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Abstract. Computability-theoretic investigation of algorithmic complexity

of isomorphisms between countable structures is a key topic in computable
structure theory since Fröhlich and Shepherdson, Mal’cev, and Metakides and

Nerode. A computable structure A is called computably categorical if for every

computable isomorphic B, there is a computable isomorphism from A onto B.
By relativizing the notion of computable categoricity to a Turing degree d,

we obtain the notion of d-computable categoricity. For the case when d is

0(n−1), we also speak about ∆0
n-categoricity, for n ≥ 1. More generally, A

is relatively ∆0
n-categorical if for every isomorphic B, there is an isomorphism

that is ∆0
n relative to the atomic diagram of B. Equivalently, A is relatively

∆0
n-categorical if and only if A has a computably enumerable Scott family of

computable (infinitary) Σn formulas. Relative ∆0
n-categoricity implies ∆0

n-

categoricity, but not vice versa.
In this paper, we present an example of a computable Fräıssé limit that is

computably categorical (that is, ∆0
1-categorical) but not relatively computably

categorical. We also present examples of ∆0
2-categorical but not relatively

∆0
2-categorical structures in natural classes such as trees of finite and infi-

nite heights, and homogenous, completely decomposable, abelian groups. It

is known that for structures from these classes computable categoricity and

relative computable categoricity coincide.
The categoricity spectrum of a computable structure M is the set of all

Turing degrees d such that M is d-computably categorical. The degree of

categoricity of M is the least degree in the categoricity spectrum of M, if
such a degree exists. It provides the exact level of categoricity of the structure.

In this paper, we compute degrees of categoricity for relatively ∆0
2-categorical

abelian p-groups and for relatively ∆0
3-categorical Boolean algebras.

1. Introduction and preliminaries

In computable model theory we use the tools and techniques of computability
theory to investigate algorithmic content of notions and constructions in classical
mathematics. Since isomorphisms may not transfer computability-theoretic proper-
ties of computable structures, computability theorists are interested in computable
isomorphisms. This investigation has been one of the main topics in computable
model theory. It dates back to Fröhlich and Shepherdson [19] who produced ex-
amples of isomorphic computable fields that are not computably isomorphic. We
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consider only countable structures for computable (often finite) languages. All fi-
nite structures are computable. An infinite structure A is computable if its universe
can be identified with the set ω of natural numbers in such a way that the rela-
tions and operations of A are uniformly computable; that is, its atomic diagram
is computable. We say that a computable structure A is computably categorical
if for every computable structure B isomorphic to A, there exists a computable
isomorphism from A onto B.

The notion of computable categoricity has been extended to higher level of hy-
perarithmetic hierarchy. A computable structure A is ∆0

α-categorical, where α be
a computable ordinal, if for every computable structure B isomorphic to A, there
exists a ∆0

α isomorphism. For example, Barker [6] proved that for every computable
ordinal α, there is a ∆0

2α+2-categorical but not ∆0
2α+1-categorical abelian p-group.

More generally, a computable structure A is relatively ∆0
α-categorical if for every

B isomorphic to A, there is an isomorphism from A to B, which is ∆0
α relative

to (the atomic diagram of)c B. For example, every computable equivalence struc-
ture is relatively ∆0

3-categorical. Clearly, a relatively ∆0
α-categorical structure is

∆0
α-categorical.

There is a powerful syntactic condition that involves the existence of certain Scott
families, which implies ∆0

α-categoricity and is equivalent to relative ∆0
α-categoricity.

This connection between computability and definability is one of the main themes
in computable model theory. A Scott family for a structure A is a countable family
Φ of Lω1ω-formulas, with finitely many fixed parameters from A, such that:

(i) Each finite tuple in A satisfies some ψ ∈ Φ;

(ii) If a, b are tuples in A, of the same length, satisfying the same formulas in
Φ, then there is an automorphism of A, which maps a to b.

Ash [3] defined computable Σα and Πα formulas of Lω1ω, where α is a computable
ordinal, recursively and simultaneously and together with their Gödel numbers.
The computable Σ0 and Π0 formulas are the finitary quantifier-free formulas. The
computable Σα+1 formulas are of the form∨

n∈We

∃ynψn(x, yn),

where for n ∈We, ψn is a Πα formula indexed by its Gödel number n, and ∃yn is a
finite block of existential quantifiers. Similarly, Πα+1 formulas are c.e. conjunctions
of ∀Σα formulas. If α is a limit ordinal, then Σα (Πα, respectively) formulas are of
the form

∨
n∈We

ψn (
∧

n∈We

ψn, respectively), such that there is a sequence (αn)n∈We

of ordinals less than α, given by the ordinal notation for α, and every ψn is a Σαn

(Παn , respectively) formula. For a more precise definition see [3]. A formally Σ0
α

Scott family is a Σ0
α Scott family of computable Σα formulas.

The following equivalence (i)⇔(ii)⇔(iii) for a computable structure A was estab-
lished by Goncharov [23] for α = 1, and by Ash, Knight, Manasse, and Slaman [4]
and independently by Chisholm [11] for any computable ordinal α.

(i) The structure A is relatively ∆0
α-categorical.

(ii) The structure A has a formally Σ0
α Scott family.

(iii) The structure A has a c.e. Scott family consisting of computable Σα formu-
las.
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It follows that a computable structure is relatively computably categorical if and
only if it has a c.e. Scott family of (finitary) existential formulas.

Goncharov [22] was the first to show that computable categoricity does not al-
ways coincide with relative computable categoricity. For his example, Goncharov
used a family of sets with special enumeration properties constructed by Seliv-
anov [42]. These structures are somewhat pathological and, for example, cannot be
found in the classes of linear orderings [24, 40], Boolean algebras [24, 41, 33], trees
of finite height [34], abelian p-groups [21, 43, 7], equivalence structures [9], injection
structures [10], algebraic fields with splitting algorithms [39]. However, Hirschfeldt,
Khoussainov, Shore, and Slinko [28] established that there are computably categor-
ical but not relatively computably categorical structures in the following classes:
partial orders, lattices, 2-step nilpotent groups, commutative semigroups, and in-
tegral domains of arbitrary characteristic. Hirschfeldt, Kramer, R. Miller, and
Shlapentokh [27] showed that there is a computably categorical algebraic field,
which is not relatively computably categorical. In this paper, we further investi-
gate effectively categorical structures for which computablility-theoretic properties
of isomorphisms do not come from corresponding definability.

In Section 2, we construct a computable structure A that is a Fräıssé limit, which
is computably categorical but not relatively computably categorical. The language
of A can be finite or it can be relational, but not both. Moreover, the structure A
is 1-decidable, that is, its ∃-diagram (equivalently, ∀-diagram) is decidable. This is
optimal since Goncharov [23] proved that every 2-decidable computably categorical
structure must be relatively computably categorical.

In [25] Goncharov, Harizanov, Knight, McCoy, R. Miller, and Solomon lifted
Goncharov’s result to higher levels in the hyperarithmetic hierarchy by showing
that for every computable successor ordinal α > 1, there is a ∆0

α-categorical but
not relatively ∆0

α-categorical structure. Chisholm, Fokina, Goncharov, Harizanov,
Knight, and Quinn [12] established a similar result for computable limit ordinals.
The structures we constructed in [25, 12] are very complicated and unnatural. Thus,
our goal in this paper is to find such structures in natural classes. We focus on α = 2.
That is, we present some new examples of structures in natural classes, which are
∆0

2-categorical but not relatively ∆0
2-categorical. For some natural classes, there

are no such examples. For example, Cenzer, Harizanov, and Remmel [10] showed
that every ∆0

2-categorical injection structure is relatively ∆0
2-categorical. Bazhenov

[8] and Harris [26] independently showed that for Boolean algebras the notions of
∆0

2-categoricity and relative ∆0
2-categoricity coincide.

