Countable Models, Computability, and Enumerations, Part I

Valentina Harizanov
George Washington University
Washington, DC
harizanv@gwu.edu
http://home.gwu.edu/~harizanv/

Joint work with Sergei Goncharov, Julia Knight, Charlie McCoy, Russell Miller, and Reed Solomon.
Computable models

- Consider a *countable* structure A for a *computable* language L.

- *Turing degree* of A is the Turing degree of the atomic diagram of A, $D(A)$. A is *computable* (*recursive*) if its Turing degree is 0.

- $D(A)$ may be of much lower Turing degree than $Th(A)$. N, the standard model of arithmetic, is computable. *True Arithmetic*, $TA = Th(N)$, is of Turing degree $0^{(\omega)}$.

- *(Tennenbaum)* There is no computable nonstandard model of PA.

Computable categoricity

Let A be a computable structure.

- A is computably categorical if for all computable $B \cong A$, there is a computable isomorphism f from A onto B.

- A is relatively computably categorical if for all $B \cong A$, there is an isomorphism f from A onto B, which is computable relative to $D(B)$.

- A is relatively computably categorical \(\Rightarrow\) A is computably categorical.
Examples

- $(\omega, <)$ is not computably categorical.

- $(Q, <)$ is relatively computably categorical (usual back-and-forth argument). It is not computably stable.

- A computable structure A is *computably stable* if for all computable $B \cong A$, every isomorphism from A onto B is computable.

- (R. Miller) No computable tree (T, \prec) of infinite height is computably categorical.
(LaRoche, Goncharov-Dzgoev, Remmel)

• A computable linear order is computably categorical iff it has \textit{finitely many successors}.

• A computable Boolean algebra is computably categorical iff it has \textit{finitely many atoms}.

(Goncharov, Smith)

• Computably categorical abelian \(p\)-groups are those that can be written in one of the following forms:
 \((Z(p^{\infty}))^l \oplus G\) for \(l \in \omega \cup \{\infty\}\) and \(G\) is finite, or
 \((Z(p^{\infty}))^n \oplus G \oplus (Z(p^k))^\infty\), where \(n, k \in \omega\) and \(G\) is finite.
Computably categorical does not imply relatively computably categorical

• (Goncharov, 1980) There is a rigid computable graph that is computably categorical, but *not relatively* computably categorical.

• *Our goal:* Generalize Goncharov’s result to higher levels of hyperarithmetical hierarchy.

• X is $\Sigma^0_n \iff X$ is c.e. relative to $\emptyset^{(n-1)}$, for $1 \leq n < \omega$

• X is $\Sigma^0_\alpha \iff X$ is c.e. relative to $H(a)$, for $|a| = \alpha \geq \omega$
Classification of computable formulas

• A computable Σ_0 (Π_0) formula is a finitary quantifier-free formula. A computable Σ_α formula, $\alpha > 0$, is a c.e disjunction of formulas

$$\exists \overline{u} \psi(\overline{x}, \overline{u}),$$

where ψ is computable Π_β for some $\beta < \alpha$.

A computable Π_α formula, $\alpha > 0$, is a c.e. conjunction of formulas

$$\forall \overline{u} \psi(\overline{x}, \overline{u}),$$

where ψ is computable Σ_β for some $\beta < \alpha$.
Δ^0_α categoricity

Let A be a *computable* structure, α a computable ordinal.

- A is Δ^0_α *categorical* if for all computable $B \cong A$, there is a Δ^0_α isomorphism f from A onto B.

- A is *relatively* Δ^0_α *categorical* if for all $B \cong A$, there is an isomorphism f from A onto B, which is Δ^0_α relative to $D(B)$.
Scott families of formulas

Let A be a countable structure.

- A Scott family for A is a set Φ of formulas, with a fixed finite tuple of parameters \bar{c} in A, such that each tuple in A satisfies some $\psi \in \Phi$, if \bar{a}, \bar{b} are tuples in A satisfying the same formula $\psi \in \Phi$, then there is an automorphism of A taking \bar{a} to \bar{b}.

