

Outline

• Concurrent Processes
• Locks
• Synchronization
• Semaphores
• Producer/Consumer Algorithms

Concurrency George Blankenship 3

Introduction

• What is a Concurrent Process?
– Multiple users access databases and use

computer systems simultaneously.
– An airline reservation system used by travel

agents and reservation clerks concurrently.
• Why Concurrent Process?

– Better transaction throughput and response time
– Better utilization of resource

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 2

Concurrency George Blankenship 4

Concurrent Transactions

interleaved processing parallel processing

t1 t2 t1 t2

time

CPU1

CPU2

A

B

A

B

CPU1

Concurrency George Blankenship 5

Oops, something’s wrong
• Reserving a seat for a flight
• If concurrent access to data in DBMS, two users may

try to book the same seat simultaneously
Agent 1 finds
seat 35G empty

Agent 2 finds
seat 35G empty

time

Agent 1 sets
seat 35G occupied

Agent 2 sets
seat 35G occupied

Concurrency George Blankenship 6

Debit Transactions
• Problems can occur when concurrent transactions

execute in an uncontrolled manner.
• A, originally equals to 100, after the execution of

T1 and T2, A is supposed to be 100+10-8=102

Read(A)
A=A-8

Write(A)

Read(A)
A=A+10

Write(A)

T2T1

Minus 8 from AAdd 10 To A

92

110

100

100

100

100

Value of A on the
disk

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 3

Concurrency George Blankenship 7

Concurrency Control Through
Locks

• Lock: variable associated with each data item
– Describes status of item with regard to operations that can be

performed on it
• Binary locks:

– Locked
– unlocked

• Multiple-mode locks:
– Read lock
– Write lock
– Unlocked

• Each data item can be in only one of the lock states

Concurrency George Blankenship 8

Two Operations
T1

read_lock(Y);
read_item(Y);
unlock(Y);
write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2
read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Let’s assume serial schedule S1: T1;T2
Initial values: X=20, Y=30 → Result: X=50, Y=80

Concurrency George Blankenship 9

Locks Alone Don’t Do the Trick!

T1

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Non-serializable! Result: X=50, Y=50

unlocked too early!

Let’s run T1 and T2 in interleaved fashion
Schedule S

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 4

Concurrency George Blankenship 10

Basic Two-Phase Locking

• Consistent locking order imperative to avoid
concurrency problems

• Two phases to execution schedules
– Phase I – acquire locks
– Phase II – unlock locks
– Once Phase II has begun, no locks may be acquired

• Residual issues
– reduction of concurrency
– Deadlock

Concurrency George Blankenship 11

Example
T1’

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T2’
read_lock(X);
read_item(X);
write_lock(Y);
unlock(X);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

• Both T1’ and T2’ follow the 2PL protocol
• Any schedule including T1’ and T2’ is guaranteed to be serializable
• Limits the amount of concurrency

Concurrency George Blankenship 12

Conservative Two-Phase Locking

• Lock all items needed BEFORE execution
begins by predeclaring its read and write set

• If any of the items in read or write set is
already locked (by other transactions),
transaction waits (does not acquire any
locks)

• Deadlock free but not very realistic

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 5

Concurrency George Blankenship 13

Strict Two-Phase Locking

• Transaction does not release its write locks until
AFTER it aborts/commits

• Not deadlock free but guarantees recoverable
schedules

• strict schedule: transaction can neither read/write
X until last transaction that wrote X has
committed/aborted

• Most popular variation of two-phase locking

Concurrency George Blankenship 14

Residual Issues

• Concurrency control subsystem is
responsible for inserting locks at right
places into your transaction
– Strict two-phase locking is widely used
– Requires use of waiting queue

• All two-phase locking protocols guarantee
serializability

• Does not permit all possible serial schedules

Concurrency George Blankenship 15

Traffic Intersections

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 6

Concurrency George Blankenship 16

Command Execution

Another
Command?

Execute
Command

No
Exit Loop

Yes

Enter Loop

Another
Command?

No
Exit Loop

Yes

Enter Loop

Wait for Child
to Terminate

Execute
Command

Execute
Command

…

(a) UNIX Shell (b) Windows Command Launch

fork()code CreateProcess()code

Concurrency George Blankenship 17

Synchronizing Multiple Threads
with a Shared Variable

…

Wait runTime
seconds

Initialize

CreateThread(…)

runFlag=FALSE

Terminate

Thread Work

Exit

runFlag?