More specifically, in Section 3, we build ∆0
2-categorical but not relatively ∆0

2-
categorical trees of finite and infinite heights. Here, a tree can be viewed both as
a partial order and as a directed graph. In Section 4, we prove that there is a
homogenous completely decomposable abelian group, which is ∆0

2-categorical but
not relatively ∆0

2-categorical. Our results complement the following results. Kach
and Turetsky [30] showed that there exists a ∆0

2-categorical equivalence structure
M, which is not relatively ∆0

2-categorical. Downey, Melnikov and Ng [16] built
examples of abelian p-groups that show that the notions of ∆0

2-categoricity and
relative ∆0

2-categoricity do not coincide for these groups. However, it still remains
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open whether there is a ∆0
2-categorical linear order, which is not relatively ∆0

2-
categorical, although McCoy [35] characterized relatively ∆0

2-categorical linear or-
ders. Frolov [20] announced that there is a ∆0

3-categorical linear order that is not
relatively ∆0

3-categorical.

In this paper, we also investigate the degrees of categoricity of structures in
natural classes. This notion was introduced in computable model theory relatively
recently by Fokina, Kalimullin, and R. Miller [18], and tries to capture the least
degree in the set of all Turing degrees capable of computing isomorphisms between
computable isomorphic copies of structures. More precisely, the categoricity spec-
trum of a computable structure A is the following set of Turing degrees:

CatSpec(A) = {d : A is d-computably categorical}.

The degree of categoricity of A, if it exists, is the least Turing degree in CatSpec(A).
Not every computable structure has the degree of categoricity, as shown by R. Miller
[37] and by Fokina, Frolov, and Kalimullin [17].

Fokina, Kalimullin, and R. Miller [18] investigated which arithmetic degrees can
be degrees of categoricity of computable structures. Csima, Franklin, and Shore
[13] extended their results to hyperarithmetic degrees. For sets X and Y , we say
that Y is c.e. in and above (c.e.a. in) X if Y is c.e. relative to X, and X ≤T Y .
Csima, Franklin, and Shore [13] proved that for every computable ordinal α, 0(α)

is the degree of categoricity. They also established that for a computable successor
ordinal α, every degree d that is c.e.a. in 0(α) is the degree of categoricity. There
are also negative results in [18, 13]. If d is a non-hyperarithmetic degree, then
d cannot be the degree of categoricity, so there are only countably many degrees
of categoricity. Anderson and Csima [1] showed that there is a Σ0

2 degree that is
not a degree of categoricity, while is not known whether there is such ∆0

2 degree.
They also proved that there is a noncomputable degree d ≤ 0′′ such that if two
computable structures are d-computably isomorphic, then they are computably
isomorphic.

In Section 5, we compute the degrees of categoricity for relatively ∆0
2-categorical

abelian p-groups and for relatively ∆0
3-categorical Boolean algebras. Both results

are as expected and show typical behavior of natural structures with regard to
the degrees of categoricity. Our result about Boolean algebras extends Bazhenov’s
investigation in [8] where he computed the degrees of categoricity for relatively
∆0

2-categorical Boolean algebras.

2. Computably categorical but not relatively computably
categorical Fräıssé limits

For a computable ordinal α, the notions of ∆0
α-categoricity and relative ∆0

α-
categoricity of a computable structure A coincide if A satisfies certain extra de-
cidability conditions (see Goncharov [23] and Ash [2]). A structure A is called
n-decidable, for n ≥ 1, if the Σn-diagram of A is decidable. Goncharov [23] proved
that if A is 2-decidable, then computable categoricity and relative computable
categoricity of A coincide. Kudinov [32] showed that Goncharov’s assumption of
2-decidability cannot be weakened to 1-decidability, by giving an example of 1-
decidable and computably categorical structure, which is not relatively computably
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categorical. On the other hand, Downey, Kach, Lempp, and Turetsky [14] showed
that any 1-decidable computably categorical structure is relatively ∆0

2-categorical.

The proofs by Goncharov and by Downey, Kach, Lempp, and Turetsky use the
decidability of the structure to determine if certain finitely generated substructures
can be extended to various larger finitely generated substructures. Because of the
special properties of a Fräıssé limit, one might expect that all such questions would
be trivial to determine, and so the decidability condition could be weakened or
dropped entirely for such structures. However, this is not the case. Here, we give
an example of 1-decidable and computably categorical Fräıssé limit, which is not
relatively computably categorical.

Let us recall the definition of a Fräıssé limit (see [29, Chapter 6]). The age of a
structure M is the class of all finitely generated structures that can be embedded
in M. Fräıssé showed that a (nonempty) finite or countable class K of finitely
generated structures is the age of a finite or a countable structure if and only if K
has the hereditary property and the joint embedding property. A class K has the
hereditary property if whenever C ∈ K and S is a finitely generated substructure of
C, then S is isomorphic to some structure in K. A class K has the joint embedding
property if for every B, C ∈ K there is D ∈ K such that B and C embed into D.
A structure U is ultrahomogeneous if every isomorphism between finitely generated
substructures of U extends to an automorphism of U .

Definition 1. (see [29, Chapter 6]) A structure A is a Fräıssé limit of a class of
finitely generated structures K if A is countable, ultrahomogeneous, and has age K.

Fräıssé proved that the Fräıssé limit of a class of finitely generated structures
is unique up to isomorphism. We say that a structure A is a Fräıssé limit if for
some class K, A is the Fräıssé limit of K. First we show that every Fräıssé limit is
relatively ∆0

2-categorical.

Theorem 1. Let A be a computable structure, which is a Fräıssé limit. Then A is
relatively ∆0

2-categorical.

Proof. Because of ultrahomogeneity, we can construct isomorphisms between A
and an isomorphic structure B using a back-and-forth argument, as long as we
can determine for every a ∈ A and b ∈ B, whether there is an isomorphism from
the structure generated by a to the structure generated by b, which maps a to b in
order. This can be determined by (B)′, since there is such an isomorphism precisely
if there is no atomic formula φ with A |= φ(a) and B 6|= φ(b). This is a Π0

1 condition
relative to A⊕ B ≡T B.

Therefore, we can use (B)′ as an oracle to perform the back-and-forth construc-
tion of an isomorphism, and so there is an isomorphism that is ∆0

2 relative to B. �

Remark. Note that if the language of A is finite and relational, then there are
only finitely many atomic formulas φ to consider, and the set of such formulas can
be effectively determined. Hence, if the language is finite and relational, then a
Fräıssé limit is necessarily relatively computably categorical.

Theorem 2. There is a 1-decidable structure F that is a Fräıssé limit and com-
putably categorical, but not relatively computably categorical. Moreover, the lan-
guage for such F can be finite or it can be relational.
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Proof. The construction we present here is a modification of the first construction
in Theorem 3.3 by Downey, Kach, Lempp, and Turetsky [14], where the structure
they build is, in particular, 1-decidable, computably categorical but not relatively
computably categorical. The only new ingredient we add is to make the resulting
structure a Fräıssé limit. We sketch the original construction and explain the
modifications we must make to ensure that the resulting structure is a Fräıssé
limit. A more formal proof can be easily recovered from the original proof in [14].