- If A rigid, Scott family replaced by defining family of formulas with a single free variable:
every $a \in A$ satisfies some $\psi(x) \in \Phi$, no ψ in Φ satisfied by more than one element in A.
Effective Scott families

• A formally Σ^0_α Scott family is a Σ^0_α Scott family consisting of computable Σ_α formulas.

• A formally c.e. Scott family is a c.e. Scott family consisting of finitary existential formulas.

• If a computable structure A has a formally c.e. Scott family, then it is relatively computably categorical.
• *Proof sketch.*

Let \((A, \overline{c}) \cong (B, \overline{d})\).

Will construct an isomorphism \(f\) computable in \(D(B)\).

\[f = \bigcup_{s} f_{s}, \quad f_{s} \subset f_{s+1}. \]

Assume \(f_{s}\) maps \(\overline{c} \overline{a} \rightarrow \overline{d} \overline{b}\),
\(a' \in A\), where \(a' \notin \overline{c} \overline{a}\).

Find \(\psi(\overline{c}, \overline{x}, \overline{y}) \in \Phi\) and \(b' \in B\) such that

\[A \models \psi(\overline{c}, \overline{a}, a') \land B \models \psi(\overline{d}, \overline{b}, b'). \]

Let \(f_{s+1}(a') = b'\).
Equivalence of semantic and syntactic conditions

• (Ash-Knight-Manasse-Slaman, Chisholm) Let A be a computable structure.

 A is relatively Δ^0_α categorical iff
 A has a formally Σ^0_α Scott family iff
 A has a c.e. Scott family consisting of computable Σ_α formulas.

 In particular, A is relatively computably categorical iff
 it has a formally c.e. Scott family.

• (Goncharov) Assume that the $\exists\forall$-diagram of A is computable.

 If A is computably categorical, then it has a formally c.e. Scott family.

• (Ash) Under some additional decidability on A,

 if A is Δ^0_α categorical, then it has a formally Σ^0_α Scott family.
General result

(Goncharov-Harizanov-Knight-McCoy-Miller-Solomon, *APAL* 2005)

- For every computable successor ordinal α, there is a computable structure A, which is Δ^0_α categorical, but A does not have a formally Σ^0_α Scott family (not relatively Δ^0_α categorical).
Relations on structures

• Let R be an additional relation on a structure A. Let \mathbb{P} be a computability-theoretic complexity class.

• (Ash-Nerode) R is intrinsically \mathbb{P} on a computable A if in all computable isomorphic copies of A, the image of R is \mathbb{P}.

• R is relatively intrinsically \mathbb{P} on a computable A if in all isomorphic copies B of A, the image of R is \mathbb{P} relative to $D(B)$.

• Examples: (i) Successor is intrinsically Π^0_1 on a computable linear order. (ii) Dependence is intrinsically c.e. on a computable vector space.
Definability versus complexity of relations

- (Kueker) The following are equivalent for a relation R on a countable A:

 (i) R has fewer than $2^{|\mathbb{N}|}$ different images under automorphisms of A;

(ii) R is definable in A by an $L_{\omega_1 \omega}$ formula with finitely many parameters.

Assume (i). There exists \bar{c} such that for every $a \in R$
there is a formula $\psi_a(x, \bar{c})$ satisfied by a but not by any $a' \notin R$.
Hence, R is defined by $\bigvee_{a \in R} \psi_a(x, \bar{c})$.

- (Harizanov) **Turing degree spectrum** of a relation R on A,
 $DgSp(R)$, the set of Turing degrees of images of R
in computable isomorphic copies of A.
Σ_α definability of relations

- (Ash) A relation defined in a countable structure A by a computable Σ_α (Π_α) formula is Σ_α (Π_α) relative to D(A).

- The relation R is formally Σ_0^0 on A if it is definable by a computable Σ_0^0 formula with finitely many parameters.

- (Ash-Nerode) Under some effectiveness condition (enough to have the existential diagram of (A, R) computable), R is intrinsically c.e. on a computable A iff R is formally c.e. on A.