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

Concurrency George Blankenship 18

Critical Sections
shared double balance;

Code for p1 Code for p2
.

balance = balance + amount; balance = balance - amount;
.

balance+=amount balance-=amount

balance

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 7

Concurrency George Blankenship 19

Time Slice Execution
…
load R1, balance
load R2, amount

…
load R1, balance
load R2, amount
sub R1, R2
store R1, balance
…

add R1, R2
store R1, balance
…

Timer interrupt

Timer interrupt

Execution of p1 Execution of p2

Concurrency George Blankenship 20

Mutual Exclusion

• Only one process can be in the critical section at a
time

• There is a race to execute critical sections
• The sections may be defined by different code in

different processes
– ∴ cannot easily detect with static analysis

• Without mutual exclusion, results of multiple
execution are not determinate

• Need an OS mechanism so programmer can
resolve races

Concurrency George Blankenship 21

Disabling Interrupts
shared double balance;

Code for p1 Code for p2
disableInterrupts(); disableInterrupts();
balance = balance + amount; balance = balance - amount;
enableInterrupts(); enableInterrupts();

• Interrupts could be disabled arbitrarily long
• Really only want to prevent p1 and p2 from

interfering with one another; this blocks all pi

• Try using a shared “lock” variable

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 8

Concurrency George Blankenship 22

Using a Lock Variable

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;

Concurrency George Blankenship 23

Busy Wait Condition

shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;

p1

p2

B
lo

ck
ed

at
 w
h
i
l
e

l
o
c
k

=

T
R
U
E

l
o
c
k

=

F
A
L
S
E

In
te

rr
up

t

In
te

rr
up

t

In
te

rr
up

t

Concurrency George Blankenship 24

Unsafe “Solution”
shared boolean lock = FALSE;
shared double balance;

Code for p1 Code for p2
/* Acquire the lock */ /* Acquire the lock */
while(lock) ; while(lock) ;
lock = TRUE; lock = TRUE;

/* Execute critical sect */ /* Execute critical sect */
balance = balance + amount; balance = balance - amount;

/* Release lock */ /* Release lock */
lock = FALSE; lock = FALSE;

• Worse yet … another race condition …
• Is it possible to solve the problem?

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 9

Concurrency George Blankenship 25

Atomic Lock Manipulation
enter(lock) { exit(lock) {
disableInterrupts(); disableInterrupts();

/* Loop until lock is TRUE */ lock = FALSE;
while(lock) { enableInterrupts();
/* Let interrupts occur */ }
enableInterrupts();
disableInterrupts();

}
lock = TRUE;
enableInterrupts();

}

• Bound the amount of time that interrupts are disabled
• Can include other code to check that it is OK to assign
a lock
• … but this is still overkill …

Concurrency George Blankenship 26

Processing Two Components
shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2
.

/* Enter CS to delete elt */ /* Enter CS to update len */
enter(lock1); enter(lock2);
<delete element>; <update length>;

/* Exit CS */ /* Exit CS */
exit(lock1); exit(lock2);
<intermediate computation>; <intermediate computation>

/* Enter CS to update len */ /* Enter CS to add elt */
enter(lock2); enter(lock1);
<update length>; <add element>;

/* Exit CS */ /* Exit CS */
exit(lock2); exit(lock1);
.

Concurrency George Blankenship 27

Deadlock from Strict Two-Phase Locking
shared boolean lock1 = FALSE;
shared boolean lock2 = FALSE;
shared list L;

Code for p1 Code for p2
.

/* Enter CS to delete elt */ /* Enter CS to update len */
enter(lock1); enter(lock2);
<delete element>; <update length>;
<intermediate computation>; <intermediate computation>

/* Enter CS to update len */ /* Enter CS to add elt */
enter(lock2); enter(lock1);
<update length>; <add element>;

/* Exit both CS */ /* Exit both CS */
exit(lock1); exit(lock2);
exit(lock2); exit(lock1);
.

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 10

Concurrency George Blankenship 28

Atomic Transactions

• A transaction is a list of operations
– When the system begins to execute the list, it must

execute all of them without interruption, or
– It must not execute any at all

• Example: List manipulator
– Add or delete an element from a list
– Adjust the list descriptor, e.g., length

• Too heavyweight – need something simpler

Concurrency George Blankenship 29

A Semaphore

Concurrency George Blankenship 30

Dijkstra Semaphore

• Invented in the 1960s
• Conceptual OS mechanism, with no specific

implementation defined (could be
enter()/exit())