The original construction is an undirected graph. To assure that the structure
is not relatively computably categorical, we diagonalize agains all potential c.e.
Scott families of Σ1 formulas, with finitely many parameters. This is done by
creating infinitely many connected components that are all accumulation points in
the Σ1 type space (details follow); this is similar to the technique used in Kudinov’s
construction in [32]. Then for any potential c.e. Scott family of Σ1 formulas, there
must be some accumulation point in a component disjoint from the finitely many
parameters of the family with the following property. Any Σ1 formula from the
Scott family, which holds of the accumulation point would also need to hold of any
other point that is “sufficiently close” in the type space, contradicting the definition
of a Scott family.

The original construction created these accumulation points as vertices with
loops of various sizes coming out of them. For each accumulation point, there
would be a pair of computable sequences {nk}k∈ω and {mk}k∈ω, chosen exclusively
for this accumulation point. For every k, there would be a vertex vk with attached
loops of sizes n0, . . . , nk and a loop of size mk. The loop of size mk is meant to
identify the component corresponding to vk, so loops of this size are not used in
any other component of the construction. There would also be a vertex v∞ with
attached loops n0, n1, . . . Each vk and v∞ would also have infinitely many rays –
non-branching infinite paths originating from the vertex. The Σ1 type of v∞ is then
the limit of the Σ1 types of the vk.

The construction took place on a tree of strategies, where each accumulation
point was created by an individual strategy. Because a strategy might be visited
only finitely many times in the construction, not all strategies would create the full
set of vertices described above. Each time a strategy was visited, it performed one
of the following steps, in alternation:

• Increment k, choose nk+1 and attach a loop of size nk+1 to v∞;
• Choose mk. Create the full vk component.

Thus, if a strategy was only visited finitely many times, the v∞-component would
have loops of sizes n0, . . . , nk+1, and the components v0, . . . , vk−1 would have all
been created, and possibly vk as well. Numbers nk and mk are always chosen
larger than the current stage, and two distinct strategies choose completely distinct
numbers nk and mk. That is, any number is chosen by at most one strategy.

Notice that each time the strategy first chooses a sufficiently large new nk+1

and attaches a corresponding loop to v∞. Only after that it chooses a new mk

and creates the vk component. This ensures that the resulting structure is com-
putably categorical. The fact that each component has infinitely many infinite rays
makes the structure 1-decidable. Finally, the structure is not relatively computably
categorical, as the construction destroys any potential Scott family.
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We describe now two ways of modifying this construction so that the structure
becomes a Fräıssé limit while still being computably categorical, 1-decidable and
not relatively computably categorical. The first uses a finite language with function
symbols, while the second uses an infinite relational language. Let

L1 = {E, f, g, h},

where E is a binary relation symbol and f , g and h are unary function symbols.
Let

L∞ = {E}∪{Ui,j : j < i∧i, j ∈ ω}∪{Vi,j : j ≤ i∧i, j ∈ ω}∪{Ri : i ∈ ω}∪{Si : i ∈ ω},

where E is a binary relation symbol and each Ui,j , Vi,j , Ri and Si is a unary relation
symbol.

The intention is that E is the edge relation of the graph from the original con-
struction. That is, in both cases, the reduct of the structures we make to the
language {E} will be the original structure in [14]. We will now describe the new
functions and relations on the structure.

Suppose that v is one of the vk or v∞, and a0, . . . , ank−2 are vertices with vEa0,
aiEai+1 for all i < nk − 2, and ank−2Ev; that is, v, a0, . . . , ank−2 is the loop of size
nk attached to v. Suppose also that a0 has lower Gödel number than ank−2, so that
we have chosen a particular orientation of the loop. Then we define f(ai) = ai+1,
and f(ank−2) = v. We also define g(ai+1) = ai and g(a0) = v. So f “walks” along
the loop in one direction, and g “walks” along it in the other direction. We also
define Unk,i(ai) to hold for every i < nk, while Unk,i(x) fails to hold for any other x.

For vk, suppose that a0, . . . , amk−2 are vertices as above, so that vk, a0, . . . , amk−2
is the loop of size mk attached to vk, again with a chosen orientation. Then we
define f(ai) = ai+1, f(amk−2) = vk and f(vk) = a0. We also define g(ai+1) = ai,
g(a0) = vk and g(vk) = amk−2. So, again, f and g walk along the loop in the
opposite directions, but the walks continue through vk. We also define Vmk,i(ai)
to hold, and Vmk,i(x) fails to hold for any other x, for every i < mk. Finally, we
define Vmk,mk

(z) to hold for every vertex z in the same component as vk.

Suppose that v is one of the vk’s or v∞, and consider a ray of the form a0, a1, . . .
with vEa0 and aiEai+1 for all i ∈ ω. For infinitely many of these rays, we define
f(ai) = ai+1, g(ai+1) = ai and g(a0) = v, and for infinitely many rays, we define
g(ai) = ai+1, f(ai+1) = ai and f(a0) = v. So for infinitely many rays, f walks away
from v, while g walks towards v, and for infinitely many rays the reverse holds. For
every ray, we define Ri(ai) to hold.

For v∞, we choose some a0 from some ray with g(a0) = v∞ and define f(v∞) =
a0. We choose some b0 from some ray with f(b0) = v∞ and define g(v∞) = b0.

Suppose that v is one of the vk’s or v∞, and a is part of the loop of size n0 with
g(a) = v. Then we define h(v) = a. For every other x, we define h(x) = f(x).

For every vertex x in every component created by strategy i from the priority
tree, we define Si(x) to hold.

Claim 1. In both L1 and L∞, if x and y generate substructures that are isomorphic
via an isomorphism mapping x to y, then there is an automorphism of the full
structure F mapping x to y.
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Proof. We prove the result for singletons x and y. The general case proceeds
similarly. The point is that if x 6= y, then they must both be vertices from
loops/rays within the same component, and they must be the same length along
those loops/rays. Then, loops are identified uniquely and for any two rays, there is
an automorphism switching those rays and fixing the remainder of the structure.
The argument is slightly longer for L∞, because rays come in two sorts, and there
are two distinguished rays in the component of v∞.

In L1, through f or g, the substructure generated by x contains some vertex vk
or v∞. The same is true for y. Through h, the substructure also contains the entire
loop of size n0. Since n0 is unique to some strategy from the priority tree, x and y
are both placed by the same strategy.

In L∞, there is some i such that Si(x) and Si(y) hold. Hence x and y must
again both be placed by the same strategy.

In L1, if the substructure generated by x contains vk, then through f(vk) it also
contains the loop of size mk. If the substructure contains v∞, then through f(v∞)
it also contains an infinite ray with f(v∞) = a0. The same holds for y. This loop
or ray uniquely characterizes the component, so x and y must be part of the same
component.

In L∞, if the component of x contains vk, then Vmk,mk
(x) holds. If, instead, it

contains v∞, then no Vmk,mk
(x) holds for any k. The same is true for y. Hence x

and y must be part of the same component.

In L1, there are four possibilities: f i(x) = v and gj(x) = v for some i and j;
f i(x) = v for some i but gj(x) 6= v for all j; gj(x) = v for some j but f i(x) 6= v
for all i; or x = v. Note that v is uniquely characterized by having degree greater
than 2, even in the substructures generated by x or y. In the first case, x must be
aj−1 from the loop of size i + j. In the second case, x must be ai−1 from one of
the rays in which f walks towards v. In the third case, x must be aj−1 from one of
the rays in which g walks towards v. The same holds for y. The first case is unique
in the component, so in this case we know that x = y. If v 6= v∞, there is a single
orbit containing every instance of the second case, and another orbit containing
every instance of the third case, so there must be an automorphism mapping x to
y. If v = v∞, then the second case breaks into two subcases: g(v) = f i−1(x), and
g(v) 6= f i−1(x). The first subcase is unique in the component, so x = y, while
the second subcase again comprises a single orbit. We reason similarly in the third
case. The fourth case is again unique in the component.