- (Barker) Under some effectiveness conditions, R is intrinsically Σ_0^0 on a computable A iff R is formally Σ_0^0 on A.
• (Harizanov)

Under some effectiveness condition
(enough to have the existential diagram of \((A, R)\) computable):

\((i)\) If \(R\) is \textit{not intrinsically computable},
then \(DgSp(R)\) includes all c.e. degrees.

At least one of \(R\), \(\neg R\) is not definable in \(A\) by a computable \(\Sigma_1\) formula.

Example: \(A = (\omega, <)\), \(R = Succ\)

\((ii)\) If \(\neg R\) is not definable in \((A, R)\) by a computable \(\Sigma_1\) formula
in which the symbol \(R\) occurs only positively,
then \(DgSp(R)\) includes all c.e. degrees realized via c.e. sets.
• Degrees coarser than Turing degrees:

\[X \leq_{\Delta^0_{\alpha}} Y \iff X \leq_T Y \oplus \Delta^0_{\alpha} \]

\[X \equiv_{\Delta^0_{\alpha}} Y \iff (X \leq_{\Delta^0_{\alpha}} Y \land Y \leq_{\Delta^0_{\alpha}} X) \]

\[(\equiv_{\Delta^0_1} \text{ is } \equiv_T) \]

• (Ash-Knight) Under some effectiveness condition, if \(R \) is not intrinsically \(\Delta^0_{\alpha} \) on a computable \(A \), then for every \(\Sigma^0_{\alpha} \) set \(C \), there is an isomorphism \(f \) from \(A \) onto a computable structure such that \(f(R) \equiv_{\Delta^0_{\alpha}} C \).

Not possible to replace these by Turing degrees.
Equivalence of semantic and syntactic conditions

• (Ash-Knight-Manasse-Slaman, Chisholm)
 \(R \) is relatively intrinsically \(\Sigma^0_\alpha \) on \(A \) \iff \(R \) is formally \(\Sigma^0_\alpha \) on \(A \).

• (Soskov) TFAE:
 (i) \(R \) is relatively intrinsically \(\Delta^1_1 \) on \(A \);
 (ii) \(R \) is definable in \(A \) by a computable formula with finitely many parameters;
 (iii) \(R \) is intrinsically \(\Delta^1_1 \) on \(A \).

• (Soskov, Goncharov-Harizanov-Knight-Shore) TFAE:
 (i) \(R \) is relatively intrinsically \(\Pi^1_1 \) on \(A \);
 (ii) \(R \) is definable in \(A \) by a \(\Pi^1_1 \) disjunction of computable formulas with finitely many parameters;
 (iii) \(R \) is intrinsically \(\Pi^1_1 \) on \(A \).
Intrinsically effective does not imply relatively intrinsically effective

• (Manasse)
 There is a computable structure with an intrinsically c.e., but not relatively intrinsically c.e. relation.

• (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)
 For every computable successor ordinal α, there is a computable structure A with a relation R, such that R is intrinsically Σ^0_α on A, but R is not definable in A by a Σ_α formula with finitely many parameters (not relatively intrinsically Σ^0_α).
Turing degree spectrum of a structure

- \(DgSp(A) = \{\text{deg}(B) : B \cong A\}\).

- (Knight) \(A\) is automorphically trivial if it has a finite tuple \(\bar{c}\) such that every permutation of \(A\) that fixes \(\bar{c}\) pointwise is an automorphism of \(A\).
 (i) \(A\) is automorphically trivial \(\Rightarrow |DgSp(A)| = 1\).
 (ii) \(A\) is automorphically nontrivial \(\Rightarrow DgSp(A)\) is closed upwards.