• Basis of all contemporary OS
synchronization mechanisms

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 11

Concurrency George Blankenship 31

Solution Constraints

• Processes P0 and P1 enter critical sections
• Mutual exclusion

– Only one process at a time in the critical section
– Only processes competing for a critical section are

involved in resolving who enters the section
• Fairness

– Once a process attempts to enter its critical section, it
cannot be postponed indefinitely

– After requesting entry, only a bounded number of other
processes may enter before the requesting process

Concurrency George Blankenship 32

Solution Assumptions

• Memory read/writes are indivisible
(simultaneous attempts result in some
arbitrary order of access)

• There is no priority among the processes
• Relative speeds of the processes/processors

is unknown
• Processes are cyclic and sequential

Concurrency George Blankenship 33

Dijkstra Semaphore Definition

V(s): [s = s + 1]
P(s): [while(s == 0) {wait}; s = s - 1]

• Classic paper describes several software
attempts to solve the problem
– Offered a software solution
– Proposed a simpler hardware-based solution

• A semaphore, s, is a nonnegative integer
variable that can only be changed or tested
by these two indivisible functions:

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 12

Concurrency George Blankenship 34

Solving the Canonical Problem

Proc_0() { proc_1() {
while(TRUE) { while(TRUE {
<compute section>; <compute section>;
P(mutex); P(mutex);

<critical section>; <critical section>;
V(mutex); V(mutex);

} }
} }

semaphore mutex = 1;
fork(proc_0, 0);
fork(proc_1, 0);

Concurrency George Blankenship 35

Shared Account Balance Problem
Proc_0() { proc_1() {

.
/* Enter the CS */ /* Enter the CS */

P(mutex); P(mutex);
balance += amount; balance -= amount;

V(mutex); V(mutex);
.

} }

semaphore mutex = 1;

fork(proc_0, 0);
fork(proc_1, 0);

Concurrency George Blankenship 36

Sharing Two Variables

semaphore s1 = 0;
semaphore s2 = 0;
fork(proc_A, 0);
fork(proc_B, 0);

proc_B() {
while(TRUE) {
/* Wait for proc_A */
P(s1);
retrieve(x);
<compute section B1>;
update(y);

/* Signal proc_A */
V(s2);
<compute section B2>;

}
}

proc_A() {
while(TRUE) {
<compute section A1>;
update(x);

/* Signal proc_B */
V(s1);
<compute section A2>;

/* Wait for proc_B */
P(s2);
retrieve(y);

}
}

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 13

Concurrency George Blankenship 37

Device Controller
Synchronization

• The semaphore principle is logically used
with the busy and done flags in a controller

• Driver signals controller with a V(busy),
then waits for completion with P(done)

• Controller waits for work with P(busy), then
announces completion with V(done)

Concurrency George Blankenship 38

Bounded Buffer Problem

Producer Consumer

Empty Pool

Full Pool

Concurrency George Blankenship 39

Readers-Writers Problem
Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 14

Concurrency George Blankenship 40

Readers/Writers Problem
• Any number of readers may simultaneously

read the file
• Only one writer at a time may write to the

file
• If a writer is writing to the file, no reader

may read it

Concurrency George Blankenship 41

Readers Can Share Resource

Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriterWriter

Concurrency George Blankenship 42

Writers Must Have Exclusive Use
Reader

Shared Resource

ReaderReaderReaderReaderReaderReaderReader

WriterWriterWriterWriterWriterWriter

Writer

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 15

Concurrency George Blankenship 43

Solution Parameters

• First reader and writers compete for
resource

• Last reader returns resource to open
competition

• Writers must wait for all readers to finish
• Readers can starve writers
• Updates can be delayed without bound
• Need to give write precedence

Concurrency George Blankenship 44

The Sleepy Barber

Waiting Room

Entrance to Waiting
Room (sliding door)

Entrance to Barber’s
Room (sliding door)

Shop Exit

• Barber can cut one person’s hair at a time
• Other customers wait in a waiting room
• Barber might not check waiting room

Concurrency George Blankenship 45

Cigarette Smoker’s Problem

• Three smokers (processes)
• Each wish to use tobacco, papers, &

matches
– Only need the three resources periodically
– Must have all at once

• 3 processes sharing 3 resources
– Solvable, but difficult

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 16

Concurrency George Blankenship 46

Implementing Semaphores

• Minimize effect on the I/O system
• Processes are only blocked on their own

critical sections (not critical sections that
they should not care about)

• If disabling interrupts, be sure to bound the
time they are disabled

Concurrency George Blankenship 47

Implementing Semaphores:
Test and Set Instruction

FALSEm

Primary
Memory

…R3 …

Data
Register

CC
Register

(a) Before Executing TS

TRUEm

Primary
Memory

FALSER3 =0

Data
Register

CC
Register

(b) After Executing TS

• TS(m): [Reg_i = memory[m]; memory[m] = TRUE;]

Concurrency George Blankenship 48

Using the TS Instruction

boolean s = FALSE;
. . .
while(TS(s)) ;
<critical section>
s = FALSE;
. . .

semaphore s = 1;
. . .
P(s) ;
<critical section>
V(s);
. . .