In L∞, if x is part of some loop, then there is some Ui,j , or Vi,j , which holds of
x and no other point. Hence x = y. If x is part of some ray, then there is some Ri
that holds of x and only of the points on rays, which are distance i from v. Hence y
is also a point on a ray, which is distance i from v. Thus, there is an automorphism
of the structure switching those two rays, and, in particular, sending x to y.

In L∞, vk is uniquely characterized by Vmk,mk
(vk) holding, some Si(vk) holding,

and no other unary relation holding. Hence if x = vk, then y = vk. Also, v∞ is
uniquely characterized by some Si(v∞) holding and no other unary relation holding.
Hence if x = v∞, then y = v∞. �

It follows that the structures we have just described are Fräıssé limits. Observe
that they are defined in a computable fashion. Furthermore, our expanded language
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does not provide an obstacle to 1-decidability, since nk and mk are always chosen
larger than the current stage. Thus, any statement about fs(x), gs(x), hs(x),
Us,j(x), Vs,j(x), Rs(x) or Ss(x) can be decided by considering the construction
up through stage s. From the definition of the additional functions and relations
it also follows that the expanded structure is still computably categorical but not
relatively computably categorical (as the vertices v∞ are still accumulation points
in the Σ1 space, allowing us to diagonalize against Scott families). �

3. ∆0
2-categorical but not relatively ∆0

2-categorical trees

We consider trees as partial orders. R. Miller [38] established that no well-
founded tree of infinite height is computably categorical. Lempp, McCoy, R. Miller,
and Solomon [34] characterized computably categorical trees of finite height, and
established that for these structures, computable categoricity coincides with relative
computable categoricity. There is no known characterization of ∆0

2-categoricity or
of higher level categoricity for trees of finite height. Lempp, McCoy, R. Miller, and
Solomon [34] proved that for every n ≥ 1, there is a computable tree of finite height,
which is ∆0

n+1-categorical but not ∆0
n-categorical. We will establish the following

result, which also holds when a tree is presented as a directed graph.

Theorem 3. There is a computable ∆0
2-categorical tree of finite height, which is

not relatively ∆0
2-categorical.

Proof. While building a computable tree T (with domain ω), we diagonalize against
all potential c.e. Scott families of computable Σ2 formulas, with finitely many fixed
parameters. Thus, we consider all pairs (X , p), where X is a c.e. family of com-
putable Σ2 formulas and p is a finite tuple of elements from the domain of T . We
must ensure that for each pair (X , p), X with parameters p is not a Scott family for
T . At the same time, we have to assure that every isomorphic computable tree is
0′ - isomorphic to T . The construction will be an infinite injury priority construc-
tion where strategies are arranged on a priority tree with the true path defined as
usual.

We build the tree T by stages. The root of T will have infinitely many “children,”
which we label c0, c1, c2, . . . Each ce will have 3 children, ae, be and me. The purpose
of me is to uniquely identify ce. The node me will have a child ne, and ne will have
e + 1 many children. When the subtree above ce first appears in the tree, ae will
have 2 children and be will have no children. See the diagram.

Through the action of some strategy, more children may be added to ae and be
at later stages. As usually, we denote by Ts the tree at stage s.

Let (Xi, pi)i∈ω be an enumeration of pairs, where Xi is a c.e. family of computable
Σ2 formulas, and pi is a tuple drawn from ω, the domain of T . We must meet
the following categoricity and isomorphism requirements. Let M0,M1, . . . be an
effective enumeration of all computable structures in the language of the trees.

Ri : X i with parameters pi is not a Scott family for T .

Qj : If Mj
∼= T , then there is a 0′-computable isomorphism between Mj

and T .
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root

c0 c1

· · ·

ce

ae be me

ne

0 1

· · ·

e

· · ·

Figure 1. Construction of the tree T .

Strategy for Ri

Our strategy will appear on a priority tree. When the strategy is visited, s is
always the current stage, and t < s is the last stage at which the strategy took
outcome ∞ (or t = 0 if the strategy has never before taken outcome ∞). The first
time the strategy is visited, we choose a large e to work with. In particular, ae and
be must not occur in pi, and e > s.

Let φ(x) =
∨
n∈We

∃ynψn(x, yn) be a Σ2 formula, where each ψn(x, yn) is a
computable Π1 formula. For each such ψn, denote by ψrn the finite formula obtained
from ψn by restricting the c.e. conjunction to the first r elements enumerated into
the corresponding c.e. set.

We will make use of the fact that if φ(x) is a computable Σ2 formula and a ∈ T ,
then T |= φ(a) if and only if for some u, and some c ∈ |T |, Tr |= ψru(a, c) for all
sufficiently large stages r (such that, in particular, c ∈ |Tr|).

In what follows, without loss of generality we assume that Ts 2 φ(a) for any a if
φ(x) is not one of the first s elements of Xi.

We proceed as follows. Suppose s is a stage at which the strategy is visited. We
perform at most one step according to the following.

(1) Among the first s elements of Xi, locate the φ(x) that minimizes the u such
that for some c ∈ |Tu|, we have Tr |= ψru(ae, c, pi) and Tr |= ψru(be, c, pi) for
every r ∈ (u, s]. Note that u = s always works. Decide ties by favoring
earlier elements of Xi. If we have found such a φ, move to (2) next time
the strategy is visited.

(2) Check whether there is an r ∈ (t, s] with Tr 2 ψru(ae, c, pi)∧ψru(be, c, pi). If
so, move to (3) next time the strategy is visited. Otherwise, stay at (2).

(3) Add a child to both ae and be, ensuring that these children are not elements
of pi and move to (4).

(4) Return to Step (1).
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As each time the strategy is visited we perform at most one step, we never add
more than 1 child to ae at a single stage. This will be important for interactions
with higher priority categoricity requirements. Note also that at every stage, ae
has exactly 2 more children than be.

The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. Every time
we reach Step (4), we take outcome ∞ for a single stage. At all other stages, we
take outcome fink, where k is the number of previous stages at which we have
taken outcome ∞.

Strategy for Qj

Suppose σ is a strategy for Qj . This strategy will also appear on the priority tree.
When σ is visited, s is always the current stage and t < s is the last stage at which
the strategy took outcome ∞ (or t = 0 if σ has never before taken outcome ∞).
Throughout the construction, we maintain a parameter dσ for σ: if dσ is undefined
at the beginning of the stage s, set dσ = s − 1 and keep it until the construction
sets dσ to be undefined again.

We construct the isomorphism on ce and its descendants independently of the iso-
morphism for all the other ce′ ’s. We begin by searching for a tuple (r, c,m, n) ∈ Mj

with

r CMj
cCMj

mCMj
n,

and n having e+1 many children. When we find such a tuple, we map ce to c; me to
m; ne to n; and the children of ne to the children of n. Of course, we may later see
that the (e+2)nd child of ne appear, in which case we have made a mistake. If this
happens, we will discard our mapping and begin again. If Mj

∼= T , eventually the
tuple in Mj that respects the isomorphism is the Gödel least satisfying the above,
and so we will define the correct mapping. The oracle 0′ will be able to predict our
mistakes, and so can ignore all mappings before the correct one.