- (Harizanov-Knight-Morozov) (i) If \(A\) is automorphically trivial, then \((\forall B \cong A)[D^e(B) \equiv_T D(B)]\).
 (ii) If \(A\) is automorphically nontrivial, and \(X \geq_T D^e(A)\), there exists \(B \cong A\) such that
 \[D^e(B) \equiv_T D(B) \equiv_T X\.
• \mathcal{D}=the set of all Turing degrees

• (Wehner, Slaman)
 There is a structure A such that
 \[DgSp(A) = \mathcal{D} - \{0\}. \]

• (Hirschfeldt)
 There is a complete decidable theory, with all types computable, whose prime model A has no computable copy, but has an X-decidable copy for every noncomputable X.
• (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)
 For each computable successor ordinal \(\alpha \),
 there is a structure \(A \) whose
 \(DgSp(A) \) consists of the Turing degrees of sets \(X \)
 such that \(\Delta^0_\alpha(X) \) is not \(\Delta^0_\alpha \).

• In particular, for every \(n \in \omega \), there is a structure \(A \) such that

\[
DgSp(A) = \{ c \in \mathcal{D} : c^{(n)} > 0^{(n)} \}.
\]

A degree \(c \) is non-\(low_n \) if \(c^{(n)} > 0^{(n)} \).
Computable dimension of a structure

- **Computable dimension** of A is the number of computable isomorphic copies of A, up to computable isomorphism.

- (Metakides-Nerode, Nurtazin, Goncharov, Goncharov-Dzgoev, Remmel, LaRoche) The following classes have computable dimension 1 or ω: algebraically closed fields, and real closed fields, abelian groups, linear orders, Boolean algebras, Δ^0_2 categorical structures.

- (Goncharov) There are structures of computable dimension n for every finite $n \geq 1$.
\(\Delta^0_\alpha \) dimension of a structure

- \(\Delta^0_\alpha \) dimension of \(A \) is the number of computable copies of \(A \), up to \(\Delta^0_\alpha \) isomorphism.

- (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon) For each computable successor ordinal \(\alpha \) and every finite \(n \geq 1 \), there is a computable structure \(A \) such that the \(\Delta^0_\alpha \) dimension of \(A \) is \(n \).
Enumerations

- An *enumeration* of $S \subseteq P(\omega)$ is a binary relation ν:

 $$S = \{\nu(i) : i \in \omega\}, \text{ where } \nu(i) = \{x : (i, x) \in \nu\}.$$

 ν is *computable (c.e.)* if it is computable (c.e.) as a binary relation.

- ν is *Friedberg* if it is 1-1: $i \neq j \Rightarrow \nu(i) \neq \nu(j)$.

- (Wehner)
 There is a family S such that for every noncomputable X, S has an enumeration computable in X (c.e. relative to X), but S has no computable (c.e.) enumeration.
Equivalent enumerations

• $\nu \leq \mu$ if there is a computable function f such that:

$$ (\forall i)[\nu(i) = \mu(f(i))]. $$

• ν and μ are **computably equivalent** if $\mu \leq \nu$ and $\nu \leq \mu$.

• (Goncharov)
 For every finite $n \geq 1$, there is a family of sets with exactly n c.e. Friedberg enumerations, up to computable equivalence.

• (Marchenkov)
 Not true for computable Friedberg enumerations if $n > 1$.
Discrete families

- $S \subseteq P(\omega)$ is discrete if for each $A \in S$, there exists $\sigma \in 2^{<\omega}$ such that for all $B \in S$, $\sigma \subseteq B \iff B = A$.

- S is effectively discrete if there is a c.e. set $E \subseteq 2^{<\omega}$ such that:
 \[(\forall A \in S')(\exists \sigma \in E)[\sigma \subseteq A];\]
 \[(\forall \sigma \in E)(\forall A, B \in S)[(\sigma \subseteq A \land \sigma \subseteq B) \Rightarrow A = B].\]

- (Selivanov)
 There exists S with unique computable Friedberg enumeration, (in fact, c.e. since it consists of the graphs of functions) up to computable equivalence, such that S is discrete but not effectively discrete.
Transforming S into a graph

- Assign to $A \in S$, a *daisy graph* G_A consisting of one index point a at the center with $a \rightarrow a$, and for each $n \in A$ a petal (disjoint from other petals)

 $$a \rightarrow a_0 \rightarrow \cdots \rightarrow a_n \rightarrow a$$

- $G(S)$ is the union of a disjoint family of G_A for each $A \in S$. $G(S)$ is a rigid graph.