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 17

Concurrency George Blankenship 49

General Semaphore
struct semaphore {
int value = <initial value>;
boolean mutex = FALSE;
boolean hold = TRUE;

};

shared struct semaphore s;

P(struct semaphore s) {
while(TS(s.mutex)) ;
s.value--;
if(s.value < 0) (
s.mutex = FALSE;
while(TS(s.hold)) ;

}
else
s.mutex = FALSE;

}

V(struct semaphore s) {
while(TS(s.mutex)) ;
s.value++;
if(s.value <= 0) (
while(!s.hold) ;
s.hold = FALSE;

}
s.mutex = FALSE;

}

Concurrency George Blankenship 50

Active/Passive Semaphores

• A process can dominate the semaphore
– Performs V operation, but continues to execute
– Performs another P operation before releasing the CPU
– Called a passive implementation of V

• Active implementation calls scheduler as part of
the V operation.
– Changes semantics of semaphore!
– Cause people to rethink solutions

Concurrency George Blankenship 51

Producer/Consumer Problem

• One or more producers are generating date
and placing these in a buffer

• A single consumer is taking items out of the
buffer one at time

• Only one producer or consumer may access
the buffer at any one time

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 18

Concurrency George Blankenship 52

Buffer Based Solution
• Two semaphores are used

– one to represent the amount of items in the buffer
– one to signal that it is all right to use the buffer

• Set flag to enter critical section before check other
processes

• If another process is in the critical section when the flag is
set, the process is blocked until the other process releases
the critical section

• Deadlock is possible when two process set their flags to
enter the critical section. Now each process must wait for
the other process to release the critical section

Concurrency George Blankenship 53

Fairness

• Each process gets a turn at the critical
section

• If a process wants the critical section, it sets
its flag and may have to wait for its turn

Concurrency George Blankenship 54

Producer Function
producer:
repeat
produce item v;
b[in] := v;
in := in + 1

forever;

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 19

Concurrency George Blankenship 55

Consumer Function
consumer:
repeat
while in <= out do { nothing
};
w := b[out];
out := out + 1;
consume item w

forever;

Concurrency George Blankenship 56

Producer with Circular Buffer
producer:
repeat
produce item v;
while ((in + 1) mod n = out)
do { nothing };
b[in] := v;
in := (in + 1) mod n

forever;

Concurrency George Blankenship 57

Consumer with Circular Buffer
consumer
repeat
while in = out do { nothing
};
w := b[out];
out := (out + 1) mod n;
consume item w

forever;

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 20

Concurrency George Blankenship 58

Infinite Buffer

b[2] b[3] b[4]

out in

b[1] b[5]

Note: shade area indicates portion of buffer that is occupied

Concurrency George Blankenship 59

Message Passing

• Enforce mutual exclusion
• Exchange information

send (destination, message)
receive (source, message)

Concurrency George Blankenship 60

Message Passing -
Synchronization

• Sender and receiver may or may not be
blocking (waiting for message)

• Blocking send, blocking receive
– both sender and receiver are blocked until

message is delivered
– called a rendezvous

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 21

Concurrency George Blankenship 61

Message Passing -
Synchronization

• Nonblocking send, blocking receive
– sender continues processing such as sending

messages as quickly as possible
– receiver is blocked until the requested message

arrives
• Nonblocking send, nonblocking receive

Concurrency George Blankenship 62

Direct Addressing
• Send primitive includes a specific identifier

of the destination process
• Receive primitive could know ahead of time

which process a message is expected
• Receive primitive could use source

parameter to return a value when the receive
operation has been performed

Concurrency George Blankenship 63

Indirect Addressing
• Messages are sent to a shared data structure

consisting of queues
• Queues are called mailboxes
• One process sends a message to the mailbox

and the other process picks up the message
from the mailbox

CSCI 234 - Design of Internet Protocols Concurrency

George Blankenship 22

Concurrency George Blankenship 64

General Message Format

Message Contents

Header

Body

Message Type
Destination ID

Source ID

Message Length
Control Info.