Under the assumption that we have correctly mapped ce, we must map ae and
be. This part will not rely on the oracle. To map ae and be to elements a, b, first
wait for such a stage s for σ, where dσ ≥ e. At each such stage s, make one step
trying to find a and b as described below.

If e has not been chosen by an Ri-strategy by this point, we know by construction
that it will be never chosen. In this case, we search for an aBMj c such that a has
two children and map ae to a. We then search for any child bBMj

c incomparable
with m or a, and map be to b.

If e has been chosen by an Ri-strategy, and that strategy is incomparable with σ
on the tree, then, under the assumption that σ is along the true path, the strategy
that chose e will never be visited again. So, let pe be the number of children of ae.
We search for an a BMj

c such that a has pe children, and map ae to a. We then
search for any b BMj

c, which is incomparable with m and a, and, in case pe > 2,
itself has children, and map be to b.

If e has been chosen by an Ri-strategy τ with τ ̂∞ ⊆ σ, then, under the
assumption that σ is along the true path, ae and be are automorphic. So, we search
for any a, bBMj

c incomparable with m and having children, and map ae to a and
be to b.

If e has been chosen by an Ri-strategy τ with τ ̂fink ⊆ σ, then, under the
assumption that σ is along the true path, ae and be will never gain any more
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children. So let pe be the number of children of ae. We search for an aBMj
c such

that a has pe children, and map ae to a. We then search for any bBMj c which is
incomparable with m, a, and, in case pe > 2, itself has children, and map be to b.

If e has been chosen by an Ri-strategy τ with σ̂fink ⊆ τ , then we wait until
a stage t when σ is accessible and t > e. At this stage, we know that τ will never
again be accessible (since τ was visited before t, the node σ had taken the outcome
∞ at least k times strictly before t, so at least k + 1 times by any stage after t, so
any future outcomes of σ must be ∞ or fink′ for k′ > k). So let pe be the number
of children of ae. We search for an a BMj c such that a has pe children, and map
ae to a. We then search for any bBMj c, which is incomparable with m, a, and, in
case pe > 2, has children, and map be to b.

If e has been chosen by an Ri-strategy τ with σ ̂∞ ⊆ τ , then let pes be the
number of children on ae at the beginning of stage s. We search for an aBMj

c such
that a has pes children, and map ae to a. We then search for any bBMj

c, which is
incomparable with m, a, and, in case pes > 2, has children, and map be to b. Note
that, unlike in the other cases, pes may change, which is why we have subscripted
it with the stage number.

The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. At stage s,
if for every e < dσ, the isomorphism is defined on ae, which has been chosen by
a τ extending σ̂∞, and further the image of ae in Mj has pes many children for
every such e, then we take outcome ∞ and make dσ undefined. Otherwise, we take
outcome fink, where k is the number of previous stages at which we have taken
outcome ∞. We also keep the value for dσ.

Construction

Arrange the strategies on a tree in some effective fashion, and at every stage,
allow strategies to be visited according to the outcomes of the previous strategies
at that stage, in the usual fashion.

Verification

Define the true path in the usual fashion for a 0′′ priority construction.

Lemma 1. Suppose that τ is an Ri-strategy along the true path. Then τ ensures
that Ri is satisfied.

Proof. Since τ is along the true path, it is visited infinitely often. We have 2 cases
to consider.

Case 1. There is some φ(x) ∈ Xi such that T |= φ(ae, pi) ∧ φ(be, pi). It means
there is some u and some c ∈ |T | such that T |= ψu(ae, c, pi)∧ψu(be, c, pi). Choose
the least φ(x) satisfying this property for the least such u. Then for any θ(x) ∈ Xi,
which is not one of the first u+ 1 elements of Xi, we know that τ will never choose
θ(x) because it will always prefer φ(x).

Thus, if τ were to take outcome ∞ infinitely many times, by the pigeonhole
principle, it would choose one of the first u + 1 elements of Xi infinitely many
times. However, if there are infinitely many r with Tr 2 θ(ae, pi) ∧ θ(be, p), then
eventually τ will prefer φ over θ, and so will stop choosing θ. Since φ was chosen
to be the least such, it will eventually be preferred to every other formula, but
then once that occurs, we will never again reach Stage 4. Therefore, τ cannot have
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outcome ∞ infinitely often. Hence τ has true outcome fink for some k, and ae
and be have different finite numbers of children. This means that ae and be are not
automorphic, so φ witnesses the failure of (Xi, pi) as a Scott family.

Case 2. There is no φ(x) ∈ Xi such that T |= φ(ae, pi) ∧ φ(be, pi). Then for
any φ, for any u and any c, there always exists a stage r > u such that Tr 2
ψru(ae, c, pi) ∧ ψru(be, c, pi). Thus, with any chosen φ we eventually reach Step (3),
and ae and be have infinitely many children. Hence, ae and be will be automorphic,
and, in particular, there will be an automorphism permuting ae and be and fixing
pi pointwise. Thus, for any φ with T |= φ(ae, pi), we know that T |= φ(be, pi).
Hence there can be no φ ∈ Xi, so that T |= φ(ae, pi), and hence Xi fails to be a
Scott family. �

Lemma 2. Suppose that σ is a Qj-strategy along the true path, that Mj
∼= T , and

e is chosen by some τ ⊇ σ̂∞. Then σ eventually correctly maps ae and be.

Proof. Certainly, σ eventually correctly maps ce and me, and defines some map for
ae and be. If τ has true outcome ∞, then ae and be are automorphic, so this is a
correct map.

Suppose, instead, that τ has true outcome fink (thus ae has k+ 2 children, and
be has k children). Let s0 be the stage at which σ correctly maps ce, and let t0 be
the final stage at which τ takes outcome ∞. Suppose that s0 > t0. Then at the
stage s0, the node σ searches for an a BMj

c with pes0 = k + 2 children, and maps
ae to a. By assumption, ae never gains any more children, so, since Mj

∼= T , the
correct image of ae is the only such child of c. The element be is correctly mapped
by elimination.

If, instead, s0 ≤ t0, then let a be the element to which σ has mapped ae at the
stage t0. (Such an element must exist because σ must have taken outcome ∞ at
the stage t0.) Since ae can gain at most one child during the stage t0, and will gain
no children after the stage t0, it has at least k+ 1 children at the start of the stage
t0. Since σ has outcome∞ at the stage t0, a has at least pet0 = k+1 children. Since
Mj
∼= T , the correct image of ae is the only child of c with at least k + 1 children,

so ae is correctly mapped. The element be is correctly mapped by elimination. �

Lemma 3. Suppose that σ is a Qj-strategy along the true path, and that Mj
∼= T .

Then σ has true outcome ∞.

Proof. Suppose otherwise. Let t0 be the final stage at which σ takes the outcome
∞. Then there are only finitely many e that are chosen by strategies extending
σ̂∞, and, by Lemma 2, σ eventually correctly maps ae for each of these e’s. Since
Mj
∼= T , σ eventually sees pet0 many children below the target of ae for each e, and

so σ will take outcome ∞ at some stage after t0, contrary to our assumption. �

Lemma 4. If Mj
∼= T , then there is a ∆0

2 isomorphism between Mj and T .