- $S^+ = \text{def} \{ A \oplus \overline{A} : A \in S \}$.

- If S has n c.e. (computable) Friedberg enumerations, up to computable equivalence, then $G(S)$ ($G(S^+)$) has computable dimension n.
Discrete families and defining families of graphs

- Assume S is discrete. Every element of $G(S^+)$ has a finitary existential definition without parameters.

- Assume S is discrete but not effectively discrete. Assume S has a computable Friedberg enumeration. $G(S^+)$ does not have a formally c.e. defining family.

- If S is a Selivanov’s family, then $G(S^+)$ is computably categorical, but not relatively.
• The *cardinal sum* $B_0 \oplus B_1$ of disjoint structures B_0, B_1 in the same relational language: take the disjoint union of the structures and add predicates P_0 and P_1 which hold of the elements of B_0 and B_1, respectively.

• Let $A = G \oplus G$ for $G = G(S^+)$, where S a Selivanov family. Let R be the unique isomorphism. R is intrinsically c.e. (since G is computably categorical).

• R is not relatively intrinsically c.e.

Assume otherwise. For any copy H of G, we take the disjoint union of the universes, and form a copy of A. There is an isomorphism from G onto H, computable in H. However, G is not relatively computably categorical.
• $S \subseteq P(\omega)$
 $G^\infty(S)$ consists of infinitely many copies of G_A for each $A \in S$.
 $G^\infty(S)$ is not rigid.
 Copies of $G^\infty(S)$ correspond to enumerations of S.

• $X \subseteq \omega$
 There is an enumeration of S c.e. in X (computable in X) iff there is an isomorphic copy of $G^\infty(S)$ ($G^\infty(S^+)$) computable in X.
(Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)

Let $\alpha \geq 2$ be a computable successor ordinal. There is a structure with copies in exactly the Turing degrees of sets X such that $\Delta^0_\alpha(X)$ is not Δ^0_α.

Proof sketch. Relativize the proof for Δ^0_1 to Δ^0_α.

Get a graph G such that the degrees of copies of G are just the degrees of sets that are not Δ^0_α.

Code a directed graph G in a structure G^* such that:

G has a Δ^0_α copy iff G^* has a computable copy.

More generally, for any $X \subseteq \omega$,

G has a $\Delta^0_\alpha(X)$ copy iff G^* has an X-computable copy.
• **Proof sketch continued.** Code Δ^0_α directed graph G in a (computable) structure G^*, using a pair of structures B_0, B_1 such that B_0 codes $G \models a \rightarrow b$ and B_1 codes $G \models \neg(a \rightarrow b)$.

• $G^* = (G \cup U, G, U, Q, \ldots)$, where G and U are disjoint, Q (a ternary relation) assigns to $a, b \in G$ an infinite set $U_{(a,b)}$: $(x \in U_{(a,b)} \iff Qabx)$, the sets $U_{(a,b)}$ form a partition of U,

\[
(U_{(a,b)}, \ldots) \overset{\Delta}{=} \begin{cases}
B_0, & \text{if } G \models a \rightarrow b, \\
B_1, & \text{if } G \models \neg(a \rightarrow b).
\end{cases}
\]
• (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon)
 Let $\alpha \geq 2$ be a computable successor ordinal.
 There is a computable structure that is Δ^0_α categorical but not relatively Δ^0_α categorical.

• Proof sketch. Relativize the proof for Δ^0_1 to Δ^0_α.
 There is a rigid Δ^0_α directed graph G such that:
 (i) G has exactly one Δ^0_α isomorphic copy, up to Δ^0_α isomorphism,
 (ii) G does not have Σ^0_α Scott family of finitary existential formulas.