Proof. Non-uniformly fix σ that is the Qj-strategy along the true path. As argued
before, σ eventually correctly maps every ce and me, and 0′ can determine when
this occurs. By Lemma 2, or by the description of σ’s action, σ correctly maps
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ae and be, once ce has been correctly mapped. The only new ingredient is the
observation that since σ has true outcome ∞, there is eventually a stage s with
t > e, thus treating those e’s chosen by strategies extending σ̂fink.

Once ae and be are mapped, their children can be mapped by a simple back-and-
forth argument. Thus 0′ can build an isomorphism. �

This completes the proof. Note that every step we have described above can be
performed equally well for partial orders and directed graphs. �

We can modify the construction in the proof of the previous theorem to make
the tree have infinite height by extending every child of ae, be and ne to an infinite
non-branching path. Once ae, be and ne are correctly mapped, we then need to
use the 0′-oracle to correctly map their descendants. Hence we have the following
result.

Theorem 4. There is a computable ∆0
2-categorical tree of infinite height, which is

not relatively ∆0
2-categorical.

4. ∆0
2-categorical but not relatively ∆0

2-categorical abelian groups

We will now consider certain torsion-free abelian groups. A homogenous, com-
pletely decomposable, abelian group is a group of the form

⊕
i∈κ

H, where H is a

subgroup of the additive group of the rationals, (Q,+). Note that we have only a
single H in the sum – any two summands are isomorphic. It is well known that
such a group is computably categorical if and only if κ is finite; the proof is similar
to the analogous result that a computable vector space is computably categorical if
and only if it has finite dimension. In the remainder of this section, we will restrict
our attention to groups of infinite rank κ.

For P a set of primes, define Q(P ) to be the subgroup of (Q,+) generated by { 1
pk

:

p ∈ P ∧k ∈ ω}. Downey and Melnikov [15] showed that a computable, homogenous,
completely decomposable, abelian group of infinite rank is ∆0

2-categorical if and
only if it is isomorphic to

⊕
ω
Q(P ), where P is c.e. and the set (Primes − P ) is

semi-low. Recall that a set S ⊆ ω is semi-low if the set HS = {e : We ∩ S 6= ∅} is
computable from ∅′. Here, we will first fully characterize the computable, relatively
∆0

2-categorical, homogenous, completely decomposable, abelian groups of infinite
rank.

Theorem 5. A computable, homogenous, completely decomposable, abelian group
of infinite rank is relatively ∆0

2-categorical if and only if it is isomorphic to
⊕
ω
Q(P ),

where P is a computable set of primes.

Proof. Suppose that G is relatively ∆0
2-categorical. Since this implies that G is

∆0
2-categorical, by the above mentioned result of Downey and Melnikov, we know

that G ∼=
⊕
ω
Q(P ) for P a c.e. set of primes. We will show that P is also co-c.e.

Fix X , a c.e. Scott family of computable Σ2 formulas for G, with parameters
a ∈ G<ω. By definition, any element of G has all but finitely many coordinates
equal to 0. Choose l ∈ ω to be a coordinate which equals to 0 for every element
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of a. Fix an element b ∈ G such that the only non-zero coordinate of b is l. Then
b is independent of a. The map b 7→ p · b can be extended to an automorphism
of G fixing a if and only if p ∈ P . Fix some formula ∃x θ(z, x, y) ∈ X , where θ is
a computable Π1 formula and G |= ∃x θ(a, x, b). Fix some tuple c ∈ G such that
G |= θ(a, c, b).

Now, decompose the elements of c as ci = di+ei, where di is a rational multiple of
b, and b is independent of {a, e}. Observe that the map b 7→ p ·b can be extended to
an automorphism of G fixing a and e if and only if p ∈ P , and any such isomorphism
would need to map di 7→ p · di.

Define cp by cpi = p · di + ei. Note that an isomorphism sending b 7→ p · b and
fixing a and e would necessarily map c 7→ cp. Thus, if there is such an isomorphism,
then G |= θ(a, cp, p · b). Conversely, if G |= θ(a, cp, p · b) then G |= ∃x θ(a, x, p · b),
and, by the definition of a Scott family, there must be an isomorphism fixing a and
mapping b 7→ p · b. Thus,

p ∈ P ⇔ G |= θ(a, cp, p · b).

Since θ is a computable Π1 formula, and cp can be obtained effectively from p, it
follows that P is co-c.e. �

Since there exist co-c.e. sets that are semi-low and noncomputable, we obtain
the following result.

Corollary 1. There is a computable, homogenous, completely decomposable, abelian
group, which is ∆0

2-categorical but not relatively ∆0
2-categorical.

5. Degrees of categoricity of abelian p-groups and Boolean
algebras

While ∆0
n-categoricity provides an upper bound on the complexity of isomor-

phisms between computable copies of a structure, the degrees of categoricity, when
they exist, give the exact level of categoricity. Examples of Fokina, Kalimullin, and
R. Miller [18], as well as of Csima, Franklin, and Shore [13] showed that for every
computable successor ordinal α, every d-c.e. degree in and above 0(α) is the de-
gree of categoricity of some structure. However, for many natural classes, the only
degrees of categoricity can be the jumps of 0. Cenzer, Harizanov, and Remmel es-
tablished in [10] that the degrees of categoricity of computable injections structures
can only be 0, 0′ and 0′′. If follows from results by Calvert, Cenzer, Harizanov, and
Morozov [9] that every relatively ∆0

2-categorical equivalence structure has a degree
of categoricity that can only be either 0 or 0′. Csima and Ng recently announced
that the degree of categoricity of an arbitrary computable equivalence structure can
only be 0, 0′, or 0′′. Frolov [20] showed that the degrees of categoricity of relatively
∆0

2-categorical linear orders can only be 0 and 0′. Bazhenov [8] established that
the degrees of categoricity of relatively ∆0

2-categorical (equivalently, ∆0
2-categorical)

Boolean algebras can only be 0 and 0′. In this section, we prove an analogous re-
sult for relatively ∆0

2-categorical abelian p-groups. We also extend Bazhenov’s to
relatively ∆0

3-categorical Boolean algebras.

We will now focus on relatively ∆0
2-categorical abelian p-groups, where p is a

prime number. A group G is called a p-group if for all g ∈ G, the order of g is a
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power of p. By Z(pn) we denote the cyclic group of order pn. By Z(p∞) we denote
the quasicyclic (Prüfer) abelian p-group, the direct limit of the sequence Z(pn), and
also the set of rationals in [0, 1) of the form i

pn with addition modulo 1. The length

of an abelian p-group G, λ(G), is the least ordinal α such that pα+1G = pαG. Here,
p0G = G, pα+1G = p(pαG), and pλG =

⋂
α<λ p

αG for limit λ. The divisible part

of G, Div(G), is pλ(G)G and is a direct summand of G. The group G is said to
be reduced if Div(G) = {0}. For an element g ∈ G, the height of g, ht(g), is ∞ if
g ∈ Div(G), and is otherwise the least α such that g /∈ pα+1G. For a computable
group G, ht(g) can be an arbitrary computable ordinal. The height of G is the
supremum of {ht(g) : g ∈ G}. Let oG(g) be the order of g in G. The period of G
is max{o(g) : g ∈ G} if this number is finite, and is ∞ otherwise.

Goncharov [21] and Smith [43] independently characterized computably cate-
gorical abelian p-groups as those that can be written in one of the following two
forms:

(a)
⊕
l

Z(p∞)⊕ F , where l ≤ ω and F is a finite group; or

(b)
⊕
n
Z(p∞)⊕H ⊕

⊕
ω
Z(pk), where n, k ∈ ω and H is a finite group.

For these groups, computable categoricity and relative computable categoricity co-
incide (for a proof see also [7]).

In [7], Calvert, Cenzer, Harizanov, and Morozov established that a computable
abelian p-group G is relatively ∆0

2-categorical if and only if:

(i) G is isomorphic to
⊕
l

Z(p∞)⊕H, where l ≤ ω and H has finite period; or

(ii) All elements in G are of finite height (equivalently, G is reduced with λ(G) ≤
ω).

Using these two characterizations, it is easy to see the following.

Proposition 1. A computable abelian p-group G is relatively ∆0
2-categorical but

not computably categorical if and only if it has one of the following two forms:

(1)
⊕
ω
Z(pk) ⊕

⊕
ω
Z(pm) ⊕

⊕
l

Z(p∞) ⊕ H, where 0 < k < m ≤ ω, 0 ≤ l < ω,

and H is of finite period; or

(2) Every element of G has finite height, but G contains elements of arbitrarily
large finite heights.

Theorem 6. The categoricity degrees of computable relatively ∆0
2-categorical abelian

p-groups can only be 0 and 0′.

Proof. Obviously, the degree of categoricity of computably categorical abelian p-
groups is 0. Now, suppose that G is a computable abelian p-group, which is rela-
tively ∆0

2-categorical but not computably categorical. We will show that G has the
degree of categoricity 0′.

We use the characterization of relatively ∆0
2-categorical but not computably

categorical abelian p-groups from Proposition 1. We will handle the two cases
separately. In what follows, Gs is a finite part of G at stage s obtained in a
computable way. We also fix the modulus function µ of ∅′ for the rest of the proof.
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First Case. Consider elements x ∈ G with x 6= 0, p · x = 0 and ht(x) = k − 1.
Note that Z(pk) contains such an element (indeed, p − 1 such elements). By the
observation that G ∼=

⊕
ω
Z(pk) ⊕ G, we may assume that we have an effective

enumeration (an)n∈ω of infinitely many elements of this sort.

We will build a second computable copy A such that the first µ(n) elements of
A contain at most n elements of the desired sort. Then, given any isomorphism
f : G ∼= A, the function n 7→ f(an) would necessarily dominate µ. Thus, any
isomorphism from G to A would compute ∅′.

The construction is now straightforward. By dom(h) we denote the domain and
by ran(h) the range of a function h. We will build a ∆0

2 homomorphism h : G ∼= A
and arrange that A = ran(h)⊕

⊕
ω
Z(pm). We begin with h0 = ∅.

At stage s+ 1, for every n ≤ s, we consider every x ∈ G with n ≤ x ≤ s, x 6= 0,
p · x = 0 and [ht(x)]Gs < k. For each such element, if hs(x) ≤ µs(n), we define
hs+1(x) as some new large element. This requires that we also define hs+1(y) for
every y dividing such an x, to be some new large element. We let hs+1(x) = hs(x)
for every other x. We then extend the domain of hs+1 to the next element of G.
We let hs+1 induce the group operation on its range via pull-back.

Let Ds+1 = ran(hs)− ran(hs+1). Note that every element of Ds has height less
than k. We add new elements to extend Ds+1 to a copy of

⊕
l

Z(pm) for some l < ω.

Also, for every a ∈ As+1 − ran(hs+1) and every b ∈ ran(hs+1), if A does not yet
have an element corresponding to a+ b, we add an appropriate element now. This
completes the stage s+ 1.

Now we argue by induction that h is a total ∆0
2 function. To start, fix x ∈ G with

x 6= 0 and p·x = 0. If hs+1(x) 6= hs(x), then either our construction was deliberately
redefining h(x), or it was required to redefine h(x) because it deliberately redefined
h(z) for some z that x divides. The only such z’s are of the form q ·x for 1 ≤ q < p.
Let s0 be such that µs0(q · x) = µ(q · x) for 1 ≤ q < p. Then at any stage s > s0
with hs+1(x) 6= hs(x), we have hs+1(q · x) > µs(q · x) = µ(q · x) since hs+1(q · x) is
chosen to be large. Then at any stage t > s, ht(q · x) > µ(q · x) = µt(q · x), and so
we will have ht+1(x) = ht(x), and hence h(x) will reach a limit.

Now, consider y ∈ G with pi+1 · y = 0 for 1 ≤ i < ω. Then p · (pi · y) = 0, and
hs+1(y) 6= hs(y) only when hs+1(pi · y) 6= hs(p

i · y). Since we have just argued that
h(pi · y) reaches a limit, it follows that h(y) reaches a limit.

Note that A = ran(h) ⊕
⊕
ω
Z(pm) by construction. It follows that A ∼= G. It

also follows that every x ∈ A− ran(h) with p · x = 0 has height at least m− 1 ≥ k.
Finally, our construction ensures that there are at most n elements x ∈ G with
p · x = 0, ht(x) < k and h(x) < µ(n). Thus, there are at most n elements x ∈ A
with p · x = 0, ht(x) < k and x < µ(n), as desired.

Second Case. By a result of Khisamiev [31] and independently of Ash, Knight
and Oates [5], we know that

G ∼= Z(pk0)⊕ Z(pk1)⊕ · · · ,

where the sequence (ki)i∈ω is uniformly computable from below. That is, there is
a computable function g : ω × ω → ω such that for all i and s, g(i, s) ≤ g(i, s+ 1),
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and for all i, ki = lims g(i, s). Fix such a function g. By our assumptions about G,
we know that the ki’s are unbounded.

We will construct a computable function h and a ∆0
2 function ι such that:

(1) For all i and s, h(i, s) ≤ h(i, s+ 1);

(2) ι : ω → ω is a bijection;

(3) For all i, lims h(i, s) = lims g(ι(i), s); and

(4) For all n and all x ∈ G with x < µ(n) and x 6= 0, we have ht(x) + 1 <
lims h(2n, s) (recall that µ is the modulus function for ∅′).

We will then let A = Z(plims h(0,s)) ⊕ Z(plims h(1,s)) ⊕ · · · By the first property
above, this is a computable structure. By the second and the third properties,
A ∼= G. By the fourth property, given an isomorphism f : A ∼= G, for any element
x of the (2n)th summand of A with x 6= 0 and p·x = 0, it must be that f(x) ≥ µ(n).
Thus, f computes ∅′.

It remains to construct h and ι. We begin with ι0 = ∅ and h(i, 0) = 0 for all i.

At stage s+1, if there is an n with 2n ∈ dom(ιs) and an x ∈ G with x < µ(n), x 6=
0 and [ht(x)]Gs ≥ h(2n, s), we search for a large pair (j, t) with g(j, t) > h(2n, s),
and define ιs+1(2n) = j and h(2n, s + 1) = g(j, t). We then choose a large m and
define ιs+1(2m+ 1) = ιs(2n). We let ιs+1(k) = ιs(k) for every other k.

We then choose the least a 6∈ dom(ιs+1) and the least b 6∈ ran(ιs+1), and define
ιs+1(a) = b. Then, for every i ∈ dom(ιs+1) with h(i, s + 1) not yet defined, we
define h(i, s + 1) = max{g(ιs+1(i), s + 1), h(i, s)}. For every i 6∈ dom(ιs+1), we
define h(i, s+ 1) = 0. This completes the stage s+ 1.

First, note that, by construction, h(i, s) ≤ h(i, s+ 1) for every i and s.