• Code G in a computable structure $G^* = (G \cup U, G, U, Q, \ldots)$, using a pair of structures B_0, B_1 such that
 B_0 codes $G \models a \rightarrow b$ and
 B_1 codes $G \models \neg(a \rightarrow b)$.
• B_0 and B_1 are computable structures, for which the standard back-and-forth relations \leq_β for $\beta < \alpha$ are uniformly c.e. (Pair $\{B_0, B_1\}$ is α-friendly.)

• B_0 and B_1 satisfy the same infinitary Π_β sentences for $\beta < \alpha$. (If α were a limit ordinal, then B_0 and B_1 would also satisfy the same Π_α sentences.)

• B_0 satisfies some computable Π_α sentence that is not true in B_1, and vice versa.

• Then for any Δ^0_α set S, there is a uniformly computable sequence $(C_n)_{n \in \omega}$ such that

$$C_n \models \begin{cases} B_0, & \text{if } n \in S, \\ B_1, & \text{if } n \notin S. \end{cases}$$
Back-and-forth relations

• \(\leq_{\beta} \) on the set of pairs \(\{(i, \bar{b}) : \bar{b} \in B_i\} \), are defined inductively as follows:

 (i) \((i, \bar{b}) \leq_1 (j, \bar{c}) \) iff the existential formulas true of \(\bar{c} \) in \(B_j \) are true of \(\bar{b} \) in \(B_i \);

 (ii) if \(\beta > 1 \), \((i, \bar{b}) \leq_{\beta} (j, \bar{c}) \) iff for all \(\bar{c}' \) in \(B_j \), and all \(\gamma \) with \(1 \leq \gamma < \beta \), there exists \(\bar{b}' \) in \(B_i \) such that

 \[
 (j, \bar{c}, \bar{c}') \leq_{\gamma} (i, \bar{b}, \bar{b}').
 \]

• \((i, \bar{b}) \leq_{\beta} (j, \bar{c}) \) iff all \(\Pi_{\beta} \) formulas of \(L_{\omega_1 \omega} \) true of \(\bar{b} \) in \(B_i \) are true of \(\bar{c} \) in \(B_j \).
Existence of structures B_0 and B_1

- Case $\alpha = 2$: orders ω and ω^*.

- Can be distinguished by finitary Π_2 sentences saying that there is no first, or last, element.

- $\omega \leq_1 \omega^*$ and $\omega^* \leq_1 \omega$ (since both orders are infinite).

- Each order is rigid, with a c.e. defining family consisting of finitary Σ_2 formulas $\psi_n(x)$ saying that there are exactly n elements to the left, or right, of x. Any tuple of elements \bar{x} in ω or ω^* can be defined by a conjunction of such formulas. Formally Σ^0_2 Scott family without parameters.
\{\omega, \omega^*\} is 2-friendly

Facts about linear orders L_0, L_1.

- $L_0 \leq_1 L_1$ iff either both orders are infinite or L_0 is at least as big as L_1.

- $(L_0, \overline{a}) \leq_\gamma (L_1, \overline{b})$ iff for $L_0 = A_0 + a_1 + A_1 + \ldots + a_n + A_n$ and $L_1 = B_0 + b_1 + B_1 + \ldots + b_n + B_n$, we have $A_i \leq_\gamma B_i$ for $i = 0, \ldots, n$.

- Can enumerate the \leq_1 relation between tuples in our orders.
Uniformly relatively Δ^0_α categorical structures

- B is uniformly relatively Δ^0_α categorical if given an X-computable index for C with $C \cong B$, we can find a $\Delta^0_\alpha(X)$ index for an isomorphism from B onto C.

- B has a formally Σ^0_α Scott family with no parameters $\implies B$ is uniformly relatively Δ^0_α categorical.

- Assume, in addition, B_0 and B_1 are uniformly relatively Δ^0_α categorical. Can show that:
 - (i) G^* is Δ^0_α categorical (G had exactly one Δ^0_α isomorphic copy, up to Δ^0_α isomorphism);
 - (ii) G^* does not have formally Σ^0_α Scott family (G did not have Σ^0_α Scott family of finitary existential formulas).