Next, we argue that ι is a total ∆0
2 function. Note that, by construction, for

every i, there is eventually a stage s0 such that ιs(i) is defined for all s ≥ s0. If i is
odd, then ιs(i) = ιs0(i) for all s ≥ s0. If, instead, i = 2n, then at every stage s with
ιs(i) 6= ιs(i+ 1), we have h(i, s+ 1) ≥ h(i, s) + 1. Let u = max{ht(x) : x ∈ G∧ x <
µ(n)}. Thus, for sufficiently large s1, h(i, s1) > u, and then h(i, s) = h(i, s1) for all
s ≥ s1.

Next, we argue that ι is surjective. If b = ιs0(a), then either b = ιs(a) for all
s > s0, or there is a stage s1 > s0 with b = ιs1(c) for some odd c. By construction,
ι never changes on odd inputs, so b = ιs(c) for all s ≥ s1. By construction, every
element is eventually added to the range of some ιs, so every element is in ran(ι).

By induction on s, h(i, s) ≤ lims g(ιs(i), s) for all i and s, and so, in par-
ticular, lims h(i, s) exists and equals at most lims g(ι(i), s). On the other hand,
h(i, s) ≥ g(ιs(i), s) for all i and s, by construction, and so lims h(i, s) = lims g(ι(i), s),
as desired.

Finally, for all n and all x ∈ G with x < µ(n) and x 6= 0, we have ht(x) + 1 <
lims h(2n, s), since we deliberately increase h(2n, s) whenever this appears to be
false. This completes the proof. �

We now turn to relatively ∆0
3-categorical Boolean algebras. A Boolean algebra

B is atomic if for every a ∈ B, there is an atom b ≤ a. An equivalence relation ∼
on a Boolean algebra A is defined by:

a ∼ b iff each of a ∩ b and b ∩ a is ∅ or a union of finitely many atoms of A.
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A Boolean algebra A is a 1-atom if A/ ∼ is a two-element algebra. A Boolean
algebra A is rank 1 if A/ ∼ is a nontrivial atomless Boolean algebra. McCoy [36]
proved that a countable rank 1 atomic Boolean algebra is isomorphic to the interval
algebra I(2 · η).

Goncharov and Dzgoev [24], and independently Remmel [41] and LaRoche [33]
established that a computable Boolean algebra is computably categorical (also, rel-
atively computably categorical) if and only if it has finitely many atoms. In [35],
McCoy established that a Boolean algebra is relatively ∆0

2-categorical if and only
if it is a finite direct sum of algebras that are atoms, atomless, or 1-atoms. Fur-
thermore, in [36], McCoy characterized relatively ∆0

3-categorical Boolean algebras
as those computable Boolean algebras that can be expressed as finite direct sums
of algebras that are atoms, atomless, 1-atoms, rank 1 atomic, or isomorphic to the
interval algebra I(ω + η). In our next theorem, we will use this characterization.

Theorem 7. The degrees of categoricity of relatively ∆0
3-categorical Boolean alge-

bras can only be 0, 0′ and 0′′.

Proof. Fix a relatively ∆0
3-categorical Boolean algebra B. If B is a finite join of

atoms, 1-atoms, and atomless Boolean algebras, then B is relatively ∆0
2-categorical,

and so its degree of categoricity is either 0 or 0′ by Bazhenov’s result in [8]. Oth-
erwise, B has a summand that is either rank 1 atomic or isomorphic to the interval
algebra I(ω + η).

All of the potential summands in the characterization of relatively ∆0
3-categorical

Boolean algebras have computable isomorphic copies in which the set of finite ele-
ments (that is, the elements a with a ∼ 0) is computable. We will show that both
the rank 1 atomic algebra and I(ω+η) have computable isomorphic copies in which
the set of finite elements is Σ0

2-complete. It will follow that B has a computable
isomorphic copy in which the set of finite elements is computable, and another
computable isomorphic copy in which it is Σ0

2-complete, and so any isomorphism
between these two copies will compute ∅′′.

We begin with the rank 1 atomic algebra. Let C be a computable copy of this
algebra in which the set of atoms is computable. Let {ai : i ∈ ω} be the set of
all atoms of C. We will create an algebra A by extending C. Let φ(i, x) be a
computable formula such that

i ∈ ∅′′ ⇔ ∃<∞x φ(i, x).

At every step s, we will consider whether φ(i, s) holds. The first time φ(i, s) holds,
we choose three large elements b0i , b

1
i and b2i and use them to partition ai into three

pieces. That is,
b0i ∧ b1i = b1i ∧ b2i = b2i ∧ b0i = 0

and
b0i ∨ b1i ∨ b2i = ai.

At the second step at which we see φ(i, s) hold, we repeat the process on b0i and b2i .
See the following diagrams.

We then let A be the Boolean algebra generated by C along with these newly
added elements. Note that every element of A is the join of an element from C and
some of these new elements (among bσi ’s). That is, for all d ∈ A, d = c ∨ bσ0

i0
∨

bσ1
i1
∨ · · · ∨ bσk

ik
for some c ∈ C and some bσ0

i0
, . . . , bσk

ik
.
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ai

b0ib1ib2i

Figure 2. Working with rank 1 atomic, the first time we see φ(i, s) hold.

ai

b0i

b00ib01ib02i

b1ib2i

b20ib21ib22i

Figure 3. Working with rank 1 atomic, the second time we see
φ(i, s) hold.

ai

b0i

b00i

b000ib001ib002i

b01ib02i

b020ib021ib022i

b1ib2i

b20i

b200ib201ib202i

b21ib22i

b220ib221ib222i

Figure 4. Working with rank 1 atomic, the third time we see
φ(i, s) hold.

Observe that ai is infinite in A if and only if φ(i, x) holds for infinitely many x,
which is if and only if i 6∈ ∅′′. Also, ai necessarily bounds an atom in A, e.g., b1i .
Finally, if ai is infinite, then it can be partitioned into two infinite elements, e.g.,
b0i and b1i ∨ b2i . Since every element of C bounds an atom, and every infinite element
of C can be partitioned into two infinite elements, it follows that the same holds
for every element of A. This characterizes the rank 1 atomic algebra. Thus A ∼= C,
and A is as desired.

Next, consider I(ω+ η). Again, let C be a computable copy of I(ω+ η) in which
the set of atoms is computable. Let {ai : i ∈ ω} be the set of all atoms of C. We
again create A extending C. Let φ(i, x) be as before. At every step s, if φ(i, s)
holds, we add new elements below ai. The first time φ(i, s) holds, we partition
ai = b0i ∨ b1i . The second time it holds, we partition b0i and b1i . See the diagrams.
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ai

b0ib1i

Figure 5. Working with I(ω + η), the first time we see φ(i, s) hold.

ai

b0i

b00ib01i

b1i

b10ib11i

Figure 6. Working with I(ω + η), the second time we see φ(i, s) hold.

ai

b0i

b00i

b000ib001i

b01i

b010ib011i

b1i

b10i

b100ib101i

b11i

b110ib111i

Figure 7. Working with I(ω + η), the third time we see φ(i, s) hold.

We again let A be the Boolean algebra generated by C along with these new
elements. The isomorphism type of I(ω + η) is characterized by three properties:
there are infinitely many atoms; any element that bounds infinitely many atoms
also bounds an atomless element; and no two disjoint elements both bound infinitely
many atoms. Since every atom of A is bounded by an atom of C, every atomless
element of C is still atomless in A, and every atom of C is either atomless or finite
in A, the second and the third properties are inherited from C to A. Meanwhile,
the first property is ensured by the fact that ∅′′ is infinite. Thus A ∼= C.

This completes the proof. �
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